FDM2_INFO P20

EMPLOI DU TEMPS

  1. cours 1) : les mardis de 8h à 9h30 et mercredis de 8h à 10h30
  2. TD 2) : les mercredis de 14h à 17h15 et les jeudis de 14h à 17h15 sauf pour le groupe A : les mercredis de 14h à 18h15 et les vendredis de 17h30 à 19h.
  3. ÉS 3) : 2 groupes les mardis de 9h45 à midi

Calendrier prévisionnel des interrogations :

3 contrôles de 45 minutes au début du créneau d'ÉS les mardis 18/2, 10/3, 21/4 (CC1,CC2,CC3) ; 
un examen d'1H30 le mardi 31/3 (CP) ;
un examen final la semaine du 11 au 15 mai (CF).

Note finale = 15% x CC1 + 15% x CC2 + 15% x CC3 + 1/4 x CP + 30% x CF

1er examen de 45'

mardi 18 février pendant le créneau d'études surveillées ; programme = matrices et fonctions trigonométriques réciproques. Voici un catalogue d'exercices pour s'entraîner.

2ème examen de 45'

mardi 10 mars pendant le créneau d'études surveillées ; programme = espaces vectoriels et développements limités. Voici un catalogue d'exercices pour s'entraîner.

Plan du cours

I.– Calcul Matriciel II.– Fonctions circulaires réciproques III.– Espaces vectoriels IV.– Développements limités V.– Applications linéaires VI.– Formules de Taylor VII.– Représentations matricielles des applications linéaires VIII.– Intégration IX.– Fractions rationnelles X.– Primitives XI.– Équations différentielles XII.– R

Cours du mardi 21 janvier 2020

I.– Calcul matriciel 1) définitions 2) opérations : addition, multiplication 3) exemples

Cours du mercredi 22 janvier 2020

4) Transposée : (AB)=tBtA, définitions des matrices symétriques et antisymétriques 5) Trace : Tr(AB)= Tr(BA) 6) (A+B)n si AB = BA 7) Matrices échelonnées 8) Rang d'une matrice : définition du rang des lignes en transformant une matrice en matrice échelonnée par des opérations élémentaires sur les lignes 9) Résolution des systèmes linéaires 10) Inverse d'une matrice : définition, si A ε Mn (K), alors A inversible ⇔ rang(A) = n, méthode pour calculer A-1 par des opérations élémentaires sur les lignes 11) Déterminants : 2 x 2, 3 x 3 : formules, nx n : développement par rapport à une ligne ou une colonne (admis). Exemples.

Cours du mardi 28 janvier 2020

12) formules pour l'inverse d'une matrice : cas 2 x 2, cas 3 x 3, cas général : A-1 =tÃ.

II.– Fonctions trigonométriques réciproques 1) définitions de Arcsin et de Arccos 2) propriétés 3) dérivées de Arcsin et de Arccos sur ]-1,1[

Cours du mercredi 29 janvier 2020

4) polynômes de Tchébychev : cos(narccos(nx)) = Tn(x) 5) arccos(x)+arccos(y) 6) définition de arctan, arctan' (x) = 1/(1+x²), 7) exemples de formules arctan(1)+ arctan(2)+arctan(3) 8) lien avec arcsin 9) développement en série de arctan

chapitre III Espaces vectoriels

1) opérations dans K^n 2) sous-espaces vectoriels de K^n 3) intersection et somme de sous-ev 4) familles libres, génératrices …

Cours du mardi 4 février 2020

5) bases : définition, exemples 6) unicité du cardinal des bases

Cours du mercredi 5 février 2020

7) définition de la dimension 8) sommes directes, existence de supplémentaires 9) définition des espaces vectoriels abstraits

Cours du mardi 11 février 2020

10) Exemples 11) rang des lignes d'une matrice = rang des colonnes

Cours du mercredi 12 février 2020

chapitre IV. Développements limités 1) Règle de l'Hospital 2) Notations de Landau : o, ~, O 3) Développements limités : définitions 4) Formule de Taylor-Young 5) dl à connaître par coeur : exp, sin, cos, (1+x)a 6) somme et produits de dl.

Cours du mardi 18 février 2020

7) division de dl, exemples : tan et 1/cos 8) composition de dl, exemples 9) intégration de dl, exemples : arctan et arcsin 10) dl ailleurs qu'en 0

Cours du mercredi 19 février 2020

11) développements à l'infini, asymptotes 12) exemples de calculs de dl

Chapitre V. Applications linéaires 1) Définition, exemples 2) f(0)=0 3) L(E,F)

Cours du mardi 25 février 2020

4) isomorphismes 5) noyau et image d'un morphisme 6) théorème du rang

Feuilles de TD

Pour s'exercer

1)
à partir du mardi 21/1/20
2)
à partir du mercredi 29/1/20
3)
à partir du mardi 28/1/20
 
 
Valid XHTML 1.0 Valid CSS Driven by DokuWiki