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1 Introduction

Le but de ce TIPE est de calculer la dimension de Minkowski-Bouligand du graphe de la
fonction de Weierstrass, en s’appuyant sur la preuve de C.Tricot donnée dans l’ouvrage "Courbes
et dimension fractale" [1].

L’objectif a été atteint, à ceci près que j’ai modifié la rédaction de certaines démonstrations,
quitte à parfois proposer des approches alternatives à l’ouvrage, car je n’ai pas eu l’intuition né-
cessaire pour pleinement comprendre certains arguments affirmés sans justification par l’au-
teur. Je me suis donc également appuyé sur un ouvrage de K. Falconer [2]. Toute erreur m’est
donc directement imputable.

Tous les résultats ne relevant pas de la géométrie fractionnaire seront admis, en particulier
les théorèmes relatifs à la théorie de la mesure, à la topologie, à la symétrisation de Steiner, ainsi
que le théorème de Jordan. Cependant, tous ces résultats ne faisant pas partie du programme
de L2, ils seront rappelés au fur et à mesure que le besoin de leur utilisation se fera sentir. Il
y aura dans la section Bibliographie des références sur lesquelles je me suis appuyé pour la
compréhension de ces notions, avec bien souvent des démonstrations.

Ce travail a été réalisé avec la précieuse aide de V. Borrelli, dans le cadre de la L2 de mathé-
matiques à l’université Lyon 1.
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2 Un peu de théorie de la mesure

Le but de cette section est de rappeler des résultats relatifs à la théorie de la mesure, utiles
pour la suite, sans les démontrer. Un livre plus complet sur la théorie de la mesure, avec dé-
monstrations, [3]. On retrouve aussi [4] sur Youtube.

2.1 Le paradoxe de Banach-Tarski

Pour répondre à la question "Qu’est ce que mesurer?" on voudrait définir une mesure M

raisonnable sur Rn , qui va des parties de Rn dans R+ et qui vérifie les propriétés suivantes :

• M (;) = 0

• M ([0,1]n) = 1

• Si (An)n∈N est une famille dénombrable de parties de Rn deux à deux disjointes :

M (
⋃

n∈N
An) = ∑

n∈N
M (An)

• M est invariante par isométrie.

Proposition 2.1. Une telle mesure M n’existe pas.

Ceci est dû au paradoxe de Banach-Tarski, parfois aussi appelé paradoxe de Hausdorff-
Banach-Tarski.
Proposition 2.2 (Paradoxe de Banach-Tarski). Considérons une boule de rayon 1. Alors on peut
partitionner cette boule de sorte qu’en réarrangeant les morceaux (en leur faisant subir une trans-
formation isométrique), on obtient une boule de rayon 2.

Pour plus d’informations sur le paradoxe de Banach-Tarski, le lecteur peut consulter le livre
[5] ou sur Youtube [6].

2.2 La tribu Borélienne

Ce paradoxe nous oblige à considérer une mesure non pas sur Rn tout entier, mais sur ce
que l’on va appeler une tribu de Rn .

Définition 2.3 (Tribu). Soit T une famille non vide de parties de Rn . On dit que T est une tribu
si elle est stable par union dénombrable et par complémentaire.

Remarque 2.4. Rn muni d’une tribu T est un espace mesurable, et si l’on introduit une mesure
M il s’agit d’un espace mesuré.

Définition 2.5 (Tribu engendrée). Soit X ⊂ Rn . On appelle tribu engendrée par X la plus petite
tribu contenant X

Définition 2.6 (Tribu Borélienne). La tribu Borélienne est la tribu engendrée par tous les ouverts
de Rn .

Remarque 2.7. Un élément de la tribu Borélienne est appelé un borélien, et une mesure est dite
borélienne lorsqu’elle est positive et définie sur la tribu Borélienne.
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Proposition 2.8 (Existence et unicité de la mesure de Lebesgue sur R). Il existe une unique
mesure borélienne λ sur R telle que λ([a,b]) = b −a pour tout segment [a,b].

Définition 2.9 (Mesure de Lebesgue sur R). λ est appelée la mesure de Lebesgue.

Définition 2.10 (Tribu Produit). Soient (E1,T1) et (E2,T2) des espaces mesurables. On pose E =
E1 ×E2 On appelle tribu produit sur E la tribu engendrée par T1 ×T2 Cette tribu est notée T1 ⊗T2

Proposition 2.11 (Mesure produit). Soient (E1,T1,m1) et (E2,T2,m2) des espaces mesurés. Po-
sons E = E1 ×E2 et T = T1 ⊗T2. Alors il existe une unique mesure m sur T vérifiant

m(A1 × A2) = m1(A1)m2(A2), ∀(A1, A2) ∈ T1 ×T2, mi (T1) <∞, i = 1,2

On note m = m1 ⊗m2

Définition 2.12 (Mesure de Lebesgue sur Rn). On définit la mesure de Lebesgue sur Rn comme
la mesure produit des mesures de Lebesgue sur R : λ⊗λ⊗ ...⊗λ avec n facteurs.

Proposition 2.13 (Mesure d’une intersection décroissante). Si (An)n∈N est une suite décrois-
sante (au sens de l’inclusion) d’éléments de la tribu Borélienne, et si ∃p ∈ N,λ(Ap ) < +∞ alors
λ(

⋂
n∈N

An) = lim
n→∞λ(An)

Remarque 2.14. Lorsque E ⊂ R, λ(E) sera notée Long ueur (E). Pour un espace E ⊂ R2, λ(E)
sera notée Ai r e(E).
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3 Dimension de Minkowski-Bouligand

3.1 Définition de cette dimension

Définition 3.1 (Épaississement de Minkowski). Soit E ⊂ Rn , soit ϵ > 0, soit Bϵ(x) la boule ou-
verte de rayon ϵ centrée en x. On dit que EE (ϵ) = ⋃

x∈E
Bϵ(x) est l’ ϵ-épaississement de Minkowski

de E.

Remarque 3.2. On noteraλ(EE (ϵ)) sa mesure, qui existe puisque l’épaississement de Minkowski
de E est une réunion d’ouverts donc est un ouvert, et appartient ainsi à la tribu Borélienne de
Rn .

Définition 3.3 (Dimension supérieure de Minkowski-Bouligand). Soit E ⊂ Rn , soit ϵ > 0. On
dit que

di m − supMB (E) = limsup
ϵ→0

(
n − ln(λ(EE (ϵ)))

ln(ϵ)

)
est la dimension supérieure de Minkowski Bouligand de E.

Définition 3.4 (Dimension de Minkowski-Bouligand). On dit que

di mMB (E) = lim
ϵ→0

(
n − ln(λ(EE (ϵ)))

ln(ϵ)

)
est la dimension de Minkowski Bouligand de E, dans le cas où cette limite existe.

3.2 Exemples

Exemple 3.5. Considérons E = [0,1] ⊂R.
La longueur de son épaississement de Minkowski vaut Long ueur (EE (ϵ)) = 1+2ϵ
et lim

ϵ→0
ln(Long ueur (EE (ϵ))) = 0. La dimension de Minkowski-Bouligand de E ⊂ R vaut donc

lim
ϵ→0

(
1− ln(Long ueur (EE (ϵ)))

ln(ϵ)

)
= 1.

Exemple 3.6. Considérons E = [0,1]2 ⊂R2.
L’aire de son épaississement vaut Ai r e(EE (ϵ)) = 1+4ϵ+πϵ2 (l’aire du carré de côté 1, 4 rectangles
de longueur 1 et de largeur ϵ et 4 quarts de cercle de rayon ϵ). On a de même,
lim
ϵ→0

ln(Ai r e(EE (ϵ))) = 0. Donc sa dimension de Minkowski-Bouligand vaut

lim
ϵ→0

(
2− ln(Ai r e(EE (ϵ)))

ln(ϵ)

)
= 2.
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FIGURE 1 : En rouge, l’ensemble E et en bleu son épaississement de Minkowski

Exemple 3.7. Considérons E = [0,1] ⊂R2.
L’aire de son épaississement vaut Ai r e(EE (ϵ)) = 2ϵ+πϵ2 (l’aire du rectangle de longueur 1 et
de largeur 4ϵ, et de deux demi-cercles de rayon ϵ). On a donc sa dimension de Minkowski-
Bouligand qui vaut

lim
ϵ→0

(
2− ln(Ai r e(EE (ϵ)))

ln(ϵ)

)
= lim
ϵ→0

(
2− ln(2ϵ+πϵ2)

ln(ϵ)

)
= 2−1 = 1

FIGURE 2 : En rouge, l’ensemble E et en bleu son épaississement de Minkowski

3.3 Définition équivalente de la dimension de Minkowski-Bouligand

Définition 3.8. [Des ensembles de points de E] Soit E ⊂Rn borné, soit ϵ> 0. On note
PE (ϵ) = {P ⊂ E , ∀(p1, p2) ∈ P, ||p1 −p2|| ≥ 2ϵ}. Il s’agit de l’ensemble des ensembles de points de E
dont les distances 2 à 2 sont supérieures à 2ϵ.

Remarque 3.9. Si l’on considère P ∈ PE (ϵ), et deux points p1 et p2 de P , alors les boules Bϵ(p1)
et Bϵ(p2) sont disjointes.

6



FIGURE 3 : Un ensemble et des boules disjointes centrées sur des point de cet ensemble, de
sorte qu’on ne puisse pas en ajouter plus

Proposition 3.10 (Un maximum). Le suprémum des cardinaux des éléments de PE (ϵ) existe et
est atteint. On note donc M(ϵ) = max{ car d(P ) avec P ∈ PE (ϵ) }

Démonstration. Comme E est borné, il existe r > 0 et x ∈ Rn , tel que E ⊂ Br (x). Soit P ∈ PE (ϵ),
soit p ∈ P . Comme p ∈ E et E ⊂ Br (x), on a Bϵ(p) ⊂ EE (ϵ) ⊂ EBr (x)(ϵ). Mais alors la remarque
3.9 implique

car d(P ) ≤ λ(EBr (x)(ϵ))

λ(Bϵ(x))

Proposition 3.11. [Dimension par boules disjointes]

di mMB (E) = lim
ϵ→0

ln(M(ϵ))

|ln(ϵ)|

Démonstration. Considérons un ensemble F ∈ PE (ϵ) tel que car d(F ) = M(ϵ). Les boules de
EF (ϵ) sont disjointes, et incluses dans l’épaississement de Minkowski de E , puisque F ⊂ E . Ainsi

λ(Bϵ)M(ϵ) ≤λ(EE (ϵ))

De plus comme M(ϵ) est un maximum, tout point de E est à une distance plus petite ou égale à
ϵ de EF (ϵ), et donc tout point de EE (ϵ) est à une distance plus petite ou égale à 2ϵ de EF (ϵ), donc
en multipliant par 2 le rayon des boules de EF (ϵ), on recouvre EE (ϵ), et donc :

λ(EE (ϵ)) ≤λ(B2ϵ)M(ϵ) (3.1)

Par le théorème des gendarmes,et en remarquant que λ(Bϵ) =ϵ→0 O(ϵn) on obtient

lim
ϵ→0

ln(M(ϵ))

|ln(ϵ)| = lim
ϵ→0

(
n − ln(λ(EE (ϵ)))

ln(ϵ)

)
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4 Dimension de l’ensemble de Cantor

Le but de cette section est de définir un ensemble dont la dimension de Minkowski-Bouligand
n’est pas entière.

4.1 Construction de l’ensemble de Cantor

Prenons le segment [0,1]. Enlevons, au centre, l’intervalle ouvert de longueur 1/3 (le tiers
central). Il reste deux segments auxquels on enlève à nouveau un intervalle, toujours centré,
avec ce même rapport 1/3. En réitérant ce processus indéfiniment, on obtient à la limite l’ensemble
de Cantor, noté C .

FIGURE 4 : Visualisation des 6 premières étapes de la construction de C les unes en dessous des
autres

Définition 4.1 (Ensemble de Cantor). On dit que

C = [0,1] \
∞⋃

n=0

3n−1⋃
k=0

]
3k +1

3n+1
,

3k +2

3n+1

[
est l’ensemble de Cantor.

Remarque 4.2. On notera Cn la ni ème étape de construction de l’ensemble de Cantor, c’est à
dire

Cn = [0,1] \
n⋃

i=0

3i−1⋃
k=0

]
3k +1

3i+1
,

3k +2

3i+1

[
Notons que ∀n ∈N, C ⊂Cn ⊂ [0,1].

Remarque 4.3. Comme on enlève le tiers central de chaque intervalle fermé de Cn à l’étape n+
1, on a Long ueur (Cn+1) = 2

3 Long ueur (Cn), et donc d’après la proposition 2.13, Long ueur (C ) =
0.

4.2 L’ensemble de Cantor est non vide

On note xn un nombre écrit en base 2 avec au plus n chiffres, et Xn l’ensemble des xn . Cn

contient 2n intervalles fermés disjoints de la forme [ak ,bk ],k ∈ {1, ... ,2n} = car d(Xn). On crée
une bijection γ entre Xn et les ak , croissante. Cela permet de numéroter les intervalles fermés
de Cn avec des nombres en base 2 à n chiffres.

Définition 4.4 (Les fermés de l’ensemble de Cantor). On appelle Fxn le fermé [a,b] de Cn dont
a est l’image de xn par la bijection γ.
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Exemple 4.5. Si l’on considère C2, on a F00 = [0, 1
9 ], F01 = [ 2

9 , 3
9 ], F10 = [ 6

9 , 7
9 ] et F11 = [ 8

9 ,1].

Proposition 4.6 (Théorème des fermés emboîtés). Dans Rn , et plus généralement dans tout
espace métrique complet, une suite décroissante (pour l’inclusion) de compacts non vides dont le
diamètre tend vers 0 a pour intersection un singleton.

Démonstration. Le lecteur pourra trouver une preuve de ce théorème ici [7].

Proposition 4.7 (L’ensemble de Cantor est non vide). L’ensemble de Cantor contient un single-
ton pour chaque suite (xn)n∈N, avec xn un nombre quelconque en base 2 à n chiffres.

Démonstration. En considérant (xn)n∈N une suite de nombres en base 2, dont le ni ème terme a
n chiffres, on crée (Fxn )n∈N une suite décroissante de compacts non vides dont le diamètre tend
vers 0 et donc d’après le théorème des fermés emboîtés l’ensemble de Cantor est non vide, il
contient un singleton pour chaque suite (xn)n∈N.

Remarque 4.8. Considérons l’application qui à (Fxn )n∈N associe son intersection, à savoir un
singleton de C . Celle ci est bijective, et donc l’ensemble de Cantor n’est pas dénombrable, et est
bijectif à {0,1}N.

4.3 Calcul de la dimension de Minkowski-Bouligand de l’ensemble de Can-
tor

Proposition 4.9 (Dimension de l’ensemble de Cantor).

di mMB (C ) = ln(2)

ln(3)

Démonstration. Cette preuve s’appuie sur la section 3.3, et plus particulièrement sur la propo-
sition 3.11. On rappelle M(ϵ) = max{ car d(P ) avec P ∈ PC (ϵ) } avec PC (ϵ) = {P ⊂C , ∀(p1, p2) ∈
P, ||p1 −p2|| ≥ 2ϵ}.

Soit ϵ ∈]0,1]. Soit n ∈N tel que 3−(n+1) < ϵ≤ 3−n . Alors on va montrer que 2n ≤ M(ϵ) ≤ 2n+1.
En effet, M(ϵ) ≥ 2n puisqu’en prenant le point de C à l’extrémité gauche de chacun des seg-
ments de Cn , on obtient bien un ensemble P ∈ PC (ϵ), puisque ϵ≤ 3−n .

D’autre part, M(ϵ) ≤ 2n+1 En effet supposons que cela ne soit pas le cas. Alors ∃P ∈ PC (ϵ),
car d(P ) > 2n+1. Comme C ⊂Cn , les points de P sont dans Cn . Comme il y a plus de 2n+1 points
dans P pour seulement 2n segments dans C n , il y a au moins un segment Fxn de Cn contenant
au moins 3 points de P , et donc λ(Fxn ) > 4ϵ. Mais comme on a λ(Fxn ) = 3−n , et ϵ> 3−(n+1), on a
3−n > 4(3−(n+1)). Absurde.

Ainsi, par le théorème des gendarmes, on a lim
ϵ→0

M(ϵ) = ln(2) et donc

di mMB (C ) = lim
ϵ→0

ln(M(ϵ))

|ln(ϵ)| = ln(2)

ln(3)
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5 Dimension de Minkowski-Bouligand pour des courbes simples

Soit C une courbe simple bornée.

5.1 Symétrisation de Steiner

Soit D ⊂R2 la droite de normale #»n passant par l’origine. Soit d ∈ D .
On pose Ld = {d +x #»n , x ∈R}. Soit E ⊂R2 compact.

Définition 5.1 (Symétrisation de Steiner). On dit que

StD (E) = { d +x #»n , ( d ∈ D, ∃y ∈R,d + y #»n ∈ E ), |x| ≤ 1

2
Long ueur (E ∩Ld )}

est le symétrisé de Steiner de E par rapport à D.

FIGURE 5 : A gauche un ensemble et à droite son symétrisé de Steiner par rapport à l’axe des
abscisses

Proposition 5.2 (Conservation de la mesure). Ai r e(E) = Ai r e(StD (E))

Démonstration. On trouvera une preuve de ce résultat dans cet ouvrage [8].

Définition 5.3 (Les lignes horizontales). Soit p = (x, y) ∈C , soit ϵ> 0. On note

Hp (ϵ) = {(t , y), t ∈ ]x −ϵ, x +ϵ[ }

et HC (ϵ) = ⋃
p∈C

Hp (ϵ)

Posons γ(t ) une paramétrisation de C . Soient p = (x, y) et p ′ = (x ′, y ′) deux points de C , tel
que y ′ > y , et soient (t , t ′) tels que γ(t ) = p et γ(t ′) = p ′. Soit (p, p ′) l’arc de C allant de p à p ′

étant la réduction de γ à [t , t ′]. On notera H(p,p ′)(ϵ) = ⋃
x∈(p,p ′)

Hx(ϵ)

Proposition 5.4. [Aire de H(p,p ′)(ϵ)] Ai r e(H(p,p ′)(ϵ)) ≥ 2ϵ(y ′− y)

Démonstration. Posons D d’équation y = 0 et StD (H(p,p ′)(ϵ)) le symétrisé de Steiner de H(p,p ′)(ϵ)
par rapport à D .
L’arc (p, p ′) étant continu, d’après le théorème des valeurs intermédiaires, pour chaque z ∈
[y, y ′] il y a au moins un point de C ayant comme ordonnée z.
Ainsi, ∀c ∈ H(p,p ′)(ϵ), Long ueur (Lc ∩H(p,p ′)(ϵ)) ≥ 2ϵ. Donc l’aire de StD (H(p,p ′) est plus grande
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que l’aire du rectangle [−ϵ,ϵ]x[y, y ′] celui ci étant inclus dans StD (H(p,p ′), et on obtient bien le
résultat attendu.

Remarque 5.5. Si l’on avait pris D d’équation x = 0, on aurait obtenu le même résultat pour
l’aire de V(p,p ′)(ϵ) = ⋃

c∈(p,p ′)
Vc (ϵ) où

Vc (ϵ) = {(x, t ), t ∈ ]y −ϵ, y +ϵ[ }

5.2 Dimension par croix

Définition 5.6 (Les croix). Soit p = (x, y) ∈C , soit ϵ> 0. On note

Kp (ϵ) = {(t , y), t ∈ ]x −ϵ, x +ϵ[ } ∪ {(x, t ), t ∈ ]y −ϵ, y +ϵ[ }

et KC (ϵ) = ⋃
p∈C

Kp (ϵ)

Remarque 5.7. KC (ϵ) = HC (ϵ)∪VC (ϵ)

Définition 5.8 (Courbe de Jordan). Une courbe de Jordan est une courbe fermée du plan sans
points doubles.

Proposition 5.9 (Théorème de Jordan). Toute courbe de Jordan sépare le plan en deux compo-
santes connexes disjointes dont elle est la frontière commune, une seule d’entre elles est bornée.

Proposition 5.10 (Dimension par croix).

di mMB (C ) = lim
ϵ→0

2− ln(Ai r e(KC (ϵ)))

|ln(ϵ)|

Démonstration. Les croix étant incluses dans l’épaississement de Minkowski,
Ai r e(KC (ϵ)) ≤ Ai r e(EC (ϵ)). Trouvons une inégalité dans l’autre sens. Soit p un point de C . Pour
démontrer ce résultat, construisons un carré J dont les cotés sont de longueur 2ϵ, pris parallèles
aux branches de la croix Kp (ϵ), centré sur p. Prenons ϵ suffisamment petit de sorte qu’il y ait un
point de la courbe en dehors de J (ceci est toujours possible en prenant ϵ plus petit que le
diamètre de C ).
J est une courbe de Jordan, qui sépare donc le plan en deux composantes connexes, il y a donc
un point de la courbe C sur J . en notant γ(t ) une paramétrisation de C , {t ∈R,γ(t ) ∈C ∩ J } est
un fermé borné non vide en tant qu’intersection non vide de fermés bornés. Il s’agit donc d’un
compact qui est borné et atteint ses bornes, en particulier son minimum. Il existe donc un point
p ′ de C tel que l’arc (p, p ′) de C soit entièrement compris dans le carré plein dont la frontière
est J , notons le Jpl ei n .
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FIGURE 6 : Un carré J et un arc (p, p ′) complètement inclus dans le carré plein Jpl ei n

Supposons que p ′ soit situé sur un des segments horizontaux de J . On applique la proposi-
tion 5.4 pour obtenir

Ai r e(K(p,p ′)(ϵ)) ≥ Ai r e(H(p,p ′)(ϵ)) ≥ 2ϵ2

Comme l’arc (p, p ′) est entièrement compris dans Jpl ei n , chaque segment horizontal associé à
un point de (p, p ′) est au moins à moitié inclus dans Jpl ei n . On a

Ai r e(K(p,p ′)(ϵ)∩ Jpl ei n) ≥ ϵ2

Si p ′ est sur un des segments verticaux de J , on applique la remarque 5.5 pour obtenir la même
chose.
L’intersection ceci avec la boule Bϵ(p) est donc d’aire supérieure à (π−3)ϵ2.
On applique la proposition 3.11 et on note donc EPC (ϵ)(ϵ) les disques disjoints centrées sur des
points de C , de rayon ϵ. La construction précédente appliquée à toutes ces boules permet de
construire M(ϵ) domaines disjoints, et donc :

Ai r e(KC (ϵ)) ≥ (π−3)ϵ2M(ϵ)

De plus on sait en écrivant l’inégalité 3.1 en dimension 2 :

Ai r e(EC (ϵ)) ≤ 9πϵ2M(ϵ)

Ce qui nous donne bien
π−3

9π
Ai r e(EC (ϵ)) ≤ Ai r e(KC (ϵ))

On a donc

Ai r e(KC (ϵ)) ≤ Ai r e(EC (ϵ)) ≤ 9π

π−3
Ai r e(KC (ϵ))

et donc on a bien

lim
ϵ→0

2− ln(Ai r e(KC (ϵ)))

|ln(ϵ)| = lim
ϵ→0

2− ln(Ai r e(EC (ϵ)))

|ln(ϵ)|
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6 Dimension de Minkowski-Bouligand des Graphes

Soit (a,b) ∈ R2, a < b. Soit τ> 0 Soit f une fonction de [a −τ,b +τ] dans R. Soit G le graphe
de f .

6.1 Oscillation et Variation

On veut étudier ici non pas des graphes représentatifs de fonctions C∞ , mais de fonctions
continues mais non dérivables, nulle part. Pour cela, on va définir un "équivalent" pour la tan-
gente.

Pour un t dans [a-τ,b+τ] et un τ strictement positif, l’image de [t-τ,t+τ] par f est inscrite dans
un rectangle dont un des cotés mesure 2τ et l’autre mesure sup

|t−t ′|≤τ
f (t ′)− inf

|t−t ′|≤τ
f (t ′).

Définition 6.1. [τ-oscillation] On dit que oscτ(t , f ) = sup
|t−t ′|≤τ

f (t ′)− inf
|t−t ′|≤τ

f (t ′)

est la τ-oscillation de f en t .

La variation est l’intégrale des oscillations. Ainsi donc :

Définition 6.2. [τ-Variation] On dit que

V arτ( f ) =
∫ b

a
oscτ(t , f )d t

est la τ-variation de f .

Remarque 6.3. Lorsqu’aucune confusion n’est possible pour τ, on appellera respectivement la
τ-oscillation et la τ-variation oscillation et variation.

6.2 Variation et dimension de Minkowski-Bouligand

Notation 6.4 (Une surface particulière). On note Uτ = { (x, y),∃x0, f (x0) = y, |x −x0| ≤ τ }

Il s’agit de la surface balayée par le graphe G lorsqu’on la translate par les vecteurs xi⃗ , x ∈
[−τ,τ], et qu’on tronque à gauche et à droite pour ne garder que les points compris entre a et b.

FIGURE 7 : La surface Uτ
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Proposition 6.5 (Géométrie de la variation).

V arτ( f ) =λ(Uτ)

Démonstration. Remarquons que comme l’on a tronqué à gauche de a et à droite de b, Pour
tout point p = (px , py ) de Uτ, ∃y ∈ f ([a,b]), f (px) = y . Autrement dit, Uτ est la réunion de seg-
ments verticaux placés à toutes les abscisses x, pour x ∈ [a,b].

Montrons que la longueur de ces segments vaut exactement oscτ(x, f ).
En effet, Uτ est la réunion de segments horizontaux de longueur 2τ centrés sur les points

(x, f (x)), x ∈ [a,b]. Ainsi, si l’on considère un segment vertical placé à l’abscisse x, chaque point
de ce segment est à une distance horizontale plus petite ou égale à τ d’un point du graphe de
f , et tous les points de f dont l’abscisse est à une distance plus petite ou égale à τ de x ont
un projeté sur le segment vertical d’abscisse x, et donc la longueur de ce segment vertical vaut
exactement l’oscillation.

Autrement dit, si l’on fixe unx dans [a,b], on peut construire une bijection entre les points
du segment vertical d’abscisse x et les points du graphe de f dont l’abscisse est à une distance
plus petite ou égale à τ.

En intégrant ces segments verticaux (qui forment Uτ), on obtient bien la variation de f .

Proposition 6.6. [Dimension de Minkowski-Bouligand et Variation]

di mMB (G ) = lim
τ→0

2− logV arτ( f )

log (τ)

Démonstration. Avant toute chose, notons que f étant continue sur un segment, elle est bornée
et atteint ses bornes. Notons m et M le minimum et maximum respectivement de f sur [a,b],
ainsi que c = M −m.

Pour cette démonstration nous utiliserons la définition de la dimension M-B par des croix.
Reprenons donc pour x dans [a,b] le domaine de recouvrement par croix KG (τ) et les croix
K(x, f (x))(τ) définies précédemment. Ces croix sont la réunion de lignes horizontales (notons les
HG (τ)) et de lignes verticales ( VG (τ) ). On a :

λ(HG (τ)) ≤λ(KG (τ)) ≤λ(HG (τ))+λ(VG (τ))

Pour les lignes verticales, celles-ci étant de longueurs 2τ, λ(VG (τ)) = 2τ(b −a). Si l’on tronque à
gauche de a et à droite de b, λ(HG (τ)) devient égale à Uτ. On a :

V arτ( f ) ≤λ(HG (τ)) ≤V arτ( f )+2cτ

Et en rassemblant ces 2 résultats, on obtient :

V arτ( f ) ≤λ(KG (τ)) ≤V arτ( f )+2(c +b −a)τ

Enfin, cτ≤V arτ( f )
En effet, par application directe de la proposition 5.4, on obtientλ(HG (τ)) ≥ 2τc. En prenant

τ≤ b−a chacun de ces segments ne peut être tronqué qu’à moitié, on a donc V arτ( f ) ≥ HG (τ)
2 ≥

τc donc cτ≤V arτ( f ). Ainsi,

V arτ( f ) ≤λ(KG (τ)) ≤V arτ( f )(3+2
b −a

c
)
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Cela nous donne bien

di mMB (E) = lim
τ→0

2− l ogλ(KG (τ))

log (τ)
= lim
τ→0

2− logV arτ( f )

log (τ)
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7 Graphe de Fonctions Holderiennes

Lorsqu’une fonction n’est pas dérivable en un point, on peut mesurer son irrégularité en
introduisant un exposant de Hölder :

Définition 7.1 (Exposant de Hölder, fonction holderienne). Une fonction f est dite holderienne
d’exposant H ∈]0,1] en t s’il existe une constante c telle que pour tout t’ :

| f (t )− f (t ′)| ≤ c|t − t ′|H

Proposition 7.2 (Définition équivalente). Une fonction est holderienne d’exposant H s’il existe
une constante c > 0 telle que pour tout τ :

oscτ(t , f ) ≤ cτH

Démonstration. En effet, si oscτ(t , f ) ≤ cτH on a | f (t )− f (t ′)| ≤ c|t − t ′|H , puisque l’oscillation
prend en compte les extrema de f sur [t −τ, t +τ]. Réciproquement, si | f (t )− f (t ′)| ≤ c|t − t ′|H
pour tout t’, on pose t1 tel que |t − t1| ≤ τ, et f (t1) = sup

|t−t ′|≤τ
f (t ′). On pose t2 tel que |t − t2| ≤ τ, et

f (t2) = inf
|t−t ′|≤τ

f (t ′). Ainsi :

oscτ(t , f ) = f (t1)− f (t2) = f (t1)− f (t )+ f (t )− f (t2) ≤ 2cτH

Proposition 7.3. [Résultat important sur la dimension M-B] Si le coefficient de Hölder existe et
est identique pour tout t de [a,b], et si de plus c ne dépend pas de t, on a :

dimMB (G ) ≤ 2−H

Démonstration. En intégrant sur [a,b] l’oscillation, on obtient V arτ( f ) ≤ (b−a)cτH , ce qui nous
donne directement le résultat.
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8 La Fonction de Weierstrass

8.1 Définition

On va sommer des cosinus dont les fréquences tendent vers l’infini, plus vite que les ampli-
tudes ne tendent vers 0. Cela donne des courbes qui peuvent représenter des profils rugueux
par exemple.

Définition 8.1 (Fonction de Weierstrass). Soit ω> 1 et H ∈]0,1[. On pose :

W (t ) =
∞∑

n=1
ω−nH cos(ωn t )

FIGURE 8 : Graphe de Fonction de Weierstrass pour ω= 3 et H = ln(2)

ln(3)

Remarque 8.2. Chacun des cosinus de W a une période de
2π

ωn
, et donc comme n parcourt N,

la fonction de Weierstrass n’est pas périodique. Si l’on essaie cependant de tracer son graphe,
on ne tracera qu’un nombre fini N de cosinus, et donc ce tracé approximatif sera périodique de

période
2πX

ωN
ou X est le plus petit nombre tel que ∀i ∈ J1, NK2πX

ωN ∈Z

8.2 Dimension de Minkowski-Bouligand du graphe de la fonction de Weiers-
trass

Proposition 8.3 (Lemme sur l’oscillation de fonction C 1). Si f est une fonction de classe C 1, et
que la valeur absolue sa dérivée est majorée par un réel M1, alors

oscτ(t , f ) ≤ 2τM1
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Démonstration. Remarquons que comme f est C 1, elle est continue sur [t −τ, t +τ] et atteint
donc ses bornes sur ce segment. Notons le minimum et le maximum de f sur ce segment m(t ) et
M(t ) respectivement, et posons at et bt tel que f (at ) = m(t ) et f (bt ) = M(t ). Ainsi, oscτ(t , f ) =
f (bt )− f (at ). Notons que comme at et bt appartiennent à [t −τ, t +τ], |bt − at | ≤ 2τ. D’après
l’inégalité des accroissements finis, comme | f ′| est majorée par M1, oscτ(t , f ) = f (bt )− f (at ) ≤
M1|bt −at | ≤ 2M1τ

Proposition 8.4 (Dimension M-B de la fonction de Weierstrass). En notant G le graphe de W,
on a :

di mMB (G ) = 2−H

Démonstration. • On va prouver l’inégalité

dimMB (G ) ≤ 2−H

D’après la proposition 7.3, il suffit de montrer que W est uniformément holderienne d’ex-
posant H . Posons Wn(t ) la somme partielle de W pour un n quelconque deN∗. On a :

Wn(t ) =
n∑

i=1
ω−i H cos(ωi t )

qui est dérivable, avec :

W ′
n(t ) =−

n∑
i=1

ω−i Hωi si n(ωi t )

D’où :

|W ′
n(t )| ≤

n∑
i=1

ωi (1−H) = ωn(1−H) −1

ω−1

≤ ωn(1−H)

ω−1
= ω(n+1)(1−H)

(ω−1)ω1−H

Soit τ ∈ [0,1]. Il existe un entier n tel queω−(n+1) ≤ τ≤ω−n . En vertu de la proposition 8.2,
on a :

oscτ(t ,Wn) ≤ 2τ
ω(n+1)(1−H)

(ω−1)ω1−H

et de plus

2τ
ω(n+1)(1−H)

(ω−1)ω1−H
= 2

(ω−1)ω1−H
(τωn+1)1−HτH ≤ c1τ

H

avec c1 = 2

ω−1
, puisque comme τ≤ω−n , τωn+1 ≤ω.

On sait de plus que −∑∞
i=n+1ω

−i H ≤ W −Wn ≤ ∑∞
i=n+1ω

−i H D’où il découle directement
de la définition 6.1 que

oscτ(t ,W −Wn) ≤ 2
∞∑

i=n+1
ω−i H = 2ω−nH

∞∑
i=1

ω−i H

= 2ω−nH

1−ω−H
≤ c2τ

H
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avec c2 = 2

1−ω−H
Ainsi, on a donc :

oscτ(t ,W ) ≤ oscτ(t ,Wn)+oscτ(t ,W −Wn) ≤ (c1 + c2)τH

ce qui prouve bien que W est uniformément holderienne, et d’après la proposition 7.3,
on obtient l’inégalité recherchée.

• Nous allons maintenant démontrer que

di mMB (G ) ≥ 2−H

Soit τ ∈ [0,1]. Il découle de la définition 6.1 que :

oscτ(t ,W ) ≥ |W (t +τ)−W (t −τ)|
De plus :

W (t +τ)−W (t −τ) =
∞∑

i=1
ω−i H (cos(ωi (t +τ))− cos(ωi (t −τ)))

=−2
∞∑

i=1
ω−i H si n(ωi t )si n(ωiτ)

Il existe un entier n tel que ω−(n+1) < τ ≤ ω−n . De cette manière, ω−1 < τωn ≤ 1. Notons
que si n(ω−1) < si n(ωnτ) En séparant la somme en 2, on obtient :

W (t +τ)−W (t −τ) =−2ω−nH si n(ωnτ)si n(ωn t )−2
∑
i ̸=n

ω−i H si n(ωiτ)si n(ωi t )

|W (t +τ)−W (t −τ)|≥ 2ω−nH si n(ω−1)|si n(ωn t )|−2
∑
i ̸=n

ω−i H |si n(ωi t )| (8.1)

On va maintenant minorer la variation (définition 6.2) à l’aide du résultat précédent. On
a

V arτ(W ) ≥
∫ b

a
|W (t +τ)−W (t −τ)|d t

L’observation cruciale est que

V arτ(W ) ≥
∫ b

a
|(W (t +τ)−W (t −τ))si n(ωn t )|d t

car |si n(ωn t )| < 1, et ainsi

V arτ(W ) ≥
∣∣∣∣∫ b

a
(W (t +τ)−W (t −τ))si n(ωn t )d t

∣∣∣∣
et donc d’après l’équation 8.1

V arτ(W ) ≥ 2ω−nH si n(ω−1)
∫ b

a
si n2(ωn t )d t −2

∑
i ̸=n

ω−i H
∣∣∣∣∫ b

a
si n(ωi t )si n(ωn t )d t

∣∣∣∣ (8.2)

Il ne reste qu’à évaluer les intégrales :∫ b

a
si n2(ωn t )d t (8.3)
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∣∣∣∣∫ b

a
si n(ωi t )si n(ωn t )d t

∣∣∣∣ (8.4)

On a d’une part pour 8.3 :∫ b

a
si n2(ωn t )d t =

∫ b

a

1− cos(2ωn t )

2
d t = b −a

2
− si n(2ωnb)− si n(2ωn a)

2ωn

≥ b −a

2
−ω−n

Et d’autre part pour 8.4 :∣∣∣∣∫ b

a
si n(ωi t )si n(ωn t )d t

∣∣∣∣= ∣∣∣∣1

2

∫ b

a
cos(ωi t −ωn t )− cos(ωn t +ωi t )d t

∣∣∣∣
=

∣∣∣∣ si n((ωi −ωn)b)− si n((ωi −ωn)a)

2(ωi −ωn)
+ si n((ωi +ωn)a)− si n((ωi +ωn)b)

2(ωi +ωn)

∣∣∣∣
≤ 1

|ωi −ωn | +
1

ωi +ωn
≤ 2

|ωi −ωn |
Or, si i < n, on a ωn−1 ≥ωi et donc

2

|ωi −ωn | ≤
2

ωn −ωn−1

Et si i > n, on a

ω+ 1

ω
≥ 2

ω−1 ≥ 1− 1

ω

et comme ωi−n ≥ω,
ωi

ωn
−1 ≥ 1− 1

ω

On en déduit ωi −ωn ≥ωn −ωn−1 d’où dans tous les cas ∀i ̸= n

2

|ωi −ωn | ≤
2

ωn −ωn−1
= ω−n

1−ω−1
≤ τ

1−ω−1

En rassemblant les résultats de 8.2, 8.3 et 8.4 on obtient :

V arτ(W ) ≥ 2ω−nH si n(ω−1)(
b −a

2
−ω−n)−4

∑
i ̸=n

ω−i H τ

1−ω−1

et donc

V arτ(W ) ≥ 2τH si n(ω−1)(
b −a

2
−τω−1)−4τ

∑ ω−i H

1−ω−1
(8.5)

Et avec cette équation 8.5, en passant au log, et en vertu de la proposition 6.6, on obtient
l’inégalité

di mMB (G ) ≥ 2−H

ce qui conclut la démonstration.
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Remarque 8.5. Si l’on avait choisi a = 0, b = 2π, et ω un entier, les intégrales 8.3 et 8.4 se sim-
plifiaient grandement, puisque ∫ 2π

0
si n2(ωn t )d t =π

et ∫ 2π

0
si n(ωi t )si n(ωn t )d t = 0

ce qui a pour vertu de simplifier la démonstration sans perdre le résultat qualitatif intéressant.

Remarque 8.6. Notons que la méthode consistant à calculer la dimension de Minkowski-Bouligand
avec la variation s’appelle la méthode des variations.
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