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1 Introduction

Le but de ce TIPE est de calculer la dimension de Minkowski-Bouligand du graphe de la
fonction de Weierstrass, en s’appuyant sur la preuve de C.Tricot donnée dans 1’ouvrage "Courbes
et dimension fractale" [1].

Lobjectif a été atteint, a ceci pres que j'ai modifié la rédaction de certaines démonstrations,
quitte a parfois proposer des approches alternatives a ’ouvrage, car je n’ai pas eu l'intuition né-
cessaire pour pleinement comprendre certains arguments affirmés sans justification par I'au-
teur. Je me suis donc également appuyé sur un ouvrage de K. Falconer [2]. Toute erreur m’est
donc directement imputable.

Tous les résultats ne relevant pas de la géométrie fractionnaire seront admis, en particulier
les théoremes relatifs a la théorie de la mesure, a la topologie, a la symétrisation de Steiner, ainsi
que le théoreme de Jordan. Cependant, tous ces résultats ne faisant pas partie du programme
de L2, ils seront rappelés au fur et a mesure que le besoin de leur utilisation se fera sentir. Il
y aura dans la section Bibliographie des références sur lesquelles je me suis appuyé pour la
compréhension de ces notions, avec bien souvent des démonstrations.

Ce travail a été réalisé avec la précieuse aide de V. Borrelli, dans le cadre de la L2 de mathé-
matiques a I'université Lyon 1.



2 Un peude théorie de la mesure

Le but de cette section est de rappeler des résultats relatifs a la théorie de la mesure, utiles
pour la suite, sans les démontrer. Un livre plus complet sur la théorie de la mesure, avec dé-
monstrations, [3]. On retrouve aussi [4] sur Youtube.

2.1 Le paradoxe de Banach-Tarski

Pour répondre a la question "Qu’est ce que mesurer?" on voudrait définir une mesure .#
raisonnable sur R”, qui va des parties de R” dans R, et qui vérifie les propriétés suivantes :

s M(P)=0
o ([0,1]") =1
* Si (Ap)nen est une famille dénombrable de parties de R” deux a deux disjointes :

J%(LJ<An): 2:=4z(An)

neN neN

* _/ estinvariante par isométrie.

Proposition 2.1. Une telle mesure 4 nexiste pas.

Ceci est dii au paradoxe de Banach-Tarski, parfois aussi appelé paradoxe de Hausdorff-
Banach-Tarski.
Proposition 2.2 (Paradoxe de Banach-Tarski). Considérons une boule de rayon 1. Alors on peut
partitionner cette boule de sorte qu’en réarrangeant les morceaux (en leur faisant subir une trans-
formation isométrique), on obtient une boule de rayon 2.

Pour plus d’'informations sur le paradoxe de Banach-Tarski, le lecteur peut consulter le livre
[5] ou sur Youtube [6].

2.2 Latribu Borélienne

Ce paradoxe nous oblige a considérer une mesure non pas sur R” tout entier, mais sur ce
que I'on va appeler une tribu de R”.

Définition 2.3 (Tribu). Soit T une famille non vide de parties de R". On dit que T est une tribu
si elle est stable par union dénombrable et par complémentaire.

Remarque 2.4. R"” muni d'une tribu T est un espace mesurable, et sil'on introduit une mesure
A il s’agit d'un espace mesuré.

Définition 2.5 (Tribu engendrée). Soit X < R”. On appelle tribu engendrée par X la plus petite
tribu contenant X

Définition 2.6 (Tribu Borélienne). La tribu Borélienne est la tribu engendrée par tous les ouverts
deR".

Remarque 2.7. Un élément de la tribu Borélienne est appelé un borélien, et une mesure est dite
boréliennelorsqu’elle est positive et définie sur la tribu Borélienne.
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Proposition 2.8 (Existence et unicité de la mesure de Lebesgue sur R). I] existe une unique
mesure borélienne A surR telle que A([a, b]) = b — a pour tout segment [a, b].

Définition 2.9 (Mesure de Lebesgue sur R). A est appelée la mesure de Lebesgue.

Définition 2.10 (Tribu Produit). Soient (E;, T1) et (Ez, T2) des espaces mesurables. On pose E =
E) x E; On appelle tribu produit sur E la tribu engendrée par Ty x T, Cette tribu est notée Ty ® T»

Proposition 2.11 (Mesure produit). Soient (Ej, Ty, my) et (E2, To, my) des espaces mesurés. Po-
sonsE=E; x Ey et T =T, ® T». Alors il existe une unique mesure m sur T vérifiant

m(A; x A2) = my(A1)my(Az), Y(A1,A2) € Ty x To, m;i(Ty) <oo, i=1,2

On notem = my ® my

Définition 2.12 (Mesure de Lebesgue sur R"). On définit la mesure de Lebesgue sur R" comme
la mesure produit des mesures de Lebesgue surR : A ® 1 ® ... ® A avec n facteurs.

Proposition 2.13 (Mesure d’'une intersection décroissante). Si (A,)en est une suite décrois-
sante (au sens de l'inclusion) d'éléments de la tribu Borélienne, et si Ap € N,A(Ap) < +oo alors
AN Ap) = lim A(A,)

n—oo

neN

Remarque 2.14. Lorsque E c R, A(E) sera notée Longueur(E). Pour un espace E c R?, A(E)
sera notée Aire(E).



3 Dimension de Minkowski-Bouligand

3.1 Définition de cette dimension

Définition 3.1 (Epaississement de Minkowski). Soit E c R", soite > 0, soit %.(x) la boule ou-
verte de rayon € centrée en x. On dit que &g (€) = U B (x) est I’ e-épaississement de Minkowski

x€eE
deE.

Remarque 3.2. On notera A(&x(€)) sa mesure, qui existe puisque I'épaississement de Minkowski
de E est une réunion d’ouverts donc est un ouvert, et appartient ainsi a la tribu Borélienne de
R

Définition 3.3 (Dimension supérieure de Minkowski-Bouligand). Soit E c R", soite > 0. On
dit que
ln(/l(é"E(e))))

dim— suppp(E) =limsup (n -
In(e)

e—0

est la dimension supérieure de Minkowski Bouligand de E.

Définition 3.4 (Dimension de Minkowski-Bouligand). On dit que

) lnm(&g(e))))

dimpp(E) = lli%(" In(e)

est la dimension de Minkowski Bouligand de E, dans le cas ot cette limite existe.

3.2 Exemples

Exemple 3.5. Considérons E =[0,1] cR.

Lalongueur de son épaississement de Minkowski vaut Longueur (Eg(€)) = 1+ 2¢

et lirréln(Longueur(é"E(e))) = 0. La dimension de Minkowski-Bouligand de E < R vaut donc
€—

lim 1_ln(Longueur(é@E(e))) _

1.
€—0 In(e)

Exemple 3.6. Considérons E = [0,1]?> c R?,

Laire de son épaississement vaut Aire(&g(€)) =1 +4e+me? ('aire du carré de coté 1, 4 rectangles
de longueur 1 et de largeur € et 4 quarts de cercle de rayon €). On a de méme,

li_r)%ln(Ai re(&g(e))) = 0. Donc sa dimension de Minkowski-Bouligand vaut

lim |2 In(Aire(&k(€))) _
€—0 In(e)




FIGURE 1 : En rouge, 'ensemble E et en bleu son épaississement de Minkowski

Exemple 3.7. Considérons E =[0,1] c R2.

Laire de son épaississement vaut Aire(&x(€)) = 2¢ + me? (I'aire du rectangle de longueur 1 et
de largeur 4e, et de deux demi-cercles de rayon €). On a donc sa dimension de Minkowski-
Bouligand qui vaut

lim|2

. 2
~ ln(Azre(g'E(e)))) ~ lim (2 B M) —2_1=1
€—0 In(e) e—0

In(e)

FIGURE 2 : En rouge, 'ensemble E et en bleu son épaississement de Minkowski

3.3 Définition équivalente de la dimension de Minkowski-Bouligand

Définition 3.8. [Des ensembles de points de E] Soit E c R" borné, soite > 0. On note
Pp(e) ={Pc E, Y(p1,p2) € B, ||p1 — p2ll = 2¢}. 1l s'agit de 'ensemble des ensembles de points de E
dont les distances 2 a 2 sont supérieures a 2¢.

Remarque 3.9. Sil'on considere P € Pg(e), et deux points p; et p» de P, alors les boules %, (p;)
et B (p») sont disjointes.



FIGURE 3 : Un ensemble et des boules disjointes centrées sur des point de cet ensemble, de
sorte qu’on ne puisse pas en ajouter plus

Proposition 3.10 (Un maximum). Le suprémum des cardinaux des éléments de Pg(€) existe et
est atteint. On note donc M (€) = max{ card(P) avec P € Pg(e)}

Démonstration. Comme E est borné, il existe r > 0 et x € R", tel que E < %, (x). Soit P € Pg(e),
soit p € P. Comme p € E et E c %,(x), on a B:(p) < Eg(€) < Ex, (v (€). Mais alors la remarque
3.9 implique
AEB, (x) (€))
card(P) < —————
A(%Be (X))

Proposition 3.11. /[Dimension par boules disjointes]

: _ iy DM(€)
dimpp(E) = lim In(e)|

Démonstration. Considérons un ensemble F € Pg(e) tel que card(F) = M(e). Les boules de
&r(€) sont disjointes, et incluses dans |'épaississement de Minkowski de E, puisque F c E. Ainsi

MABe) M(€) = MEE(€))

De plus comme M(e) est un maximum, tout point de E est a une distance plus petite ou égale a
€ de &r(€), et donc tout point de &g (€) est a une distance plus petite ou égale a 2¢ de &r(€), donc
en multipliant par 2 le rayon des boules de &r(¢€), on recouvre &g (€), et donc :

MEE(€)) = M(PBae) M (€) 3.1

Par le théoreme des gendarmes,et en remarquant que A(%,) =—o O(¢") on obtient

1 ln(M(€)):li _ In(A(EE(€)
e—0 |In(e)]  e—0 In(e)



4 Dimension de I'ensemble de Cantor

Le but de cette section est de définir un ensemble dontla dimension de Minkowski-Bouligand
n’est pas entiere.

4.1 Construction de ’ensemble de Cantor

Prenons le segment [0, 1]. Enlevons, au centre, 'intervalle ouvert de longueur 1/3 (le tiers
central). Il reste deux segments auxquels on enléve a nouveau un intervalle, toujours centré,
avec ce méme rapport 1/3. En réitérant ce processus indéfiniment, on obtient a la limite 'ensemble
de Cantor, noté C.

FIGURE 4 : Visualisation des 6 premiéres étapes de la construction de C les unes en dessous des
autres

Définition 4.1 (Ensemble de Cantor). On dit que

00 3"-1 13k +1 3k+2
=0\ U U | S 5t
n=0 k:o

est l'ensemble de Cantor.

Remarque 4.2. On notera C, la n'®™¢

dire

étape de construction de I'’ensemble de Cantor, c’est a

3i

Cn=10,11\ | U

i=0 k=0

3k+1 3k+2
3l+l ’ 3i+1

Notons que VneN, Cc C, c[0,1].

Remarque 4.3. Comme on enleve le tiers central de chaque intervalle fermé de C,, al’étape n+
l,onaLongueur(Cpy1) = %Longueur(Cn), etdonc d’apres la proposition 2.13, Longueur(C) =
0.

4.2 Lensemble de Cantor est non vide

On note x, un nombre écrit en base 2 avec au plus n chiffres, et X, 'ensemble des x,. C,
contient 2" intervalles fermés disjoints de la forme [ay, bil, k € {1, ... ,2"} = card(X,). On crée
une bijection y entre X, et les ay, croissante. Cela permet de numéroter les intervalles fermés
de C,, avec des nombres en base 2 a n chiffres.

Définition 4.4 (Les fermés de 'ensemble de Cantor). On appelle F,, le fermé [a, b] de C,, dont
a est l'image de x,, par la bijectiony.




Exemple 4.5. Sil’on considere C,, on a Fyp = [0, é], Fo1 = [%,%], Fio= [g, fletFy = [g, 1].

Proposition 4.6 (Théoreme des fermés emboités). Dans R", et plus généralement dans tout
espace métrique complet, une suite décroissante (pour l'inclusion) de compacts non vides dont le
diametre tend vers 0 a pour intersection un singleton.

Démonstration. Le lecteur pourra trouver une preuve de ce théoréme ici [7]. O

Proposition 4.7 (Lensemble de Cantor est non vide). Lensemble de Cantor contient un single-
ton pour chaque suite (x,) neN, avec X, un nombre quelconque en base 2 a n chiffres.

Démonstration. En considérant (x;),en une suite de nombres en base 2, dont le nitme terme a
n chiffres, on crée (Fy,) sen une suite décroissante de compacts non vides dont le diametre tend
vers 0 et donc d’apres le théoréme des fermés emboités 'ensemble de Cantor est non vide, il
contient un singleton pour chaque suite (x) en-

O

Remarque 4.8. Considérons I'application qui a (Fy,),en associe son intersection, a savoir un
singleton de C. Celle ci est bijective, et donc I'ensemble de Cantor n’est pas dénombrable, et est
bijectif a {0, 1}V,

4.3 Calcul de la dimension de Minkowski-Bouligand de I'ensemble de Can-
tor

Proposition 4.9 (Dimension de ’ensemble de Cantor).

, _In@)
dimpp(C) = nG)

Démonstration. Cette preuve s’appuie sur la section 3.3, et plus particulierement sur la propo-
sition 3.11. On rappelle M(e) = max{ card(P) avec P € Pc(e) } avec Pc(e) ={PcC, Y(p1,p2) €
B |Ip1 — p2ll = 2¢}.

Soit € €10, 1]. Soit 7 € N tel que 3"V < ¢ < 37", Alors on va montrer que 2" < M(e) < 2"+!,
En effet, M(e) = 2" puisqu’en prenant le point de C a I'extrémité gauche de chacun des seg-
ments de C,,, on obtient bien un ensemble P € P¢(¢), puisque € < 37",

D’autre part, M(e) < 27+1 En effet supposons que cela ne soit pas le cas. Alors 3P € P¢(e),
card(P) > 2", Comme C c Cy, les points de P sont dans C,. Comme il y a plus de 2"*! points
dans P pour seulement 2” segments dans C”, il y a au moins un segment F_ de C, contenant
au moins 3 points de P, et donc A(Fy,) > 4¢. Mais comme on a A(Fy,) =37", ete >3~ "*D ona
37" > 4(3~ "), Absurde.

Ainsi, par le théoreme des gendarmes, on a lg% M(e) =1n(2) et donc

} o In(M (e)) _ln(2)
dimyp(C) = lim = o= =13




5 Dimension de Minkowski-Bouligand pour des courbes simples
Soit € une courbe simple bornée.

5.1 Symétrisation de Steiner

Soit D c R? la droite de normale 77 passant par l'origine. Soit d € D.
On pose Ly = {d + x7, x € R}. Soit E c R?> compact.

Définition 5.1 (Symétrisation de Steiner). On dit que
- - 1
Stp(E)={d+xn,(deD,3yeR,d+ynekE), |x| < ELongueur(EﬂLd)}

est le symétrisé de Steiner de E par rapport a D.

FIGURE 5 : A gauche un ensemble et a droite son symétrisé de Steiner par rapport a I’axe des
abscisses

Proposition 5.2 (Conservation de la mesure). Aire(E) = Aire(Stp(E))

Démonstration. On trouvera une preuve de ce résultat dans cet ouvrage [8]. O

Définition 5.3 (Les lignes horizontales). Soitp = (x,y) € €, soite > 0. On note
Hpy(e) ={(t,y), telx—€,x+e€l}

et Hg(e)= U Hp(e)
pEE

Posons y(t) une paramétrisation de 6. Soient p = (x, y) et p’ = (¥, y') deux points de €, tel
que y' > y, et soient (t,t') tels que y(¢) = p et y(t') = p'. Soit (p, p’) I'arc de € allant de p a p’
étant la réduction de y a [, t']. On notera Hppn€)= U  Hl(e)

xe(p,p")

Proposition 5.4. [Airede H(;, ) (€)] Aire(Hp, ,(€)) = 2e(y' ~ y)

Démonstration. Posons D d’équation y = 0 et Stp(H(p, ) (€)) le symétrisé de Steiner de Hy, ) (€)
par rapporta D.

Larc (p,p’) étant continu, d’apres le théoréme des valeurs intermédiaires, pour chaque z €
[y, '] ily a au moins un point de € ayant comme ordonnée z.

Ainsi, V¢ € Hp, ) (€), Longueur(Lc; N Hp, p(€)) = 2¢. Donc 'aire de Stp(Hp, ) est plus grande
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que l'aire du rectangle [—¢,€]x[y, y'] celui ci étant inclus dans Stp(H(,,,, et on obtient bien le
résultat attendu. 0O

Remarque 5.5. Sil'on avait pris D d’équation x = 0, on aurait obtenu le méme résultat pour
l'aire de V(, ,n(€) = U V() ot
ce(p,p)

Vele) ={(x,1), te]ly—€,y+el}

5.2 Dimension par croix

Définition 5.6 (Les croix). Soit p = (x,y) € €, soite > 0. On note

Kye)={(t,y), telx—e,x+el} U l(x, 1), tely—€ y+el}

etK<g(€): U Kp(e)
pEE

Remarque 5.7. K¢ (€) = He(€) U Vg (€)

Définition 5.8 (Courbe de Jordan). Une courbe de Jordan est une courbe fermée du plan sans
points doubles.

Proposition 5.9 (Théoréme de Jordan). Toute courbe de Jordan sépare le plan en deux compo-
santes connexes disjointes dont elle est la frontiére commune, une seule d’entre elles est bornée.

Proposition 5.10 (Dimension par croix).

B In(Aire(K«(€)))
lIn(e)|

dimMB(Cg) =1lim2
e—0

Démonstration. Les croix étant incluses dans I'épaississement de Minkowski,

Aire(K¢(€)) < Aire(E«(€)). Trouvons une inégalité dans I'autre sens. Soit p un point de €. Pour
démontrer ce résultat, construisons un carré J dont les cotés sont de longueur 2¢, pris paralleles
aux branches de la croix K (€), centré sur p. Prenons ¢ suffisamment petit de sorte qu’il y ait un
point de la courbe en dehors de J (ceci est toujours possible en prenant € plus petit que le
diametre de €6).

J est une courbe de Jordan, qui sépare donc le plan en deux composantes connexes, il y a donc
un point de la courbe € sur J. en notant y(f) une paramétrisation de €, {t e R,y (t) € € N J} est
un fermé borné non vide en tant qu’intersection non vide de fermés bornés. Il s’agit donc d'un
compact qui est borné et atteint ses bornes, en particulier son minimum. Il existe donc un point
p' de € tel que l'arc (p, p') de € soit entierement compris dans le carré plein dont la frontiere
est J, notonsle Jpein.
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e

FIGURE 6 : Un carré J et un arc (p, p’) complétement inclus dans le carré plein J plein

Supposons que p’ soit situé sur un des segments horizontaux de J. On applique la proposi-
tion 5.4 pour obtenir
Aire(K(p (€)= Aire(Hp, ) (€)) = 26>

Comme l'arc (p, p’) est entierement compris dans J plein» Chaque segment horizontal associé a

un point de (p, p’) est au moins a moitié inclus dans J plein- ON A

Aire(K(p, ) (€) N Tprein) = €

Si p’ est sur un des segments verticaux de J, on applique la remarque 5.5 pour obtenir la méme
chose.

Lintersection ceci avec la boule %, (p) est donc d’aire supérieure a (7 — 3)€?.

On applique la proposition 3.11 et on note donc &p, () (€) les disques disjoints centrées sur des
points de €, de rayon €. La construction précédente appliquée a toutes ces boules permet de
construire M (e) domaines disjoints, et donc :

Aire(K¢(€)) = (m —3)e? M(€)
De plus on sait en écrivant I'inégalité 3.1 en dimension 2 :
Aire(&¢(€)) < 9me’ M(€)

Ce qui nous donne bien

ng—;gAire(é"%(e)) < Aire(Ky(€))

On adonc 9
Aire(K¢(€)) < Aire(E¢(€)) < ﬂ—isAire(ch(e))
et donc on a bien
. In(Aire(K¢(€))) .. In(Aire(&¢(€)))
lim2 - =] —
e—0 [In(e)| €—0 [In(e)|
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6 Dimension de Minkowski-Bouligand des Graphes

Soit (a, b) € R?, a < b. Soit T > 0 Soit f une fonction de [a— 7, b+ 7] dans R. Soit ¢ le graphe
de f.

6.1 Oscillation et Variation

On veut étudier ici non pas des graphes représentatifs de fonctions C* , mais de fonctions
continues mais non dérivables, nulle part. Pour cela, on va définir un "équivalent" pour la tan-

gente.

Pour un t dans [a-7,b+7] et un 7 strictement positif, 'image de [t-7,t+7] par f est inscrite dans

un rectangle dont un des cotés mesure 27 et I'autre mesure sup f(t') — | iqlf f().
lt—t'|<T t—t'|=1

Définition 6.1. [T-oscillation] On dit que osc;(t, f) = sup f(lf’)—| inlf fh
t—t'|st

[t—t'|<T

estlat-oscillationde f en t.

La variation est I'intégrale des oscillations. Ainsi donc :

Définition 6.2. [t-Variation] On dit que

b
Var:(f) =f osc.(t, f)dt

a

est lat-variation de f .

Remarque 6.3. Lorsqu’aucune confusion n’est possible pour 7, on appellera respectivement la
T-oscillation et la 7-variation oscillation et variation.

6.2 Variation et dimension de Minkowski-Bouligand

Notation 6.4 (Une surface particuliére). On note U; ={ (x,y),3xo, f(x0) = ¥, | x— Xl <7}

Il s’agit de la surface balayée par le graphe ¢ lorsqu’on la translate par les vecteurs xi,x €
[-7,7], et qu'on tronque a gauche et a droite pour ne garder que les points compris entre a et b.

a
FIGURE 7 : La surface U;
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Proposition 6.5 (Géométrie de la variation).
Var:(f) = A(Uy)

Démonstration. Remarquons que comme |’on a tronqué a gauche de a et a droite de b, Pour
tout point p = (px, py) de U, 3y € f(la, b)), f (px) = y. Autrement dit, U; est la réunion de seg-
ments verticaux placés a toutes les abscisses x, pour x € [a, b].

Montrons que la longueur de ces segments vaut exactement osc; (x, f).

En effet, U; est la réunion de segments horizontaux de longueur 27 centrés sur les points
(x, f(x)), x € [a, b]. Ainsi, si]’on considere un segment vertical placé a I’abscisse x, chaque point
de ce segment est a une distance horizontale plus petite ou égale a T d’'un point du graphe de
f, et tous les points de f dont I'abscisse est a une distance plus petite ou égale a T de x ont
un projeté sur le segment vertical d’abscisse x, et donc la longueur de ce segment vertical vaut
exactement |'oscillation.

Autrement dit, sil’on fixe unx dans [a, b], on peut construire une bijection entre les points
du segment vertical d’abscisse x et les points du graphe de f dont I'abscisse est a une distance
plus petite ou égale a 7.

En intégrant ces segments verticaux (qui forment U;), on obtient bien la variation de f. O

Proposition 6.6. [Dimension de Minkowski-Bouligand et Variation]

dimMB(Eg) =lim2 - M
7—0 log(T)

Démonstration. Avant toute chose, notons que f étant continue sur un segment, elle est bornée

et atteint ses bornes. Notons m et M le minimum et maximum respectivement de f sur [a, b],

ainsique c=M —m.

Pour cette démonstration nous utiliserons la définition de la dimension M-B par des croix.
Reprenons donc pour x dans [a, b] le domaine de recouvrement par croix K¢ (7) et les croix
Kx, f(x) (r) définies précédemment. Ces croix sont la réunion de lignes horizontales (notons les
Hy(1)) et de lignes verticales ( Vg (7) ). On a:

AHyg (1)) = M(Kg(1)) = A(Hg(7)) + A(Veg (7))

Pour les lignes verticales, celles-ci étant de longueurs 27, A(Vg(1)) = 27(b— a). Sil'on tronque a
gauche de a et a droite de b, A(Hg (7)) devient égalea U;.On a:

Var:(f) < A(Hg(t)) < Var:(f)+2ct
Et en rassemblant ces 2 résultats, on obtient :
Var,(f) < MKy (1)) < Var,(f)+2(c+b—-a)t

Enfin, ct < Var:(f)

En effet, par application directe de la proposition 5.4, on obtient A(Hg (7)) = 27¢c. En prenant
T < b—a chacun de ces segments ne peut étre tronqué qu’a moitié, on adonc Var;(f) = % >
Tc donc ct < Var(f). Ainsi,

Var:(f) < A(Kg(1)) < Var:(f)3 + zb;ca)
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Cela nous donne bien

logA(Kyg(T)) lim2 — logVar:(f)

di E)=1lim2 -
i (E) rli% log(T) 7—0 log(t)
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7 Graphe de Fonctions Holderiennes

Lorsqu’une fonction n’est pas dérivable en un point, on peut mesurer son irrégularité en
introduisant un exposant de Holder :

Définition 7.1 (Exposant de Holder, fonction holderienne). Une fonction fest dite holderienne
d’exposant H €]0,1] en t sil existe une constante c telle que pour tout t’:

If()=f)<clt—t'"H

Proposition 7.2 (Définition équivalente). Une fonction est holderienne d’exposant H s'il existe
une constante ¢ > 0 telle que pour tout 7 :

osci(t, f) < ctH

Démonstration. En effet, si osc;(t, f) < ct on a If(6)—f()l<clt— 11, puisque 'oscillation
prend en compte les extrema de f sur [ — T, t + 7]. Réciproquement, si | f(£) — f(t))| < c|t — t'|"
pour tout t’, on pose f; tel que [t — | <7, et f(1) = sup f(t).Onpose 1, tel que |t — f| < T, et

[t—t'|<T
f(t) = inf f(¢). Ainsi:
[t—t'|<T

osc: (8, ) = f(0) = f(t) = f(1) — () + f(0) = () <2¢T"
O

Proposition 7.3. [Résultat important sur la dimension M-B] Si le coefficient de Holder existe et
est identique pour tout t de [a,b], et si de plus c ne dépend pas de t, on a:

dimyp(¥)<2-H

Démonstration. Enintégrant sur [a,b] I'oscillation, on obtient Var;(f) < (b—a) ctH ce qui nous
donne directement le résultat. O
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8 LaFonction de Weierstrass

8.1 Définition

On va sommer des cosinus dont les fréquences tendent vers I'infini, plus vite que les ampli-
tudes ne tendent vers 0. Cela donne des courbes qui peuvent représenter des profils rugueux
par exemple.

Définition 8.1 (Fonction de Weierstrass). Soitw > 1 et H €]0,1[. On pose :

w=> w " cos™t)
n=1

-2

In(2)
In(3)

FIGURE 8 : Graphe de Fonction de Weierstrass pour w =3 et H =

. (s 2n
Remarque 8.2. Chacun des cosinus de W a une période de —-, et donc comme 7 parcourt N,
w

la fonction de Weierstrass n’est pas périodique. Si 'on essaie cependant de tracer son graphe,
on ne tracera qu'un nombre fini NV de cosinus, et donc ce tracé approximatif sera périodique de

2 X
période —ou X estle plus petit nombre tel que Vi € [1, N] 2% € 7
w

8.2 Dimension de Minkowski-Bouligand du graphe de la fonction de Weiers-
trass

Proposition 8.3 (Lemme sur l'oscillation de fonction C'). Si fest une fonction de classe C', et
que la valeur absolue sa dérivée est majorée par un réel My, alors

osci(t, f) <21M,
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Démonstration. Remarquons que comme f est C!, elle est continue sur [t — T, + 7] et atteint
donc ses bornes sur ce segment. Notons le minimum et le maximum de f sur ce segment m(t) et
M(t) respectivement, et posons a; et b; tel que f(a;) = m(t) et f(b;) = M(t). Ainsi, osc; (¢, f) =
f(by) — f(a;). Notons que comme a; et b; appartiennent a [t —17,t+ 7], |b; — a;| < 21. D’apres
I'inégalité des accroissements finis, comme | f’| est majorée par M, osc;(t, ) = f(by) — f(a;) <
Mi|b; —as| <2MiT

O

Proposition 8.4 (Dimension M-B de la fonction de Weierstrass). En notant le graphe de W,

ona:
dimMB(‘g) =2-H

Démonstration. * On va prouver 'inégalité
dimyp(¥)<2-H

D’apres la proposition 7.3, il suffit de montrer que W est uniformément holderienne d’ex-
posant H. Posons W, () la somme partielle de W pour un n quelconque de N*. On a:

n . .
Wa(0) =Y w Pcos't)
i=1

qui est dérivable, avec :

n . . .
Wi ==Y o Mo'sinw't)
i=1

; noaem W' -1
(W ()| < L

wn(l—H) w(n+1)(1—H)

w-1 (w-DwH

Soit 7 € [0, 1]. Il existe un entier n tel que w™ """V < 1 < w™". En vertu de la proposition 8.2,

ona:
(n+1)(1-H)
osc;(t,W,)<27T—mM8M—
! " (-1l H
et de plus
W= 2 +1\1-H_H H
_ n -
2T @_Dol-H = oo 1)wl_H(Ta) ) T =207
2 : -n n+l1
avec ¢ = L puisque comme T < w ", Tw <w.
a)_

On sait de plus que - Y32, 0 H<Ww-w, < ) IS o~ 'H D’ot1 il découle directement

de la définition 6.1 que

w . m .
osc; (L, W—-W,) <2 Z w = Zw_"HZ w

i=n+1 i=1
-nH
_ 2w H
= —H < CT
l1-w™

18



2 o
avec ez =T Ainsi, on adonc:

osc.(t,W) <osc;(t, W,,) + osc; (t, W —W,)) < (c; + CZ)TH

ce qui prouve bien que W est uniformément holderienne, et d’apres la proposition 7.3,
on obtient 'inégalité recherchée.

Nous allons maintenant démontrer que

dimyg(¥)=2-H

Soit 7 € [0, 1]. Il découle de la définition 6.1 que :
osc;(t, W)=|W(t+1)-W(—-1)|

De plus:

(o]

W(t+1)-W(t-1)=) o H(cos (t+1)) - cos' (t - 1))
i=1

m . . .
=-2) o sinw' t)sin(w'r)
i1

1

1l existe un entier n tel que w™""*Y < 7 < w™"*. De cette maniére, o~ ! < Tw" < 1. Notons

que sin(w™!) < sin(w"7) En séparant la somme en 2, on obtient :

W(t+1) - W(t-1) =20 "Hsin@"n)sin@")-2Y o Hsin't)sin(w't)
i#n
W (t+1) - W(t-1)I2 20 "sinl Nisin"D1-2 Y o™ Hsin't)] (8.1
i#n
On va maintenant minorer la variation (définition 6.2) a 'aide du résultat précédent. On
a

b

Var;(W) 2[ IW(t+1)-W(t-1)|dt
a
Lobservation cruciale est que
b
Var,(W) = f |(W(t+1)-W(t—-1)sin(w"t)|dt
a
car |sin(w"1)| < 1, et ainsi

b
Var,(W) = f W(t+1)— W(t—r))sin(w"t)dt’
a

et donc d’apres 'équation 8.1

b [P .
VarT(W)ZZw_”Hsin(w_l)f sinz(w”t)dt—ZZa)_le sin(w’t)sin(w”t)dt' 8.2)
a a

i#n

Il ne reste qu’a évaluer les intégrales :
b
f sinf(w"ndt (8.3)
a
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b )
f sin(@'Dsin(w"ndt (8.4)
a

On a d'une part pour 8.3 :

dt

b b1—cosw™t b-a sinQw"b)-sinCw"a
f sinz(w”t)dt:f ( ) = - ( ) ( )
a a 2 2 2w"

Et d’autre part pour 8.4 :

b . 1 (b ; ;
f sin(w’t)sin(w”t)dt‘ = 'Ef cos(w't—ow"r —cos(w”t+w’t)dt‘
a a

sin((w' —w™b) - sin((w — w™a) N sin((w'+wMa) - sin((w' +w™b) '
2(w —wh) 2w + ™)
1 1 - 2

- +— = —
lw'-w" o'+o"  |w'-w"|

<

Or,sii<n,onaw”!=>w'etdonc

Etsii>n,ona

1
w+—=2
w
1
w—1=z1-—
w
etcomme ' ™" = w, .
1
Y o 1z1-2
© w

On en déduit w’ — w" = w" — 0" ! d’ot1 dans tous les cas Vi # n
2 2 w " T
< <

lwi—w"|~ wr-w*! 1-w 1 1-w!

En rassemblant les résultats de 8.2, 8.3 et 8.4 on obtient :

b-a ; T
Var,(W) 220 " sino™ ) (——— -0 -4) o™ —
2 i#n 1-w™
et donc -
b-a w™!
Var: (W) ZZTHsin(w_l)(T —tw ) -41) g (8.5)
-—w

Et avec cette équation 8.5, en passant au log, et en vertu de la proposition 6.6, on obtient
I'inégalité
dimyp(¥)=2-H

ce qui conclut la démonstration. O
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Remarque 8.5. Sil’on avait choisi a =0, b = 27, et w un entier, les intégrales 8.3 et 8.4 se sim-
plifiaient grandement, puisque

21
f sinf("ndt=n
0
et
2m .
f sin(w'D)sin(@"Hdt=0
0

ce qui a pour vertu de simplifier la démonstration sans perdre le résultat qualitatif intéressant.

Remarque 8.6. Notons que la méthode consistant a calculer la dimension de Minkowski-Bouligand
avec la variation s’appelle 1a méthode des variations.

Références

[1] Claude Tricot, Courbes et dimension fractale, 1992, Editions Sciences et Culture, ISBN : 2-
89092-137-9.

[2] Kenneth Falconer, Fractal Geometry, 1989, Editions John Wiley & Sons, ISBN : 0-471-92287-
0.

[3] T. Gallouét, R. Herbin, Mesure, intégration, probabilités, 2022, Editions Ellipses, ISBN :
9782340-075306

[4] Gilles Bailly Maitre, Intégrale de Lebesgue, 2018.
https://www.youtube.com/playlist?list=PLE8WtfrsTAikeH7HgzRewzjiPeczrCrXp

[5] Marc Guinot, Le paradoxe de Banach-Tarski, 1991, Editions ALEAS, ISBN : 2-908016-08-7

[6] Jean Doyen, Le paradoxe de Banach-Tarski, 2013.
https://www.youtube.com/watch?v=xKmwAy_WxM8&t=6255s

[7] Un professeur de 'ENS Rennes
https://perso.eleves.ens-rennes.fr/“afalq494/docs_maths/fiches_maths/33.
0.Theoreme_des_fermes_emboites.pdf

[8] Yu. D. Burago, V. A. Zalgaller, Geometric Inequalites, 1980, Editions Springer-Verlag, ISBN :
3-540-13615-0.

21


https://www.youtube.com/playlist?list=PLE8WtfrsTAikeH7HgzRewzjiPeczrCrXp
https://www.youtube.com/watch?v=xKmwAy_WxM8&t=6255s
https://perso.eleves.ens-rennes.fr/~afalq494/docs_maths/fiches_maths/33.0.Theoreme_des_fermes_emboites.pdf
https://perso.eleves.ens-rennes.fr/~afalq494/docs_maths/fiches_maths/33.0.Theoreme_des_fermes_emboites.pdf

	Introduction
	Un peu de théorie de la mesure
	Le paradoxe de Banach-Tarski
	La tribu Borélienne

	Dimension de Minkowski-Bouligand
	Définition de cette dimension
	Exemples
	Définition équivalente de la dimension de Minkowski-Bouligand

	Dimension de l'ensemble de Cantor
	Construction de l'ensemble de Cantor
	L'ensemble de Cantor est non vide
	Calcul de la dimension de Minkowski-Bouligand de l'ensemble de Cantor

	Dimension de Minkowski-Bouligand pour des courbes simples
	Symétrisation de Steiner
	Dimension par croix

	Dimension de Minkowski-Bouligand des Graphes
	Oscillation et Variation
	Variation et dimension de Minkowski-Bouligand

	Graphe de Fonctions Holderiennes
	La Fonction de Weierstrass
	Définition
	Dimension de Minkowski-Bouligand du graphe de la fonction de Weierstrass


