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Introduction

The Hawaiian earring H is a subspace of the plane, defined as the union of circles
with radius 1/n and center (1/n, 0) for n ∈ N. The aim of this research internship was
to calculate the fundamental group of H. It was H.B Griffiths [3] who first calculated
the fundamental group of the Hawaiian earring. I began the internship by learning
the fundamentals of algebraic topology, including homotopies, fundamental groups, and
covering spaces, before delving into the main subject. In this report, we will not extensively
cover the basics of algebraic topology but will highlight some important tools and concepts
that are used.

The Hawaiian earring appears similar to the wedge sum of a countably infinite number
of circles

∨
n∈N S

1. However, we will demonstrate that this is not the case and calculate
the fundamental group of the wedge sum of infinite circles using Van Kampen’s theorem,
finding it to be the free product of countably infinite copies of Z, ∗n∈NZ. We will also
show that the fundamental groups of these two spaces are different.

In the second section, we will introduce and explain the concept of free complete
products of groups, which is a generalization of free products of groups where the word
can be of infinite length. This notion is presented by Eda [1]. In the third section, we
will calculate the fundamental group of H, finding it to be the free complete product of
countably infinite copies of Z. Additionally, we will show that π1(H) embeds into an
inverse limit of free groups.

For prerequisites, readers should be familiar with general topology, groups, homotopies,
the fundamental group, free products of groups, and free groups. We will use also transfi-
nite induction in the existence part of the proof of theorem 2.4, and Zorn’s lemma in the
proof of proposition 2.6.

Throughout this report, N denotes the set of positive integers, {1, 2, . . .}.
A set is said to be countable if it is either finite or countably infinite.
When we state that a property P (i) holds for almost all i ∈ I, we mean that P (i) is

true for all but finitely many i in the set I.
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1 Foundational Concepts

1.1 Some Basics of Algebraic topology

Definition 1.1. Given a topological space X, a covering space of X consists of a
topological space X̃ and a map p : X̃ → X satisfying the following condition: For each
point x ∈ X there is an open neighborhood U of x in X such that p−1(U) is a union of
disjoint open sets each of which is mapped homeomorphically onto U by p. We remark
that p is necessary continuous.

Definition 1.2. Let X, Y, Z be three topological spaces and f : X → Y and g : Z → Y be
two continuous maps. A lift or lifting of f to Z is a continuous map h : X → Z such
that f = g ◦ h.

Z

X Y

gh

f

Homotopy lifting property:
Given E,B, Y topological spaces, a continuous map π : E → B , we say that (Y, π) has
the homotopy lifting property, or π has the homotopy lifting property with respect to Y ,
if for any homotopy f• : Y × I → B and any map f̃0 : Y → E lifting f0 = f•|Y×{0}, there

is a homotopy f̃• : Y × I → E lifting f , such that f̃0 = f̃
∣∣∣
Y×{0}

. And if f̃0 is unique we

say that (Y, π) has the unique homotopy lifting property.

Theorem 1.3. Let Y,X be topological spaces and X̃, p : X̃ → X a covering space of X,
then (Y, p) has the unique homotopy lifting property.

Corollary 1.4. (a) For each path f : I → X starting at a point x0 ∈ X and for each
x̃0 ∈ p−1(x0) there is a unique lift f̃ : I → X̃ starting at x̃0.

(b) For each homotopy ft : I → X of paths starting at x0 and each x̃0 ∈ p−1(x0) there
is a unique lifted homotopy f̃t : I → X̃ of paths starting at x̃0.

Theorem 1.5. The fundamental group of the circle is cyclic infinite. π1(S
1) ∼= Z.

Calculation of π1(S
1) has many applications. For example: the fundamental theorem

of algebra, the Brower fixed point theorem in dimension 2 and the Borsuk Ulam theorem
in dimension 2.

Proposition 1.6. If X and Y are path connected topological spaces then π1(X × Y ) is
isomorphic to π1(X)× π1(Y ).

Example 1.7. The fundamental group of the torus: π1(S
1 × S1) ∼= Z× Z.
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Proposition 1.8. Let φ : X → Y be a continuous map with φ(x0) = y0, we write then
φ : (X, x0) → (Y, y0). Then φ induces a homomorphism: φ∗ : π1(X, x0) → π1(Y, y0)
defined by φ∗([f ]) = [φ ◦ f ] for [f ] ∈ π1(X, x0), Well, it’s well defined since for any
homotopy F based at x0, we have φ◦F is a homotopy based at y0. And it is a homomorphism
since φ(f.g) = (φ ◦ f).(φ ◦ g).

And we have those evident properties:
1. (φ ◦ ψ)∗ = φ∗ ◦ ψ∗
2. 1∗ = 1
3. If φ is a homeomorphism with inverse ψ then φ∗ is an isomorphism with inverse

ψ∗.

Proposition 1.9. For n ≥ 2, π1(S
n) = 0.

As a corollary of this proposition we have:

Corollary 1.10. R2 is not homeomorphic to Rn for a given positive integer n ̸= 2.

Definition 1.11. Let X be a topological space and A ⊆ X. Then r : X → A is a
retraction if it’s continuous and r|A = idA.

A deformation retraction is a homotopy between a retraction and the identity map
on X that satisfies for all t ∈ I, F (•, t)|A = idA, that is a continuous map F : X × [0, 1]→
X such that ∀x ∈ X, ∀a ∈ A,

F (x, 0) = x, F (x, 1) ∈ A, and F (a, t) = a.

And then the subspace A is called a deformation retract of X.

Proposition 1.12. If a space X retracts onto a subspace A, then the homomorphism
i∗ : π1(A, x0) → π1(X, x0) induced by the inclusion i : A → X is injective. If A is a
deformation retract of X, then i∗ is an isomorphism.

Definition 1.13. A space X is called simply connected if it is path connected and has
trivial fundamental group

Proposition 1.14. A space X is simply connected if and only if there is a unique homotopy
class of paths connecting any two points in X.

Definition 1.15. A space X is said to be locally simply connected at a point x ∈ X
if for every neighborhood V of x there is an open neighborhood U ⊂ V of x that is simply
connected. And X is said to be locally simply connected if X is locally simply connected at
each point x ∈ X.

For proofs of the previous propositions and more details, you can check [2].

1.2 Van Kampen’s theorem

Let (Gα) be a family of groups, then any collection of group homomorphisms φα : Gα → H
extends uniquely to a homomorphism φ : ∗αGα → H. For a word g1 . . . gn with
gi ∈ Gαi

, φ(g1 . . . gn) = φα1(g1) . . . φαn(gn). It is easy to see that φ is well defined and a
homomorphism.

Suppose a topological space X is decomposed as the union of a collection of path-
connected open subsets Aα, each of which contains the basepoint x0 ∈ X. By the remark
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above the homomorphisms jα : π1(Aα) → π1(X) induced by the inclusions Aα ↪→ X
extend to a homomorphism Φ : ∗απ1(Aα)→ π1(X). If iαβ : π1(Aα ∩ Aβ)→ π1(Aα) is the
homomorphism induced by the inclusion Aα∩Aβ ↪→ Aα then jα◦iαβ = jβ◦iβα, indeed, using
property 1 of proposition 1.8 we see that both jα◦iαβ and jβ◦iβα are induced by the inclusion
Aα ∩Aβ ↪→ X. Then Φ(iαβ(ω)iβα(ω)

−1) = jα ◦ iαβ(ω)jβiβα(ω)−1 = jα ◦ iαβ(ωω−1) = 0 for
ω ∈ π1(Aα ∩ Aβ), so for all ω ∈ π1(Aα ∩ Aβ), iαβ(ω)iβα(ω)

−1 ∈ Ker(Φ).

Theorem 1.16 (Van Kampen’s theorem). If X is the union of path-connected open
sets Aα each containing the basepoint x0 ∈ X and if each intersection Aα ∩ Aβ is path-
connected, then the homomorphism Φ : ∗απ1(Aα) → π1(X) is surjective. If in addition
each intersection Aα ∩ Aβ ∩ Aγ is path-connected, then the kernel of Φ is the normal
subgroup N generated by all elements of the form iαβ(ω)iβα(ω)

−1 for ω ∈ π1(Aα ∩ Aβ),
and hence Φ induces an isomorphism π1(X) ∼= ∗απ1(Aα)/N .

A proof of this theorem can be found in [2].

Remark 1.17. In the special case where X = Aα∪Aβ and Aα, Aβ are open path connected
subsets of X containing x0 and Aα ∩ Aβ is path connected, then the condition: ”each
intersection Aα ∩ Aβ ∩ Aγ is path-connected” is automatically satisfied, so π1(X) ∼=
(π1(Aα) ∗ π1(Aβ))/N .

Definition 1.18 (Wedge Sum). Let (Xi)i∈J be a family of topological spaces, and (xi)i∈J ∈∏
i∈J Xi, we then call the couple (Xi, xi) pointed space with base point xi, the wedge sum

of the family (Xi, xi)i∈J is the set
∨

i∈J Xi; =
∐

i∈J Xi /∼ equipped with the quotient
topology of the disjoint union topology of (Xi)i∈J over the relation ∼ that is defined by:
∀i, j ∈ J, xi ∼ xj. We will identify [x] by x for x /∈ (xi)i∈I and [xi] by xi for i ∈ J so
xi = xj for i, j ∈ J .

For example: the space S1
∨
S1 is homeomorphic to the figure eight in the plane.

An application of Van Kampen’s theorem is the calculation of the fundamental group
of the wedge sum, which is stated in the following theorem.

Theorem 1.19. Let
∨

αXα be the wedge sum of the pointed spaces (Xα) with the base
points (xα). If for each α,Xα is path connected, and xα is a deformation retract of an
open neighborhood Uα in Xα then π1(

∨
αXα) ∼= ∗απ1(Xα).

Proof. For each α, there is Fα : Uα × I → Uα continuous such that:

F (x, 0) = x, F (xα, t) = xα, F (x, 1) = xα,∀x ∈ Uα,∀t ∈ I

Fix α. Pose Aα = Xα

∨
β ̸=α Uβ. Aα is obviously open in

∨
αXα. Consider the map

Hα : Aα × I → Aα defined by:

Hα(b, t) = Fβ(b, t),∀β ̸= α, ∀b ∈ Uβ,∀t ∈ I and Hα(x, t) = x, ∀x ∈ Xα,∀t ∈ I

We have for all β ̸= α, for all t ∈ I, Hα(xβ, t) = Fβ(xβ, t) = xβ = xα = Hα(xα, t) this

verifies that Hα is well defined.
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Let’s show that Hα is continuous. Given (x, t) ∈ Aα× I, and V an open neighborhood

of H(x, t).

Suppose firstly that xα /∈ V . If x ∈ Xα, then V ∩ Xα is an open neighborhood of

x in Xα, and since xα /∈ V ∩ Xα, then V ∩ Xα is an open neighborhood of x in Aα.

And, Hα(V ∩ Xα × I) ⊂ V . If x ∈ Uβ for some β ̸= α, then F−1
β (V ∩ Uβ) is an open

neighborhood of (x, t) in Uβ × I, so there is W open of Uβ and T open of I such that

(x, t) ∈ W × T ⊂ F−1
β (V ∩ Uβ). And since xβ /∈ W then W is open in Aα, and we have

that Hα(W × T ) ⊂ V .

Suppose now that xα ∈ V . Suppose in the first subcase that x ∈ Xα. Given β ̸= α,

we have for all t ∈ I, (xβ, t) ∈ F−1
β (V ∩ Uβ) which is open. So, for all t ∈ I, there is

It open neighborhood of t in I, and there is Wt open neighborhood of xβ in Uβ, such

that Wt × It ⊂ F−1
β (V ∩ Uβ). (It)t∈I is an open cover of I which is compact, so there is

t1, . . . , tk ∈ I such that I =
⋃k

n=1 Itn . PoseWβ =
⋂k

n=1Wtn , which is open neighborhood of

xβ in Uβ and verifiesWβ×I ⊂ F−1
β (V ∩Uβ). PoseWα = V ∩Xα. Then,W := Wα

∨
β ̸=αWβ

is open neighborhood of x in Aα and H(W × I) ⊂ V .

Suppose in the second subcase that x ∈ Uγ for some γ ̸= α. Similarly as for the

previous paragraph for each β /∈ {α, γ} there is Wβ open neighborhood of xβ in Uβ such

that Wβ × I ⊂ F−1
β (V ∩Uβ). Pose Wα = V ∩Xα. There is Wγ open neighborhood of x in

Xγ and J open neighborhood of t in I such that Wγ × J ⊂ F−1
γ (V ∩Uγ). If xγ /∈ Wγ then

Wγ is open neighborhood of Aα and we have H(Wγ × J) ⊂ V . Suppose that xγ ∈ Wγ.

Then,W := Wα

∨
Wγ

∨
β/∈{α,γ}Wβ is an open neighborhood of x in Aα andH(W×J) ⊂ V .

We conclude then that Hα is continuous. Hence, for each α, Xα is a deformation retract

of its open neighborhood Aα. So, by proposition 1.12, we have π1(Aα, xα) ∼= π1(Xα, xα).

The intersection of two or more distinct Aα’s is
∨

α Uα which deformation retracts to a

point, it is easy to check this working similarly as above. Then,
∨

α Uα is path connected

and has trivial fundamental group. We have for each α, Uα deformation retracts to a

point, so it is path connected. Then for each α, Aα is path connected.

Van Kampen’s theorem then implies that Φ : ∗απ1(Xα) → π1(
∨

αXα) is an isomor-

phism.

Example 1.20. π1(
∨

α S
1) ∼= ∗αZ.

1.3 The Hawaiian earring

the Hawaiian earring H is the topological space defined by union of the circles Cn in
the euclidean plane R2 of radius 1

n
and center ( 1

n
, 0) for n ∈ N endowed with the subspace
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topology.

H =
∞⋃
n=1

{
(x, y) ∈ R2 |

(
x− 1

n

)2

+ y2 =

(
1

n

)2
}

The Hawaiian earring H looks very similar to the wedge sum of countably infinitely
many circles

∨∞
i=1 S

1, but this is not the case, consider (xi)
∞
i=1 the base points of (S1

i )
∞
i=1

copies of S1 and
∨∞

i=1 S
1 the wedge sum of (S1

i , xi)
∞
i=1. For each i ∈ N let Li be an

open arc neighborhood of xi in S
1
i , then

∨∞
i=1 Li is open neighborhood of x0 in

∨∞
i=1 S

1,
but any open neighborhood of the origin in H contains all but finitely circles Ci, this
shows that we cannot see H as

∨∞
i=1 S

1 in the natural way. Let’s prove that X and∨∞
n=1 S

1 are topologically different (i.e not homeomorphic). H is closed in R2 because its
complementary is union of intersection of an interior of a disk and an exterior of disk
which is open, H is bounded so it is compact, while

∨∞
i=1 S

1 is not compact, indeed: let
π :

∐∞
i=1 S

1
i →

∨∞
i=1 S

1
i be the canonical projection, and Un = π(S1

n

∐
i ̸=n Li) where Li is

the open semi circle of S1
i neighborhood of xi, then (Un)n∈N is an open cover of

∨∞
i=1 S

1
i

which doesn’t have a finite open cover.

Proposition 1.21. The Hawaiian earring H is the one point Compactification (i.e
Alexandroff) of a countable disjoint union of open intervals endowed with the disjoint
union topology.

Proof. Countable disjoint union of open intervals endowed with the disjoint union topology
is homeomorphic to H \ {O} where O is the origin of the plane, id : H \ {O} → H is
trivially a homeomorphism from H\{O} to H\{O}, then by Alexandroff compactification
theorem and since H is compact then H is the one point compactification of H \ {O} so
the one point compactification of countable disjoint union of open intervals.

About the fundamental group of Hawaiian earring
The Hawaiian earring H is path connected, so its fundamental group doesn’t depend on
the choice of the basepoint, we take the origin as the basepoint. we show that H has a
much larger fundamental group than the wedge sum. Consider the maps rn : X → Cn

collapsing all Ci’s except Cn to the origin, and conserves Cn, they are trivially continuous
so they are retractions. Each rn induces a surjection ρn : π1(X) → π1(Cn) ≈ Z indeed
we have rn ◦ i = id so rn∗ ◦ i∗ = id we take ρn = rn∗. The product of the ρn’s is a
homomorphism ρ : π1(X) →

∏∞
i=1 Z to the direct product of infinitely many copies of

Z, and ρ is surjective since for every sequence of integers kn we can construct a loop
f : I → X that wraps kn times around Cn in the time interval [1− 1/n, 1− 1/(n+ 1)].
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This infinite composition of loops is certainly continuous at each time less than 1, and it
is continuous at time 1 since every neighborhood of the basepoint in H contains all but
finitely many of the circles Cn. Since π1(H) maps onto (i.e surjectively) the uncountable
group

∏∞
i=1 Z, it is uncountable. On the other hand, the fundamental group of a wedge

sum of countably many circles is countably generated, hence countable.

Proposition 1.22. 1. π1(H) is uncountable.

2. For each n ∈ N, ∗ni=1Z is a proper subgroup of π1(H). In particular π1(H) is non
abelian, so it’s more complicated than

∏∞
i=1 Z.

3. H is locally path connected and not locally simply connected.

Proof. 1. It has been proven above.
2. Consider the retraction r : H → C1 ∪ · · · ∪ Cn that collapses all the circles smaller
than Cn to the basepoint, then by 1.12 i∗ : π1(C1 ∪ · · · ∪ Cn) → π1(H) is injective, so
∗ni=1Z ∼= π1(C1 ∪ · · · ∪ Cn) is isomorphic to a subgroup of π1(H).
3. H is trivially locally path connected, every neighborhood of the origine O, contains all
but a finite number of circles Cn, collapse all the neighborhood to O except one circle, then
this is a retraction, hence Z is subgroup of the fundamental group of this neighborhood,
so it is not trivial.

2 Free Complete Products

2.1 Definition and properties

Definition 2.1. Let (Gi)i∈I be a family of groups. We assume Gi ∩Gj = {e} for distinct
i, j ∈ I. Elements of

⋃
i∈I Gi are called letters. W is a word, if W is a function from

a totally ordered set W to
⋃

i∈I Gi, such that W−1(Gi) is finite for each i. In case the

cardinality of W is countable, we say that W is a σ-word. The class of all words is
denoted by W(Gi : i ∈ I) (abbreviated by W) and the class of all σ-words is denoted by
Wσ(Gi : i ∈ I) (abbreviated by Wσ).

For given U, V ∈ W, we say that U and V are isomorphic and denote it by U ≃ V ,
If there exists a bijective map that preserves the order i : U → V and U(α) = V (i(α))
for all α ∈ U . Then ≃ is an equivalence relation on the class W. Since the cardinality
of W is less than or equal to max{|I|,ℵ0} for a word W , then the class W/ ≃ is a
set, we then identify the equivalence class of a word W with W and W/ ≃ with W.
For words of finite length, this is the same as the usual definition of words in the free
product of groups. For a word W ∈ W(Gi : i ∈ I) and a subset X ⊂ I, WX is the
word obtained by eliminating letters not in

⋃
i∈X Gi; that is, WX ∈ W(Gi : i ∈ X),

WX = {α ∈ W : W (α) ∈
⋃

i∈X Gi} equipped with the restricted order of W on it , and

WX(α) = W (α) for α ∈ W . For words U and V , we say that U ∼ V holds if UF = VF
for every F ⊂ I finite, where we regard UF , VF as elements of the free product ∗i∈FGi.
Then, ∼ is well defined relation and it is an equivalence relation on W clearly. Denote
the equivalence class containing U by [U ]. For U, V ∈ W, let UV be the composition
of U and V , that is, UV = {(0, α), (1, β) : α ∈ U, β ∈ V }, where (0, α) < (1, β) for
α ∈ U and β ∈ V and (i, α) < (i, β) for α < β and i = 0, 1; UV ((0, α)) = U(α) and
UV ((1, β)) = V (β). Let U−1 be the word such that U−1 = {(0, α) : α ∈ U}, where
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(0, α) < (0, β) if α > β and U−1((0, α)) = U(α)−1. Then, it is easy to see that the
operation [U ][V ] := [UV ] on W/ ∼= {[W ] : W ∈ W} is well defined and W/ ∼ becomes
a group with this operation, he neutral element is the class of the empty word and
[U ]−1 = [U−1].

Definition 2.2. The free complete product ×i∈IGi is the group W(Gi : i ∈ I)/ ∼. The
free σ-product ×σ

i∈IGi is the group Wσ(Gi : i ∈ I)/ ∼, which is a subgroup of ×i∈IGi. In
case every Gi is isomorphic to G, we abbreviate ×i∈IGi by ×IG and similarly for free
σ-products.

Obviously the free product ∗i∈IGi is a subgroup of ×σ
i∈IGi so a subgroup of ×i∈IGi,

and if I is finite then they are all isomorphic.

Definition 2.3. A word W is said to be reduced, if W ≃ UXV implies [X] ̸= e for any
non-empty word X, where e is the identity, and for any neighboring elements α and β of
W it never occurs that W (α) and W (β) belong to the same Gi. α and β are said to be
neighboring elements if for all γ verifies α ≤ γ ≤ β or α ≥ γ ≥ β then γ = α or γ = β.

Theorem 2.4. For any word W , there exists a reduced word V such that [W ] = [V ] and
V is unique up to isomorphism.

We will present Eda’s proof [1], which employs the transfinite recursion for the existence
part.

Proof. The Existence: We define words Wµ for ordinals µ by induction. Let W0 be W .

If there exists a non-empty word X such that Wµ is isomorphic to UXV and [X] = e,

let Wµ+1 = {α ∈ Wµ : i(α) ∈ U or i(α) ∈ V } ⊂ W and Wµ+1(α) = W (α) for α ∈ Wµ+1,

where the ordering is the restriction of that of W and i : Wµ → UXV is the order isomor-

phism. Otherwise, the procedure is completed. For a limit ordinal µ, let Wµ =
⋂

ν<µWν

and Wµ(α) = W (α) for α ∈ Wµ. This procedure must stop at some ordinal whose

cardinality is at most max{|I|,ℵ0} because the cardinality of W is equal to or less than

max{|I|,ℵ0}. Let W∞ be the obtained word. By induction, we can see that [Wµ] = [W ]

and hence [W∞] = [W ]. There may be a neighboring α, β ∈ W∞ such that W∞(α) and

W∞(β) belong to the same Gi. Since such occasions happen only finitely many times for

each i, performing the calculation in each Gi we obtain the desired reduced word of W .

The uniqueness: suppose that [U ] = [V ] for reduced words U and V . We define

φ : U → V in the following manner. For α ∈ U there exists a unique i ∈ I such that

U(α) ∈ Gi. Then, there is g1, . . . , gm ∈ Gi, and X1 · · ·Xm+1 ∈ W(Gj : i ̸= j ∈ I) such
that U ≃ X1g1X2 · · ·XmgmXm+1, since U is reduced then ∀k ∈ {2, 3, . . .m}, [Xk] ̸= e, so

there is E2, E3, . . . Em ⊂ I finite such that [(Xk)Ek
] ̸= e, take E = E2∪E3∪ . . .∪Em∪{i}

then ∀k ∈ {2, 3, . . . ,m}, [(Xk)E] ̸= e, and UE ≃ (X1)Eg1(X2)E · · · (Xm)Egm(Xm+1)E

and U(α) = gk for some k ∈ {1, . . .m}. Similarly there exist F ⊂ I finite, letters

g′1, . . . , g
′
n ∈ Gi, and Y1, · · · , Yn+1 ∈ W(Gj : i ≠ j ∈ I) such that V ≃ Y1g

′
1Y2 · · ·Yng′nYn+1,

VF ≃ (Y1)Fg
′
1(Y2)F · · · (Yn)Fg′n(Yn+1)F , and ∀k ∈ {2, 3, . . . , n}, [(Yk)E] ̸= e. Because we
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can take F and E as bigger as we want and as they are finite, we can suppose E = F .

Since [UF ] = [VF ] then, m = n and g(l) = g′(l) for 1 ≤ l ≤ m. Let φ(α) ∈ V be the

member corresponding to g′k in V . Clearly φ is a bijective map and U(α) = V (φ(α)).

Taking large enough F ⊂ I as the above, we can see that φ preserves the order. Therefore,

U and V are isomorphic.

From now on we regard a word as an element of ×i∈IGi so U = V means [U ] = [V ]
for words U and V .

Corollary 2.5. Let U and V be reduced words. If UV = e, then V is isomorphic to U−1.

Proof. e = [UV ] = [U ][V ], so [U−1] = [V ], and since U is reduced then U−1 is also reduced.
Indeed, if U−1 ≃ W1XW2 with X non empty word, then U ≃ W−1

2 X−1W−1
1 and X−1 is

non empty, since U is reduced then [X−1] ̸= e so [X] ̸= e. We conclude then by uniqueness
part of the theorem that V is isomorphic to U−1.

Proposition 2.6. Let U be a reduced word.

1. There exists no nonempty reduced word X such that U = UX or U = XU .

2. If U is nonempty and U = U−1, then there exist a reduced word X and a letter g
such that U is isomorphic to X−1gX and g2 = e.

Proof. 1. [U ] = [UX] = [U ][X] implies [X] = e, and since X is reduced then by uniqueness

part of the theorem X is isomorphic to the empty word, so it is empty.

2. Since U−1 is also reduced, U = U−1 implies U ≃ U−1 and, hence, let i : U → U−1

be the order isomorphism. Let A = {A ⊂ U : if α > β ∈ A then α ∈ A, and ∀α ∈
A, i−1(0, α) /∈ A}. Let’s show using Zorn lemma that A admits a maximal element. ∅ ∈ A,
so A is nonempty. Let (Ai)i∈I be a totally ordered subset of A, take A = ∪i∈IAi, let

α > β ∈ A, then β ∈ Ai for some i ∈ I, so α ∈ Ai ⊂ A. Given α ∈ A, suppose by absurd

that i−1(0, α) ∈ A, so i−1(0, α) ∈ Ai for some i ∈ I, and we have that α ∈ Aj for some

j ∈ I, (Ai)i∈I s totally ordered, so Ai ⊂ Aj or Aj ⊂ Ai and then we get that both of

α and i−1(0, α) belong to Aj or Ai, which is contradiction. Hence A ∈ A and A is an

upper bound of (Ai)i∈I . We conclude by Zorn lemma that A admits a maximal element,

let it be X, let’s equip X with the restricted order of U , and define the word X, for all

α ∈ X,X(α) = U(α).

Suppose X ∪ i−1{(0, α) : α ∈ X} = U . Let F ⊂ I finite, then XF = ∅ or

= {α1 < α2 < · · · < αk} for some k ∈ N and α1, · · · , αk ∈ X. In the first case

UF = ∅. In the second case UF = {i−1(0, αk) < · · · < i−1(0, α1) < α1 < · · · < αk}, indeed
we have αi > i−1(0, αj) since otherwise we obtain i−1(0, αj) ∈ X which is absurd, and

α1 < · · · < αk implies (0, αk) < · · · < (0, α1) in U−1, so i−1(0, αk) < · · · < i−1(0, α1).

And because of U(i−1(0, αi)) = U−1(0, αi) = U(αi)
−1 then UF = 0, and then that U = 0,

but U is nonempty and reduced so U ≠ 0. We obtain then a contradiction. Hence,

X ∪ i−1{(0, α) : α ∈ X} ≠ U .
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Let V = U \ (X ∪ i−1{(0, α) : α ∈ X}) equipped with the restricted order of U . We

have obviously for all β ∈ V , for all α ∈ X, β < α. Suppose by absurd that β ≤ i−1(0, α)

for some β ∈ V and α ∈ X, then (0, γ) = i(β) ≤ (0, α) for some γ ∈ U , then γ ≥ α, so

γ ∈ X, then β = i−1(0, γ) ∈ i−1{(0, α) : α ∈ X}, which is absurd. Hence, U ≃ X−1V X

with V = U |V .
Suppose V is not a unique letter.

Then, there is α ∈ V such that i−1(0, α) < α. Indeed, suppose not, then fix α ∈ V .
Suppose in the first case that α = i−1(0, α), if there is β ∈ V such that β > α then

β > i−1(0, β) which is absurd. Then there is β ∈ V such that β < α, let γ ∈ U such

that i−1(0, γ) = β, then γ > α, and since β /∈ i−1{(0, α) : α ∈ X}, then γ ∈ V , and

then we get an absurd. Suppose now that α < i−1(0, α). Then for all β < α we have

α < i−1(0, α) < i−1(0, β). And for β ∈ V that verifies β > α we have α < β ≤ i−1(0, β).

And for all β ∈ X we have i−1(0, β) < α. Hence, there is no β ∈ U such that α = i−1(0, β).

which is absurd.

Then, take A = {β ∈ U : β ≥ α}. we have A ∈ A and contains strictly X, which

is contradiction with maximality of X. Hence, V = g for some letter g, and since V is

reduced then g ̸= e. Hence, U ≃ X−1gX and by U ≃ U−1, we get g2 = e.

2.2 Inverse system and Inverse limit

Definition 2.7. Inverse system Let (I,≤) be an ordered set, let (Ai)i∈I be a family of
groups and suppose we have a family of morphisms: fij : Aj → Ai for all i ≤ j in I with
the following properties:

1. fii is the identity on Ai.

2. fik = fij ◦ fjk for all i ≤ j ≤ k.

Then the pair ((Ai)i∈I , (fij)i≤j,i,j∈I) is called an inverse system of groups and morphisms
over I. The morphisms (fij) are called the transition morphisms of the system.

Definition 2.8. Inverse limit of the inverse system ((Ai)i∈I , (fij)i≤j,i,j∈I) is defined as
the following particular subgroup of the direct product of the sets Ai:

lim←− (Ai, fij : i ≤ j, i, j ∈ I) :=

{
a ∈

∏
i∈I

Ai

∣∣∣∣∣ ai = fij(aj) for all i ≤ j in I

}
.

it is easy to see that A is a subgroup of the direct product
∏

i∈I Ai.

Let’s return to our context, and to the notation before Definition 2.7, and let’s denote
by F ⋐ I for a finite subset F of I.

Let pXY : ∗i∈YGi → ∗i∈XGi be the canonical homomorphisme for X ⊂ Y ⊂ I.

Proposition 2.9. The free complete product ×i∈IGi is isomorphic to⋂
F⋐I

∗i∈FGi ∗ lim←−(∗i∈XGi, pXY : X ⊂ Y ⋐ I \ F )
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which is a subgroup of
lim←−(∗i∈XGi, pXY : X ⊂ Y ⋐ I).

Proof. First, let’s justify the writing
⋂

F⋐I ∗i∈FGi ∗ lim←−(∗i∈XGi, pXY ) : X ⊂ Y ⋐ I \ F )
and show that it is a subgroup of lim←−(∗i∈XGi, pXY : X ⊂ Y ⋐ I). Let’s denote

by H the group lim←−(∗i∈XGi, pXY : X ⊂ Y ⋐ I), and for each F ⋐ I, denote by

HF the group ∗i∈FGi ∗ lim←−(∗i∈XGi, pXY : X ⊂ Y ⋐ I \ F ). We are going to show that

HF is canonically injected to H. Fix F ⋐ I, define the morphism φF : HF → H,

such that for all x ∈ ∗i∈FGi, φF (x) = (pX∩F,F (x))X⋐I , and for all y = (yX)X⋐I\F ∈
lim←−(∗i∈XGi, pXY : X ⊂ Y ⋐ I \ F ) , φF (y) = (yX\F )X⋐I . Since the process of reducing

an unreduced word in ∗i∈FGi ∗ lim←−(∗i∈XGi, pXY ) : X ⊂ Y ⋐ I \ F ) does not affect the

X-coordinates of its image by φ for any X ⋐ I, so does not affect its image. Hence, φF is

well defined morphism. φF is clearly injective, which means that we can regard HF as a

subgroup of H, and then the intersection
⋂

F⋐I HF has sense and is justified, and it is a

subgroup of H.

Let’s prove the first part of the proposition. For X ⋐ I, define ϕX : ×i∈IGi →
∗i∈XGi, ϕX(W ) = WX for a word W ∈ ×i∈IGi, then ϕX is well defined morphism. Let

ϕ : ×i∈IGi →
∏

X⋐I ∗i∈XGi be the induced morphism by (ϕX)X⋐I , ϕ is clearly injective.

We have for X ⊂ Y ⋐ I, pXY ◦ ϕY = ϕX , which implies that Im(ϕ) ⊂ lim←−(∗i∈XGi, pXY :

X ⊂ Y ⋐ I). Given W ∈ ×i∈IGi reduced, and F ⋐ I, let {α1 < α2 < · · · < αn} =

W−1(∪i∈FGi). We can partition the previous set into {α1 < α2 < · · · < αn1}, {αn1+1 <

· · · < αn2}, · · · {αnk−1+1 < · · · < αnk
} such any two consecutive elements of each of those

subsets are neighboring elements in W . Let xj = W (αnj−1+1)W (αnj−1+2) · · ·W (αnj
) ∈

∗i∈FGi for j ∈ {1, . . . , k} and n0 = 0. For each X ⋐ I \F let y0X = WX∩]∞,α1[ and yjX =

WX∩]αnj ,αnj+1[ for j ∈ {1, . . . , k − 1} and ykX = WX∩]αk,∞[. We have yj := (yjX)X⋐I\F

belongs to lim←−(∗i∈XGi, pXY : X ⊂ Y ⋐ I \ F (since pXY ◦ ϕY = ϕX), and for each X ⋐ I,

WX = y0X\FpX∩FF (x1)y1X\FpX∩FF (x2) · · · pX∩FF (xk)ykX\F , (note that y0 and yk can be

zeros and others not). Hence ϕ(W ) ∈
⋂

F⋐I ∗i∈FGi ∗ lim←−(∗i∈XGi, pXY : X ⊂ Y ⋐ I \ F ).
Inversely, given x ∈

⋂
F⋐I ∗i∈FGi ∗ lim←−(∗i∈XGi, pXY : X ⊂ Y ⋐ I \ F ). For each i ∈ I,

let Vi be the reduced word corresponding as a member ofGi∗lim←−(∗i∈XGi, pXY : X ⊂ Y ⋐ I \ i).
Let g(i, 1), · · · , g(i, ki) be the sequence of letters in Gi appearing in Vi in this order. Let

W = {(i, 1), · · · , (i, ki) : i ∈ I}. Consider the reduced word Vi,j corresponding to x as a

member of Gi ∗Gj ∗ lim←−(∗i∈XGi, pXY : X ⊂ Y ⋐ I \ i), then using the first paragraph of

the proof one can see easily that g(i, 1), · · · , g(i, ki) and g(j, 1), · · · , g(j, kj) are appearing

in Wi,j. Define (i, p) < (j, q) if g(i, p) is left of g(j, q), then obviously ≤ (i.e < or =) is a

total order in W . Define W , as W (i, p) = g(i, p), then W ∈ W(Gi : i ∈ I), and ϕ(W ) = x,

this completes the proof.
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3 The Hawaiian Earring Group

In all this part all topological spaces are supposed Hausdorff. The aim of this section is
to calculate the fundamental group of the Hawaiian earring space, which we call it the
Hawaiian earring group.

A loop is said to be nulhomotopic if it is homotopic to the constant loop.

Definition 3.1. Given (X, xi)i∈I a family of pointed spaces, the topological space denoted

by (
∨̃

i∈I(Xi, xi), x
∗) or just by

∨̃
i∈IXi is the set

∐
i∈I Xi/ ∼ where ∼ is the identification

of all xi(= x∗), equiped with the following topology : a subset U of
∐

i∈I Xi/ ∼ that doesn’t
contain x∗ is open if for each i, U ∩Xi is open on Xi, and and if x∗ ∈ U , U is open if for
each i, U ∩Xi is open on Xi, and for almost all i ∈ I, U ∩Xi = Xi.

Example 3.2. We see obviously that H is homeomorphic to
∨̃

n∈NS
1.

Before stating the main theorem, let’s prove a lemma and provide a definition to aid
in the proof of the theorem.

Lemma 3.3. Let X be locally simply connected at x and has countable neighborhood basis
at x. Let f be a loop in ((X, x)∨(Y, y), x∗), then f−1(X \{x}) is a countable disjoint union
of open subintervals of I. Suppose f−1(X \ {x}) =

⊔
n∈N]an, bn[. Then f(an) = f(bn) = x∗

for all n ∈ N. And there exists a continuous map H : [0, 1]× [0, 1]→ (X, x) ∨ (Y, y) with
the following:

1. H(1, t) = f(t) for t ∈ [0, 1];

2. H(s, 0) = H(s, 1) = H(s, an) = H(s, bn) = x for s ∈ [0, 1] and n ∈ N;

3. H(s, t) ∈ X for s ∈ [0, 1] and t ∈
⋃

n∈N[an, bn];

4. H(0, t) = x for t ∈
⋃
{[an, bn] : f |[an,bn] is nulhomotopic in X}.

5. H(s, t) = f(t) for s ∈ [0, 1] and t /∈ {]an, bn[: f |[an,bn] is nulhomotopic in X}.

Proof. Let X = V1 ⊃ V2 ⊃ V3 ⊃ · · · be a basis of neighborhoods of x, for each k there

is an open neighborhood Uk ⊂ Vk of x simply connected, and we can suppose for each k

Uk+1 ⊂ Uk, so (Uk)k∈N is a basis of neighborhoods of x in X. Pose U0 = X.

we are working in Hausdorff spaces, soX\{x} is open subset ofX∨Y , then f−1(X\{x})
is open subset of the interval I = [0, 1], so it is a countable disjoint union of open subin-

tervals of I. Putting Sn =]an, bn[, by hypothesis f−1(X \ {x}) = ⊔n∈NSn, where (Sn)n∈N

are disjoint open subintervals of I. The image by f of the endpoints of each Sn can not

be in X \ {x} since Sn are disjoint, and can not be in Y \ {y} by continuity of f , so it is

x∗. Similarly f−1(Y \ {y}) = ⊔n∈NLn, where (Ln)n∈N are disjoint open subintervals of I,

and the image by f of the endpoints of each Ln is x∗.

For each open neighborhood V of x in X, almost all n ∈ N, f(Sn) ⊂ V . Indeed,

suppose not, then there is sequence of positive integers (nk)k∈N such that for each k, there
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is xk ∈ Snk
and f(xk) /∈ V . By compactness of I, (xk) admits a convergent subsequence

(xkm)m∈N, let w be its limit. Then both of (ankm
) and (bnkm

) converge to w, which implies

that f is not continuous on w.

For each n ∈ N, let mn be the greatest integer such that f(Sn) ⊂ Umn . If mn ̸= 0, then

Umn is simply connected and f |Sn
: Sn = [an, bn]→ Umn is a loop. We then fix a homotopy

Hn : I× [an, bn]→ Umn , such that Hn(0, t) = x,Hn(1, t) = f(t), Hn(s, an) = Hn(s, bn) = x

for all t and s. And let n1, n2, . . . , nl, . . . , nk be all the positive integers that verifies

mn = 0, and {nl+1, . . . , nk} = {n ∈ {n1, . . . , nk} : f |[an,bn] is nulhomohtopic in X}, for
each j ∈ {l + 1, . . . k}, we fix then a homotopy Hnj

: I × [anj
, bnj

] → X, Hnj
(0, t) =

x,Hnj
(1, t) = f(t), Hnj

(s, anj
) = Hnj

(s, bnj
) = x for all t and s.

Define H : I × I → X ∨ Y , as, H(s, t) = f(t) if t /∈ ∪{Sn : n ∈ N \ {n1, n2, . . . , nl}}
, H(s, t) = Hn(s, t) if t ∈ Sn and n /∈ {n1, . . . , nl}, for all s ∈ I. Let’s prove that H is

continuous. H is trivially continuous on each point (s, t) verifies f(t) ̸= x∗.

Fix (s, t) ∈ I × I that verifies f(t) = x∗, and an open neighborhood V of x∗

in X ∨ Y , we will prove by distinguishing cases that there is some ϵ > 0 such that

H(]s− ϵ, s+ ϵ[×[t, t+ ϵ[⊂ V .

1st case There is ϵ > 0, such that f(]t, t + ϵ[) ⊂ X \ {x}, in other words t = an

for some n. Suppose firstly that n ∈ {n1, . . . , nl}. f is continuous so there is δ > 0

such that , f([t, t + δ[) ⊂ V , then H(I × [t, t + min(ϵ, δ)[) = f([t, t + min(ϵ, δ)[) ⊂ V .

Suppose now that n is different from n1, . . . , nl. V ∩ Umn is an open neighborhood

of x in Umn , so there is δ > 0 such that Hn(]s − δ, s + δ[×[t, t + δ[) ⊂ V , hence

H(]s− δ, s+ δ[×[t, t+ δ[) = Hn(]s− δ, s+ δ[×[t, t+ δ[) ⊂ V .

2nd case There is ϵ > 0, such that f(]t, t+ ϵ[) ⊂ Y . f is continuous so there is δ > 0

such that , f([t, t+ δ[) ⊂ V , then H(I × [t, t+min(ϵ, δ)[) = f([t, t+min(ϵ, δ)[) ⊂ V .

3rd case There is a subsequence (Snk
)k∈N of the intervals (Sn) that converges to t

from the right, let m > 0 such that Um ⊂ V ∩X. Since there is just a finite number of

Sn such that f(Sn) ̸⊂ Um, we can suppose that for each k f(Snk
) ⊂ Um, then for each

k Unk
⊂ Um, hence for each k, H(I × [ank

, bnk
]) = Hnk

(I × [ank
, bnk

]) ⊂ Um. Suppose

in the first subcase that there is also a subsequence (Lnk
)k∈N of the intervals (Ln) that

converges to from the right, V ∩ Y is open neighborhood of y, for the same argument as

(Sn), almost for all n, f(Ln) ⊂ V ∩ Y , so we can suppose that for each k f(Lnk
) ⊂ V ∩ Y ,

hence for each k H(I × Lnk
) = f(Lnk

) ⊂ V ∩ Y .we deduce then the existence of ϵ > 0

that verifies H(I × [t, t + ϵ[) ⊂ V . Suppose now the nonexistence of such subsequence
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of (Ln), then we deduce directly the existence of ϵ > 0 that verifies H(I × [t, t+ ϵ[) ⊂ V .

Similarly if there is such a subsequence of (Ln) and there is not such a subsequence of (Sn).

By a similar argument there is some δ > 0 such that H(]s− δ, s+ δ[×]t− δ, t] ⊂ V .

This completes the proof of the continuity of H.

Definition 3.4. A loop f in (X, x) is said to be proper, if f satisfies the following: Let
(]an, bn[)n∈M be pairwise disjoint open intervals ( of course such M must be countable )
such that

⋃
n∈M ]an, bn[= f−1(X \ {f(0)}). Then, if f |[an,bn] is homotopic to the constant

loop, f |[an,bn] itself is constant.

Theorem 3.5. H.B.Griffiths [3], J.W.Morgan and I.morrisin[4]
Given (Xi, xi)i∈I be family of pointed spaces, suppose for each i ∈ I Xi is locally simply

connected at x, and has a countable neighborhood basis at xi. Then,

π1(
∨̃

i∈I
(Xi, xi), x

∗) ∼= ×σ
i∈Iπ1(Xi, xi)

.

Proof of the theorem. If we do not mention the domain of a loop, it will be [0, 1].

Let f be a loop in (
∨̃

i∈I(Xi, xi), x
∗).

∨̃
i∈I(Xi, xi), x

∗)\{x∗} is open, so f−1(
∨̃

i∈I(Xi, xi), x
∗)\

{x∗}) is open, and then it is a disjoint union of countable open subintervals (]an, bn[)n∈M

of [0, 1]. Then f(an) = f(bn) = x∗ for each n ∈ M . For each n f(]an, bn[) is con-

nected, so f(]an, bn[) ⊂ Xi for some i. Indeed, fix i such that f(]an, bn[) ∩ Xi ̸= ∅,
f(]an, bn[) = (f(]an, bn[) ∩ (Xi \ {xi}))⊔ (f(]an, bn[) ∩ ⊔j ̸=i(Xj \ {xj})). Both of Xi \ {xi}
and ⊔j ̸=i(Xj \{xj}) are open in (

∨̃
i∈I(Xi, xi), x

∗). Hence, f(]an, bn[)∩⊔j ̸=i(Xj \{xj}) = ∅.

Given i ∈ I, Xi is locally simply connected at x, so there is a simply connected open

neighborhood Vi of x in Xi. Almost all loops f([an, bn]) lying in Xi verifies f([an, bn]) ⊂ Vi.

Indeed, suppose not, then there is sequence of elements of M (nk)k∈N such that for

each k, there is xk ∈]ank
, bnk

[ and f(xk) /∈ Vi and f([ank
, bnk

]) ⊂ Xi. By compactness

of I, (xk) admits a convergent subsequence (xkm)m∈N, let w be its limit. Then both

of (ankm
)m∈N and (bnkm

)m∈N converge to w, which implies that f is not continuous on

w. Hence, for each i almost all loops f|[an,bn] lies in Xi are homotopic to the constant

map. Define W f = {n ∈ M : f|[an,bn] is not nulhomotopic in Xi where f|[an,bn]lies in Xi}
equipped with the order of (an)n∈M , and W f (n) = [f|[an,bn]] as an element of π1(Xi, xi) if

f([an, bn]) ⊂ Xi. Then W
f ∈ W(π1(Xi, xi) : i ∈ I).

Fix F ⋐ I, the subspace topology {x∗} ∪i∈F Xi \ {xi} of
∨̃

i∈IXi is equal to the topo-

logical space
∨

i∈F Xi. And the canonical map πF :
∨̃

i∈IXi →
∨

i∈F Xi that conserves

the Xi for i ∈ F and sends the other points to x∗ is continuous. And [πF ◦ f ] = (W f)F .

Hence if H is a homotopy between f and the constant map, then πF ◦H is a homotopy
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between πF ◦ f and the constant map. So, if [f ] = 0 then (W f )F = e for each F ⋐ I, and

then [W f ] = e.

Define ψ : π1(
∨̃

i∈I(Xi, xi), x
∗)→ ×σ

i∈Iπ1(Xi, xi), as ψ([f ]) = [W f ] for each loop f in

( ˜∨
i∈I(Xi, xi), x

∗). We have trivially for two loops f, g in
∨̃

i∈I(Xi, xi), x
∗), W f.g = W fW g

and W g = (W g)−1, where g is the inverse path of g. Suppose f and g are homotopic,

[f.g] = 0 so, [W f ][W g] = [W fW g] = [W f.g] = e, then [W f ] = [(W g)−1] = [W g]. Hence, ψ

is well defined homomorphism.

Let’s show that ψ is surjective. Fix a σ-word W ∈ Wσ(π1(Xi, xi) : i ∈ I). If W is

finite it is trivial that it is has a preimage. Suppose that W is infinite and reduced, we

will construct a loop f such that W f = W . Fix α1 ∈ W , and define f on [1/3, 2/3] such

that f |[1/3,2/3] ∈ W (α1). If there is α1 > α2,1 ∈ W , then define f on [1/9, 2/9] such that

f |[1/9,2/9] ∈ W (α2,1). If there is α1 < α2,2 ∈ W , then define f on [7/9, 8/9] such that

f |[7/9,8/9] ∈ W (α2,2). If there is α2,1 > α3,1 ∈ W , then define f on [1/27, 2/27] such that

f |[1/27,2/27] ∈ W (α3,1). If there is α3,2 ∈ W such that α1 > α3,2 > α2,1, then define f on

[7/27, 8/27] such that f |[7/27,8/27] ∈ W (α3,2). We continue this procedure infinitely many

times, and define f on points that are not defined in the previous procedure to be x∗. We

could actually make things to look more rigorously by defining f as limit of a sequence of

functions. Let’s show that f is continuous.

The continuity of f is trivial on
⋃

n∈N
⋃

0≤k≤3n−1−1]
3k+1
3n

, 3k+2
3n

[. Let t ∈ [0, 1] \⋃
n∈N

⋃
0≤k≤3n−1−1]

3k+1
3n

, 3k+2
3n

[, then f(t) = x∗, let V be an open neighborhood of x∗,

we will prove that there is ϵ > 0 such that f([t, t+ ϵ[) ⊂ V . This holds trivially if t = 3k+1
3n

,

or if there is ϵ > 0 such that f([t, t+ ϵ[) = {x∗}. Suppose this is not the case, then there

exists a sequence of the intervals {[3k+1
3n

, 3k+2
3n

] : n ∈ N, 0 ≤ k ≤ 3n−1−1} that converges to
t from the right, and f restricted on each interval of the sequence is not nulhomptopic. We

have V ∩Xi = Xi for almost all i ∈ I, and for each i ∈ I, W−1(π1(Xi, xi)) is finite, then

we can suppose that the image of each interval of the sequence is included in V, then we

deduce the existence of ϵ > 0 such that f([t, t+ ϵ[) ⊂ V . Similarly we show the existence

of δ > 0 such that f(]t−δ, t]) ⊂ V . Hence, f is continous. And we have obviouslyW f = W .

To prove the injectivity of ψ, we need the following lemma:

Lemma 3.6. Any loop f in
∨̃

i∈I(Xi, xi), x
∗) is homotopic to some proper loop.

proof of the lemma: Given a loop f in
∨̃

i∈I(Xi, xi), x
∗), we have proven that the image

of f is included in
∨̃

i∈C(Xi, xi), x
∗) for some countable C ⊂ I, if C is finite, there

is nothing to prove, just applying lemma 3.2 finitely many times. suppose C is in-

finite, let’s enumerate its elements C = {i1, i2, . . . , }.We remark that for each i ∈ I

the topological space Xi ∨
∨̃

i ̸=j∈IXj is equal to
∨̃

i∈IXi. We construct fn, Hn, (n ∈ N)
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by induction, f1 = f , applying lemma 3.2 on f1, with a small variation in the do-

main we get a map H1 : [1/2, 1] × [0, 1] → Xi1 ∨
∨̃

i1 ̸=j∈IXj that verifies the condi-

tions given in same lemma. Suppose we have constructed fn : [0, 1] →
∨̃

i∈IXi and

Hn : [1/(n+ 1), 1/n] × [0, 1] → Xin ∨
∨̃

in ̸=j∈IXj, we take fn+1 = Hn(
1

n+1
, •), applying

lemma 3.2 on fn+1, we get a map Hn+1 : [
1

n+2
, 1
n+1

] × [0, 1] → Xin+1 ∨
∨̃

in+1 ̸=j∈IXj that

verifies the conditions.

For each i The map π{i} :
∨̃

i∈IXi → Xi is a retraction, then by Proposition 1.12, the

homomorpism i∗ : π1(Xi, xi)→ π1(
∨̃

i∈IXi, x
∗) induced by the inclusion is injective. Then,

a loop that lies in Xi on xi is nulhomotopic in
∨̃

i∈IXi, if and only if it is nulhomotopic

in Xi. Define g : [0, 1] →
∨̃

i∈IXi defined as, g(t) = x∗ if t ∈]an, bn[, n ∈ M for which

f |[an,bn] is nulhomotopic, g(t) = f(t) otherwise. g is clearly continuous on ∪n∈M ]an, bn[,

let t ∈ [0, 1] \ ∪n∈M ]an, bn[ then g(t) = f(t) = x∗, let V be a neighborhood of x∗, then

there is ϵ > 0, f(]t − ϵ, t + ϵ[) ⊂ V , then g(]t − ϵ, t + ϵ[) ⊂ f(]t − ϵ, t + ϵ[) ⊂ V , so g is

continuous. Hence, g is a proper loop.

Define H : [0, 1] × [0, 1] →
∨̃

i∈IXi as, H(s, t) = Hn(s, t) if s ∈ [ 1
n+1

, 1
n
], and

H(0, t) = g(t). H is trivially continuous on ]0, 1] × [0, 1]. Given t ∈]an, bn[, n ∈ M

for which f |[an,bn] is nulhnmotopic. Let m ∈ N such that f([an, bn]) ∈ Xim , then by the

properties 4 and 5 of lemma 3.2, we get for all k > m for all s ∈ [ 1
k+1

, 1
k
], t ∈ [an, bn]

Hk(s, t) = fm+1(t) = x∗, then we deduce that H is continuous on {0}×]an, bn[, for all

n ∈ M for which f |[an,bn] is nulhnmotopic. Given t ∈]an, bn[, n ∈ M for which f |[an,bn] is
not nulhnmotopic. Then, for each k ∈ N, for each s ∈ [ 1

k+1
, 1
k
], Hk(s, t) = f(t). Hence H

is continuous on {0}×]an, bn[, for all n ∈M for which f |[an,bn] is not nulhnmotopic.

Given t ∈ [0, 1] \ ∪n∈M ]an, bn[, and V an open neighborhood of H(0, t) = x∗, we are

going to prove by studying cases that there is ϵ > 0 such that H([0, ϵ[×[t, t+ ϵ[) ⊂ V . If

t = an for some n ∈M , it is trivial result based on the foregoing paragraph. If there is

ϵ > 0 such that f([t, t+ ϵ[) = {x∗}, then H([0, 1]× [t, t+ ϵ[) = {x∗} ,so there nothing to

prove. Suppose now that none of the previous cases hold, then there is a sequence (nk)k∈N

overM , such that (]ank
, bnk

[)k∈N converges to t from the right. We know that for almost all

i ∈ I, V ∩Xi = Xi, and since for each i almost all loops that lies in Xi are nulhomotopic,

then we can suppose that for each k: if f(]ank
, bnk

[) ⊂ Xi and V ∩Xi ̸= Xi then f |[ank,bnk
]

is nulhnmotopic. Let m ∈ N such that for all k ≥ m, V ∩Xik = Xik . Then, for each l ≥ m,

for each k ∈ N, if f(]ank
, bnk

[) ⊂ Xi and V ∩Xi ̸= Xi then Hl([
1

l+1
, 1
l
]×]ank

, bnk
[) = {x∗},

and if not then Hl([
1

l+1
, 1
l
]×]ank

, bnk
[) ⊂ Xi (just verify the cases when l is greater or

equal or less than the index of i in C). Hence we deduce the desired result. Similarly we

prove the existence of δ > 0 such that H([0, δ[×]t− δ, t]) ⊂ V , This achieves the proof of

continuity of H.
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We conclude finally that f is homotopic to the proper loop g.

Let’s prove now that ψ is injective, we will present the proof of Eda [1] with more

details. Let’s denote π1(Xi, xi) by Gi. Let f be a loop in (
∨̃

i∈I(Xi, xi), x
∗) with [W f ] = e.

Since there exists a countable subset C of I such that Im(f) ⊂
∨̃

i∈CXi, it suffices to

deal the case I = N. By Lemma 3.6, we may assume that f is a proper loop. Now, we

construct a homotopy H from f to the constant loop. In the k-th step, we define H on

subrectangles of [0, 1]× [0, 1] which makes loops in (Xk, x
∗) homotopic to the constant

loop expecting loops in
∨̃

n>kXn will be made homotopic to the constant loop in a suitable

way in future.

Step 1 Let H(t, 1) = f(t) and H(t, 0) = x∗ for 0 ≤ t ≤ 1. Let W f = W1 · · ·Wn1 , where

Wi ∈ W(G1) or Wi ∈ W(Gn : n ≥ 2) for 1 ≤ i ≤ n1 and Wi ∈ W(G1) if and only if

Wi+1 ∈ W(Gj : j ≥ 2) for 1 ≤ i ≤ n1 − 1.

Substep 1: We can correspond a closed interval Ii to each Wi so that Wi = W f |Ii for

1 ≤ i ≤ n1,
⋃n1

i=1 Ii = [0, 1], and the right end of Ii is the left end of Ii+1 for 1 ≤ i ≤ n1− 1.

We claim that Wi = e for some 1 ≤ i ≤ n1. Suppose not. There exists F ⋐ N such that

(Wi)F ̸= e for every 1 ≤ i ≤ n1. Then, (W
f)F ̸= e, which is a contradiction. We choose

one Wi with Wi = e. Let H(s, t) = f(s) for (s, t) ∈
⋃

j ̸=i Ij × [1/2, 1].

In case Wi ∈ W(G1), f |Ii is homotopic to the constant loop in Xi. Let H|Ii×[1/2,1]

be a continuous map such that H(s, 1/2) = x∗ for s ∈ Ii, and H(s, t) = x∗ for s ∈ ∂Ii
and t ∈ [1/2, 1]. In case Wi ∈ W(Gn : n ≥ 2), we do not define H on (intIi)×]1/2, 1[
in this step, but we let H(s, 1/2) = x∗ for s ∈ Ii. Next, we reform the word W f to

W1 · · ·V · · ·Wn1 by eliminating Wi, where V = Wi−1Wi+1. Then, W1 · · ·V · · ·Wn1 = e

and members of W(G1) and W(Gn : n ≥ 2) are neighboring in W1, · · · , V, · · · ,Wn1 .

Substep k + 1: In the substep k, H(s, 1/2k) (s ∈ [0, 1]) have been defined and there

is a corresponding word reformed from W f . By the same reasoning as in Substep 1, one

of the words equals e as a member of the group, of course. We perform the work as in

Substep 1. The substeps would finish in at most n1-steps. If they finish in the k-step, then

H(t, 1/2k) (0 ≤ t ≤ 1) have been defined and equal to x∗. Let H([0, 1]× [0, 1/2k]) = x∗.

Step k After the (k − 1)-step, there possibly exist finitely many sub-rectangles of

[0, 1] × [0, 1] on which H has not been defined. Their forms are [a, b]×]
∑m−1

i=1 si/2
i +

1/2m,
∑m−1

i=1 si/2
i + 1/2m−1[, where si = 0 or 1 and m ≤

∑k
i=1 ni. H has been defined

on the upper side of a rectangle and it corresponds to a word in W(Gn : n ≥ k), then

it has values in
∨̃

n≥kXn since f is a proper loop. H maps the lower side to x∗. In each

rectangle, we work as in Step 1, as if the rectangle were [0, 1]× [0, 1]. Note that the values

of H which we define in this step are in
∨̃

n≥kXn.

Let H(s, t) = x∗, if H(s, t) has not been defined in any step. Now, let’s show the

continuity of H. Given u ∈ [0, 1] × [0, 1], suppose in the first case that there is an
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injective sequence of subrectanges resulting from the construction (Lm)m∈N such that

limm→0 d(u, Lm) = 0. Then, H(u) = x∗. Given V an open neighborhood of x∗. There

is k ∈ N such that
∨̃

n≥kXn ⊂ V , and there is m0 ∈ N such that for all m ≥ m0,

H(Lm) ⊂
∨̃

n≥kXn. Then, we deduce the continuity of H on u. In the other case H

is obviously continuous on u. Hence H is continuous and the proof of the theorem is

complete.

Corollary 3.7. π1(H) ∼= ×σ
n∈NZ ∼= ×n∈NZ .

Corollary 3.8. π1(H) is isomorphic to⋂
F⋐N

∗n∈FZ ∗ lim←−(∗n∈XZ, pXY : X ⊂ Y ⋐ N \ F )

which is a subgroup of
lim←−(∗n∈XZ, pXY : X ⊂ Y ⋐ N).

Hence π1(H) embeds in an inverse limit of free groups.
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