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Chapitre 1

Introduction et Rappels

1.1 Motivations et Prérequis

1.1.1 Motivations

Nous étudierons le long de cet écrit, le groupe fondamental et quelques-unes de ses
applications. Il s’agit d’un sujet plutot abstrait li€ a la topologie algébrique mais éga-
lement imagé, rempli d’exemples et souvent méme dessiné. Cet objet est né par Henri
Poincaré en 1895.

Ce sujet a la polyvalence de relier les notions de groupes, celles de topologie avec 1’ uti-
lisation centrale d’aplications continues et se marie bien avec une branche de 1’analyse
complexe dans le cas particulier de la dimension deux.

Le groupe fondamental montre son utilité dans la classification d’espaces. On asso-
cie a tout espace un objet : le groupe fondamental. L’idée sera de mettre dans la méme
case deux espaces ayant un groupe fondamental similaire, ou de la méme maniere,
de séparer deux espaces qui n’ont pas le méme groupe fondamental (critere de non
homéomorphisme). Il est également présent dans des sujets plus concrets tels que la
théorie des nceuds par exemple.

Le chapitre 1 sera destiné a des rappels, le 2nd, a la définition du groupe fondamen-
tal. Le chapitre 3 portera sur les revétements dont nous ferons le lien avec le calcul
du groupe fondamental d’un espace dans le chapitre 4. Le chapitre 5 fera référence a
certaines méthodes permettant de calculer le groupe fondamental et le chapitre 6, qui
sera le dernier, introduira des exemples et le calcul concret des groupes fondamentaux
de certains espaces.



1.1.2 Prérequis

Ce sujet s’adresse a un public ayant déja quelques connaissances en topologie, et en
groupes. Malgré cela, nous ferons un ler chapitre de rappels afin d’assurer des bases
communes.

1.2 Rappels et Définitions

1.2.1 Définitions topologiques
1.2.1.1 Notions d’espaces

Définition (espace topologique). Soit X un ensemble. Soit 7 une famille de parties de
X. T sera dite topologie sur X si:

—QeTetXeT
— AeTetBeT =ANBeT

— (A)ier €TH= |J A; € T ou I estun ensemble.
el

On appellera ainsi tout ensemble X muni d’une topologie un espace topologique

Définition (ouverts et fermés). Soit X un espace topologique. Notons 7 sa topologie.
Soit A C X. A seradit :

— ouvertsiA e T

— fermési A€ T
Ici, A° désigne X \ A

Définition (voisinage). Soit X un espace topologique. Soienta € X et V. C X On
dira V voisinage de a s’il existe un ouvert U de X vérifiant :

acUCV

Remarque. On notera I’ensemble des voisinages de a € X ainsi : V(a)

Définition (continuité). Soient F/, F' deux espaces topologiques. Soit f une applica-
tion de E dans F'. f sera dite continue si :

YW e V(f(a)), f7H(W) € V(a)

On notera I’ensemble des applications continues de F dans F ainsi :
C(E,F)

Proposition. Soient F/, F' deux espaces topologiques. Soit f une application de F
dans F'. f est continue si et seulement si I’image réciproque de tout ouvert dans F' par
f estun ouvert de £



Définition (homéomorphisme). Soient F/, F' deux espaces topologiques. Soit f une
application de F' dans F'. f sera dite un homéomorphisme si :

— f est continue
— f est bijective
— f~! est continue

On dira alors que E et F' sont homéomorphes.
Proposition. Tout homéomorphisme est une application ouverte c’est-a-dire que l'image

de tout ouvert par une telle application est ouverte.

Démonstration. Soient E, F' deux espaces topologiques et f un homéomorphisme de
E dans F. f~! est continue de F dans E. On a donc que pour tout ouvert U de E,
(f~1)~X(U) est un ouvert de F. C’est-a-dire que pour tout ouvert U de F, f(U) est
un ouvert de F'. D’ou f est une application ouverte. O

1.2.1.2 Connexité
Définition (connexité). Soit X un espace topologique. Il sera dit connexe si les seules
parties de X a la fois ouvertes et fermées sont X et ()

Définition (connexité par arcs). Soit X un espace topologique. X sera dit connexe par
arcs si quel que soit le couple de points (x, y) de X, il existe v € C([0, 1], X)) tel que :

(7(0),7(1)) = (z,9)

Proposition. Soit X un espace topologique. Il existe (C;);c; ot I est un ensemble,
une famille d’espaces connexes (resp. connexes par arcs) deux-a-deux disjoints tels que
X soit la réunion de ces espaces. Chaque C; sera appelé une composante connexe.

Proposition. La propriété de connexité (resp. par arcs) est un invariant topologique.
C’est-a-dire que 'image de tout connexe (resp. par arcs) par une application continue
d’un espace topologique vers un autre est connexe (resp. par arcs)

Proposition. Soit X un espace topologique et soit A C X. Si A est connexe par arcs,
alors A est connexe. On a de plus équivalence de ces notions dans le cas o A est une
partie ouverte de X.

1.2.1.3 Compacité

Définition (recouvrement ouvert). Soit X un espace topologique. On appellera recou-
vrement ouvert de X tout famille d’ouverts (U;);c; € P(X)! telle que :

x=Ju

icl

Un tel recouvrement ouvert sera dit fini si I est de cardinal fini.



Définition (compacité). Soit X un espace topologique. X sera dit compact si de tout
recouvrement ouvert de X on peut extraire un recouvrement ouvert fini de X

1.2.2 Rappels sur les groupes

Définition (loi de composition interne). Soit G un ensemble. Soit * une application
définie sur G2. On la dit loi de composition interne si son image est incluse dans G.

Définition (groupe). Soit (G, %) un ensemble muni d’une loi de composition interne.
On dit que (G, *) est un groupe si :

— Vz,y, z€ G, (zxy)x 2=z (y*2)
— dee G, Ve eG, zxe=exx =z
— Vexed,yeG, zxy=ce

Ici, x x y désigne *(x, y). On adopte cette notation pour une loi de composition interne.
Revenons sur chaque point :

— On appelle cette propiété portant sur * [’associativité. On dit que * est associa-
tive.

— Un tel élément e est appelé élément neutre. On peut aussi noter le groupe
(G, %)

— On dit que y est I’inverse ou [’opposé de x. Il sera d’ailleurs souvent noté z 1.

Remarque. Notons que ces trois axiomes entrainent celui-ci parfois contenu dans le
troisiéme (dans la définition) : y x x = e.

Définition (groupe abélien). Soit G un groupe. Il sera dit abélien ou commutatif si la
propriété suivante est vérifiée :

Ve, y€ G, xxy=yx*x

Définition (morphisme de groupe). Soient (G, ) et (G’, -) deux groupes.
Soit f une application de G dans G’
f sera dite morphisme de groupe si :

Va1, g2 € G, f(g1%92) = f(g1) - f(g2)

Définition (isomorphie). Soient G et G’ deux groupes. Soit f un morphisme de G dans
G'. Si f est bijective, on pourra la qualifier d’isomorphisme. On dira de plus que G et
G’ sont isomorphes. Cela signifie qu’ils sont exactement les mémes a notation pres.
On notera :

G~G



Définition (noyau, image d’un morphisme). Soient G, G’ deux groupes et f un mor-
phisme de G dans G’

On appelle noyau de f I’ensemble :
Ker(f) ={9€ G| f(9) =ec'}

On appelle image de f I’ensemble :

Im(f)={¢y' €G |39€q, flg) =4}

Théoréme (premier théoréme d’isomorphisme). Soient G, G’ deux groupes et [ un
morphisme de groupes de G dans G’
Ona:

G/Ker(f) =~ f(G)

Dans le sens ou ces deux ensembles sont en bijection.

Remarque. Nous ne ferons pas la preuve de ce théoréme, réservée aux ouvrages sur
la théorie des groupes ; mais ce méme résultat nous permettra de montrer d’importants
théorémes concernant le groupe fondamental.

Définition (action de groupe). Soit (G, *) un groupe et A un ensemble. Soit - une
application :
. { GxA — A
L (ga) — g-a

- sera dit une action de G sur A si elle vérifie :

— Vg, €G,VaeA g-(¢-a)=(gx¢) a
— Va€eA e a=a

Remarque. Si on a une action de groupe de G sur A, on dira que G agit sur A et on
notera G ~ A.

On peut - grice a la maniere dont on a défini les actions - associer a tout élément
g € G une bijection de A dans A :

¢~AHA
9" a — g-a

On dit alors que I’application :

{G — SA
P :
g = QSg

est le morphisme de groupe associé a I’action G ~ A.



Définition (orbite, stabilisateur). Soit G ~ A une action de groupe. Soit a € A.

— On appelle orbite de a I’ensemble :
O,=1{g9-a, g€ G}
— On appelle stabilisateur de a I’ensemble :
Sta={9€G, g-a=a}
Théoreme (formule des classes).

Va S A, G/Sta =~ Oa

Dans le sens oit ces deux groupes sont isomorphes

Définition. Une action de groupe G ~ A est dite :
— fidéle si :
Vge G, (Va€ A g-a=a=g=ce)

(c’est-a-dire que le morphisme associé ® est injectif)

— libresi:
VgeG, gte=>YVa€A g-a#a

(c’est-a-dire que quel que soit a € A, St, = {e})

— transitive si :
Va, be A, g€ G, g-a=b

(C’est-a-dire que quel que soita € A, O, = A)

Remarque. Toute action libre est fidele.



Chapitre 2

Groupe Fondamental

2.1 Chemins, Lacets

2.1.1 Définition

Définition (chemin, lacet). Soit X un espace topologique. On appelle chemin dans X
toute application continue 7 : [0,1] — X. On appellera origine de  le point y(0),
extrémité de v le point (1) et support de -y I’ensemble I (7) noté supp(7y)

Side plus,on a:
7(0) =~(1) = zo

Alors on dira que le chemin +y est un lacet de base x

Remarque. Un chemin défini sur [0, 1] sera dit simple s’il est injectif sur [0,1[. Gra-
phiquement, un chemin simple ne revient jamais sur son tracé, sauf éventuellement a
I’origine (attention, la réciproque est fausse selon la paramétrisation du chemin).

2.1.2 Exemples de chemins et de lacets

Exemple. Voici quelques chemins tracés dans X = R? :

10



FIGURE 2.1 — Des chemins tracés dans R2

Ces chemins sont un peu aléatoires... Voyons des lacets plus concrets.

Exemple (cercle unité). X =C
I’application 7 : [0, 1] — C définie par :

Yt € [0,1], v(t) = exp(2int)

est un lacet dans C, de base 1¢.

v(3/

FIGURE 2.2 — Cercle unité



Exemple (lemniscate de Gerono). X = R?
Voici un autre lacet intéressant. On peut le définir de maniere implicite :

=22 +y2 =0 (D

Se lit "le lieu géométrique des points (z,y) € R? vérifiant I’équation (1)."

FIGURE 2.3 — Lemniscate de Gerono, de parametre a = 1

La forme explicite ici sera :

01 — R?
W-{ t +—— (sin(2nt), cos(2nt) sin(2nt))

Remarquons que nous avons ici un lacet qui n’est pas simple (non injectif).

En espérant que ces quelques exemples éclaircissent les notions de chemins et de lacets.
Essayons désormais de classer ceux-ci.

2.2 Homotopies, Classes d’Equivalences

2.2.0.1 Définitions

Dans cette partie, X désignera un espace topologique, et (X, z() un espace topologique
pointé (zg € X).

12



Définition (homotopie). Soient 1, 72 deux chemins tracés dans X. On les suppose
de méme origine et de méme extrémité. (resp. xg, =1). On appelle homotopie de 1 a
72 toute application H : [0,1]> — X continue telle que :

— Vte [05 1]7 H(O7t) = fyl(t)

— Vt€10,1], H(1,t) = v(t)

— Vs e [0,1], H(s,0) =z

— Vsel0,1], H(s,1) =1
Remarque.

On n’a pas toujours I’existence d’une telle application. Cela dépend des chemins y; et
V2.

Cette définition a premiere vue abstraite, se révelera tres imagée. Nous la comprendrons
a travers de multiples exemples.

Deux chemins d’un espace topologique seront donc dits homotopes s’ils ont les mémes
origines et extrémités, et s’il existe une homotopie de ’'un a I’autre.

Exemple. Considérons les deux chemins vy, 72, de [0, 1] dans R? définis comme suit :

Vit € [0,1], 7 (t) = (0,2t — 1)

(2t,2¢t — 1) site[0,1/2]

vt € [0,1], (t) = { (=2t 42,2t —1) sinon

1l exite une homotopie H : [0, 1]> — R? qui relie y; a 2. La voici :

0,1 — R?

H: (2st,2t — 1) site0,1/2]
(s,t) +—
(2s(1 —t),2t — 1) sinon

On peut tracer le support de ces deux chemins ainsi que deviner I’homotopie les reliant :

13



FIGURE 2.4 — Deux chemins homotopes

Ici on a nos deux chemins (tracés en bleu et en rouge) ainsi que la déformation continue
de I'un vers I’autre (en noir) avec ’homotopie décrite précédemment. On remarque
ainsi que deux chemins sont homotopes si et seulement si I’on peut déformer 1’un vers
I’autre sans le rompre ou le casser, ni le recoller.

Exemple. X = {z € R?, |z | > 1}

Voici un exemple de deux chemins qui ne sauraient étre homotopes dans X :
[ ]0,1] — R?
LA t — (2t+2,0)

[ 0,1 — R2
’Y2~{ t — (2t + 2)(cos(27t),sin(27t))



FIGURE 2.5 — Deux chemins non-homotopes

Sur cette figure, il faut imaginer que la zone grise n’appartient pas au plan. On se
propose de démontrer par le calcul que ces deux chemins (rouge et bleu) ne sont pas
homotopes. Cela utilise le théoréme de passage a la douane (théoreme de topologie,
son nom n’est pas universel). Commencons par le rappeler :

Théoréeme (passage a la douane). Soit X un espace topologique. Soient A, B C X
deux parties de ’espace. Supposons A connexe. Supposons :

ANB#0D
AN (X\B)#0

15



Alorsona :
ANFr(B)#0

Ou Fr(B) désigne la frontiere de B. C’est-a-dire :

Fr(B) =B\ B

Pour ceux qui connaissent I’intérieur et [’adhérence d’une partie d’un espace métrique.
Sinon, il suffit de penser Fr(B) comme le "bord" de B.

Poursuivons :

On pose ici X comme défini au début de 1’exemple. Cet espace est clairement topolo-
gique.

Raisonnons par 1’absurde. Supposons que ces deux chemins (bleu et rouge, respective-
ment 7y, et y2) soient homotopes avec H 1’homotopie de 5 a 1.

Ona: 0 1]2 X
, —
H: { (s,t) —— H(s,t)

Une application continue.

Soit ¢ty € ]0, 1] fixé, vérifiant que ~2(to) ait une ordonnée non nulle. Par continuité

de H, on a en particulier :
0,1] — X
s +— H(s,tg)

Une application continue.
De plus, [0, 1] est un espace connexe. On en déduit par invariance topologique de la
connexité (voir chapitre 1) que :

A={H(s,t), s €[0,1]}

Est une partie connexe de X .
Posons désormais :
B ={(z,0), » > 1}

Qui est contenue dans X.
Ona:
H(0,t9) = 72(to) € X\ B

Car on a supposé v (tg) d’ordonnée non nulle.

16



Donc AN (X \ B) # 0
Et:
H(1,t0) =m(to) € B

Dou ANB#
On en déduit par le théoréeme de passage a la douane que :

AN Fr(B) #0

Mais ici, Fr(B) = {(1,0)}
Il existe donc s €]0, 1] tel que :

H(s,tp) = (1,0)

Ce qui est absurde car (1,0) ¢ X.
On a donc contradiction. Une telle application continue H n’existe pas. C’est-a-dire
que vy et 2 ne sont pas homotopes.

Exemple. Voici un dernier exemple de deux chemins non homotopes afin de s’assurer
de la compréhension du lecteur. Attention, ceux-ci sont des lacets et X est le plan privé
de deux points ici en noirs :

FIGURE 2.6 — Encore deux chemins non-homotopes

Si on essaye de déformer le lacet rouge (la déformation est en noire), on peut essayer
de I’amener au bleu jusqu’a étre bloqué par le "trou" dans le plan. (Le gros point noir).
Il en est de méme pour le lacet bleu, et donc les deux ne peuvent pas se rejoindre
continfiement (sans se couper en deux). On a ici une premiere intuition : le plan privé
d’un ou plusieurs points peut contenir des chemins non-homotopes.

17



Remarque. On peut tout aussi bien penser ’homotopie comme un "pincement". On
peut la représenter sous la forme d’un diagramme qu’on appellera donc diagramme
d’homotopie et cela se présente sous cette forme :

t
H(s,t)
X
. 1 —
N\,
: : / o
Zo 0 1 S

FIGURE 2.7 — Représentation du diagramme d’homotopie

On représente ici le diagramme de I’homotopie entre le chemin rouge et le chemin bleu.
Sur la figure ci-dessus, on a sur le diagramme, s qui part de 0 avec le chemin vertical
71 en bleu, puis on augmente s ce qui nous amene jusqu’aux chemins intermédiaires
en pointillés, pour finalement arriver en s = 1 au chemin rouge.

Le co6té horizontal du haut sur le carré représente donc 1, I’extrémité des chemins,
tandis que le c6té horizontal du bas représente 1’origine o comme indiqué.

2.2.1 Equivalence des chemins

Définition. Soient -y; et 7o deux chemins tracés dans X . On notera désormais y; ~ 7
si ces deux chemins sont homotopes.

Proposition. ~ est une relation d’équivalence

On rappelle que si Z est un ensemble, R : Z? — {Vrai, Faur} est une relation
d’équivalence si :

— réflexivité : Yz € Z, ZRz
— symétrie: Vzi1, z3 € Z, z1Rz9 = z2Rz21

18



— transitivité : Nzy, zo, 23 € 7, z21Rzo et z29Rz3 = z1Rz3

(on note Ry si et seulement si R(z,y) est Vrai au sens fonctionel)

Démonstration. Montrons donc que ~ vérifie ces trois propriétés.
Soit X un espace topologique. Considérons ~ comme définie précédemment.

* réflexivité

Soit v un chemin dans X. Posons :

H
(s,t) +—

t)

On considere ici I’homotopie constante, toujours égale a -y, clairement continue. Ainsi,
~ est réflexive.

* symétrie
Soient 71, 2 deux chemins tracés dans X. Supposons que 1’on ait 3 ~ 7. Cest-
a-dire qu’il existe :
. 0,1> — X
U (s) s Hst)
une homotopie de y; a ys.
Pour avoir une homotopie de 2 a 1, il suffirait de prendre celle qu’on a déja et de

la parcourir en sens inverse.
11 suffit donc de poser :

o [0,1]2 X
H{ _ H(1 - s,1)

On a donc exhibé une homotopie de 5 a ;. On a donc 2 ~ <y et notre relation est
symétrique.

Y transitivité

Soient donc 71, 72, s trois chemins dans X tels que 71 ~ 75 et y2 ~ ~3. Cest-
a-dire qu’on a I’existence de deux homotopies :

19



I
=

o
Ll
=
\.HIJ
N

ou K connecte y; ays et L, y2 a 3.
On sait déja une chose :

vt € [0,1], K(1,t) = L(0, )

Autrement dit, nos deux homotopies ont un chemin commun : ~5. Il serait suffisant
pour montrer y; ~ 73 de parcourir K deux fois plus vite que prévu, de se reposer en
72 & mi-chemin puis de parcourir L deux fois plus vite également. C’est-a-dire que
I’application :

H: K(2s,t) sis€[0,1/2]
L(2s—1,t) sinon

est une homotopie de v; a 3. Elle est continue car I’est en 7, et est continue par mor-
ceaux ailleurs. On a donc v; ~ 3.

Finalement, ~ est transitive.

Ainsi, ~ est une relation d’équivalence sur 1’ensemble des chemins tracés dans X. [

2.3 Groupe Fondamental

2.3.1 Définition

Définition (groupe fondamental). Comme vu ci-dessus, 1’homotopie est une relation
d’équivalence sur I’ensemble des chemins. Soit (X, z) un espace topologique pointé.
On définit le groupe fondamental de (X, xo) comme étant I’ensemble quotient :

771(X,170) = A/N

ot A est I’ensemble des lacets de base .

L’idée est d’affirmer que deux chemins homotopes sont les mémes. Si y; est homotope
a 72, on peut noter [y1] la classe de 7. C’est-a-dire I’ensemble de tous les chemins
homotopes a ;. On a ainsi 7; homotope a v dans A, ce qui est équivalent au fait de
dire [y1] = [y2] dans 71 (X, o) (ou bien dans A / ~)
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Remarque. Nous travaillons avec des lacets désormais et non plus des chemins. Nous
justifierons cette restriction plus tard.

2.3.2 Structure de groupe

Dans cette partie, (X, o) désigne un espace topologique pointé.

Définition (concaténation). Soient [v1], [y2] deux éléments de 71 (X, o). On appelle
concaténation de ces deux chemins la nouvelle classe de lacet définie par :

0,1] — X
] : [l (2¢) sitef0,1/2]
t —

[y2] (2t — 1) sinon

[+] est bien défini car lorsque ¢ = 1/2 qui est le seul point d’éventuelle discontinuité,
ona v(1/2) =y (1) = zo = y2(1) = v(1/2)

On peut noter de maniére plus explicite [y] comme étant [y; * 2]

Définition (lacet constant). On définit le lacet constant en x I’application :

L[] — X
o - t — T

Dont on notera la classe ainsi : [¢, ]

Définition (lacet inverse). Soit -y un lacet de base xy. On définit son lacet inverse :

[ [0,1] X
M'{ AT

Cette application reste bel et bien un lacet de base x.

Théoréeme. (71 (X, z0), *, [cz,]) est un groupe.
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Démonstration. Soit (X, x) un espace topologique pointé.  est clairement une loi de
composition interne. La concaténation de deux lacets basés au méme point en reste un.
On I’a affirmé dans la définition de la concaténation *. Montrons donc les axiomes du
groupe :

Y associativié de *

Soient ['Yl]’ ['72]’ ['73] €m (X’ .”L'o).
On a d’une part :

0,1] — X
[] (42) sit€[0,1/4]
(71 % 72) * 73] :
t — [v2] (4t — 1) sit €]1/4,1/2]
[vs] (2t —1) site[1/2,1]

et d’autre part :

0,1] — X
[v] (2¢) site[0,1/2]
(1% (v2 % 93)] :
t — [yo] (4t —2) sit €]1/2,3/4]
[v3] (4t = 3) sit e [1/2,1]

A premiere vue, ces lacets ne sont pas les mémes. Mais alors, * n’est pas associative ?
et m1 (X, zg), le groupe fondamental n’est pas un groupe ?...

Bien siir que si! Rappelons-nous une chose : dans 71 (X, ), deux lacets homotopes
sont les mémes. Il suffit donc de montrer que les lacets : (7 *y2) * 3 et y1 * (772 *7Y3)
sont homotopes.

Notons aussi une chose, ces lacets sont "presque” les mémes. Il s’agit seulement du
temps de parcours qui differe. On comprend donc pourquoi ces deux lacets sont les

mémes dans 71 (X, xg).

Exhibons tout de méme 1’homotopie en question pour cette fois :
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(4t/(1+ s)) site0,(1+s)/4]

(s:8) — { 4(dt—(s+1)) site](1+s)/4,(2+s)/4]

v3((4t —s—2)/(2—138)) site(2+s)/4,]1]
Ainsi, notre loi de composition interne est bien associative.
* [Cz,] élément neutre

Soit donc v un lacet de base 9. Montrons que [y * ¢z,] = [cz * Y] = [7]
On doit donc montrer :

Y * Cg, homotope a v lui-méme homotope a ¢y, * 7y

Commencons par exprimer les deux lacets :

0,1] — X
[y * €] - ] (@2t) sitel0,1/2]
t —
(€] sinon
0,1 — X
[Czo *7] [Ca] site[0,1/2]
t —

[v] (2t — 1) sinon

L’Homotopie qui permet de passer de 1’un a 1’autre est décrite par ce diagramme :

23



FIGURE 2.8 — Diagramme d’homotopie de v * ¢, a ¢z, * Y en passant par vy

Cela se lit ainsi :

A s = 0, le chemin augmente avec ¢ linéairement sur I’axe vertical. Il parcourt -y a vi-
tesse double (quand ¢ > 1/2) puis se repose en . On a donc donc H (0, t) = yxcy, (t).
s augmente jusqu’en 1/2, on trouve le chemin + a vitesse normale, puis s continue de
croitre jusqu’en 1 oll nous retrouvons ¢, * y

Traduisons ce diagramme en application continue. Apres un bref calcul a la main, on
trouve I’homotopie suivante :

Vs, t € [0,1] :
*xsis<1/2:

v(2t/(2s+ 1)) site0,(2s+1)/2]

H(s,t) =

xo sit€](2s+1)/2,1]

*sis>1/2:
Zo site0,(2s—1)/2]
H(s,t) =

(2t — 25 +1)/(3—25)) site](2s—1)/2,1]

On peut justifier que H est continue en remarquant qu’elle 1’est par morceaux, puis de
voir qu’elle I’est en les éventuels points de discontinuité (1/2).

Ainsi, on a bien [c,] élément neutre pour *. Tout lacet avant ou aprés composition
par ce chemin trivial reste inchangé.
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% existence d’inverses

Soit [7] € m (X, zp) un lacet de base xg. Peut-on le composer par un autre avec
pour rendre ce dernier égal (resp. homotope) a [c4,] (resp. ¢z,)?

Pour cela, composons [y] par ce qu’on a défini précédemment sont lacer inverse noté

[7]-
On a apres simplification :

Vi € [0,1] :

[+] (t) site[0,1/2]

[y = 3(t) =
V(2 —2t) sitell/2,1]

Zo

FIGURE 2.9 — Un lacet composé de son inverse

L’idée est la suivante : on part de zo pour y revenir via 7y (on parcout le lacet classique-
ment) pour ensuite revenir littéralement sur nos pas. C’est-a-dire parcourir y a I’envers.
De cette maniere, on revient a 2. C’est donc bien un lacet et reste 8 montrer qu’il est
égal & [c,, ]. C est-a-dire homotope a ¢, .

Sur la figure 2.9, il faut imaginer que les deux "cercles" sont donc confondus.

On peut donc considérer I’homotopie qui va partir du "bout de v" pour réduire petit
a petit ce demi-tour en un point. Laissons le dessin I’expliquer :
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Zo

FIGURE 2.10 - H(1/3,1)

Zo

FIGURE 2.11 — H(2/3,1t)

Posons donc le diagramme d’homotopie suivant :

t
1 —
Crog -~
e v -
R v
0 S0 1 s

FIGURE 2.12 — Diagramme d’homotopie de c;, a y * 7y

Ici, on tracé I’homotopie de ¢, a <y * 7y mais puisqu’on a vu que ~ est symétrique, cela
revient a dire qu’on a homotopé v * ¥ & ¢, (ce qu’on voulait).

On en déduit la formule explicite de I’homotopie :
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~(2¢) sit e [0,s/2]
H:
(s,t) +— v(2s — 2t) sit €]s/2,s]
To sit e [s,1]
On a bien H continue et on a montré que dans 71 (X, zo), [y *F] = [Cx0)- O

Résumé :

Si I’on garde les mémes notations, on a montré :
— (i y2) * 73 ~ 71 % (72 %73)
— Cag XY Y K Cgy ™~ Y
— * :Y ~ Cg,

Ce qui est équivalent au fait d’affirmer que dans 71 (X, )

— [(y1%92) * 73] = [71 % (72 * 73)]
- [Cfbo *’Y] = ['7 * Cﬂ?o] = h/]
— [v* 7] = [cx)

Remarque. Voici donc I'utilité de travailler désormais avec des lacets et non plus des
chemins. Cela nous permet de construire un groupe. Un groupe relatif a tout espace.

Désormais, on pourra donc remplacer [c,,] par 0 (comme élément neutre du groupe),
et [7] par [y~!] comme inverse d’un élément (du groupe).

2.3.3 Indépendance du point

On cherche dans cette partie, a se débarasser du xg dans 1 (X, zp). On a pour cela un
théoréme :

Théoreme (indépendance du point). Soit X un espace topologique. Soient x, yo deux
points de X.

Si ces deux points sont dans la méme composante connexe par arcs de X, alors m1 (X, z)
et m1(X, yo) sont isomorphes. Ils sont les mémes a notation pres.
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Démonstration. Soient donc X un espace topologique. Soient zq et yo supposés dans
la méme composante connexe par arcs. On a donc I’existence d’un chemin c qui relie

Yoaxp:

C.{ 0,1] — X
’ t — c(t)

Tel que (¢(0),¢(1)) = (o, x0)

On peut définir comme pour les lacets, le chemin inverse :

Cl.{ [071} — X
' t — c(l1-1%)

Tel que (¢=1(0),c7 (1)) = (z0, yo) Et posons désormais :

* . bien définie

Il nous faut tout d’abord montrer que (. est une application bien définie. C’est-a-dire
que deux éléments qui sont les mémes dans 1’espace de départ ont méme image a I’ar-
rivée (ce qui pour le moment n’est pas tout a fait clair).

Soient donc [1] et [y2] dans 71 (X, o).

Supposons [y1] = [y2]. C’est-a-dire que les deux lacets sont homotopes.
A-t-on pc([n1]) = ¢e([r2]) ?

Autrement dit, ces deux lacets sont-ils homotopes ?

Montrons-le :

(1] = [2]
= [cx ] = [cx 7o
= [cxy*xc ] =[cxyp*xc

= oc(m]) = ¢e([r2])

On a donc bien ¢ bien définie. Montrons désormais qu’elle ne dépend que de la classe
d’équivalence du chemin c et non pas de ¢ lui-méme.

Pour cela, prenons [y] € w1 (X, o) ainsi que ¢, ¢’ deux chemins envoyant yo sur
qui sont homotopes.
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[c] = [¢]
= [cxy] =[c' %]
= [exyxc ) =[c xy*c!

= ©([7) = pe ([7]) On a donc . = o pour peu que c et ¢’ soient homotopes. (car

on I’a montré pour tout ). Nous pouvons poursuivre.
% . morphisme
Soient [y1], [y2] deux éléments de 71 (X, zp). On a:

@elln1x72)) = [exmxy2x '] = [exyr e v exyax e = pe([n]) * c([12])

Attention a ne pas s’emmeller les pinceaux dans les différentes lois. Elles portent le
méme symbole mais I'une est sur 71 (X, zg), lautre sur 71 (X, yo). De plus, remar-
quons que I’on peut établir tout cela grace a 1’associativité montrée plus haut.

* . isomorphisme
* Injectivité

Soit [")/] S 7T1(X, 1170).
Ona:

D’ou ¢, est injective.
* Surjectivité

Soit [")/] S 7T1(X, yo)
Posons [a] = [¢™! %y * c].

« est continue (car continue en 1/3 et 2/3) et :



Donc [a] € m1(X,xo) et il est tres simple de vérifier que ¢.([c]) = [7y]. On a donc

prouvé notre morphisme ¢, surjectif

On a donc ¢, un isomorphisme.
On a ainsi montré qu’au sein d’'une composante connexe d’un espace, le groupe fonda-
mental ne dépend pas du point choisi. O

On en déduit la remarque qui suit :

Remarque. Si X est un espace connexe par arcs, noter 71 (X ) est donc légitime. Il
suffit de prendre n’importe quel point zp € X comme base pour définir le groupe
fondamental de X, puisqu’ils sont tous isomorphes. Nous nous réservons donc le droit
a cette notation pour les espaces connexes par arcs, avec lesquels nous travaillerons
beaucoup dans nos exemples.

Définition (connexité simple). Soit X un espace topologique connexe par arcs. X sera
dit simplement connexe si :
™ (X) ~ {0}

C’est-a-dire que tous les chemins dans X sont homotopes entre eux. On peut aussi dire
que X est 1-connexe.

Notations :

Nous noterons désormais vy € m1 (X, zo) o (X, zg) est un espace topologique pointé
quelconque en ommettant les crochet habituels qui mentionnent la classe du lacet : []
C’est-a-dire qu’a partir de maintenant, si v et 4’ sont homotpes (pas nécessairement
égaux), on notera v = ~' sans se soucier des crochets.

2.4 Fonction Associée

Le but de cette partie est de comparer les groupes fondamentaux d’espaces par les ap-
plications continues. On se propose pour cela la définition d’un nouvel objet, la fonction
associée.
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Définition (fonction associée). Soient X, Y deux espaces topologiques. Soit f &€
C(X, Y). Pointons I’espace X en xy. On appelle fonction associée a f 1’application :

Proposition. Soit f € C((X,x0), Y). f« est un morphisme de groupe.

Démonstration. Faisons la preuve en deux temps :
% f, bien définie

Soit f € C((X, o), Y). Commencons par vérifier que f, est bien définie. Il suffit
de montrer que :

Pour tout 7 et 5 des chemins dans la méme classe d’homotopie (c’est-a-dire
[v1] = [72] ol encore v; et 2 homotopes) alors [f o v1] = [f o ¥2] (c’est-a-dire f oy,
est homotope a f o ys).

Supposons donc qu’il existe une homotopie reliant y; a 7y, :

X
H(s,t)

Puis considérons :

=~ [ 0,1 — Y
H{ s (fo H)(s.1)

H est continue comme composée d’application continue, et on peut vérifier aisément
que c’est une homotopie de f o y; & f o yo.

En effet :
— vt e [0,1], IEI(Ovt) = fo H(0,t) = (fom)()
— Vvt e[0,1], I{(lvt) = foH(L,t) = (fo2)(t)
— Vs €[0,1], H(s,0) = foH(s,0)= f(zo)
— Vs € [071}7 H(‘Svl) :fOH(Svl) = f(xO)
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On a donc construit une homotopie de fy(71) & fi(y2). Ainsi f, ne dépend que de la
classe d’homotopie, ¢’est donc une application bien définie sur 71 (X, x¢).

% f morphisme

Montrons maintenant que c’est un morphisme de groupe.
11 suffit d’avoir :

frixy2) = (foy)*(fore)

Ce qui est évident car d’une part : f(y; *v2) = foyou:

0,1 — X
v v1(2t) site0,1/2]

Y2 (2t — 1) sit€]1/2,1]
Ainsi :

0,1 — Y
FCTERTIE (f om)(2¢) sit€[0,1/2]
(foma)(2t—1) sitell/2,1]
Et d’autre part :
0,1 — Y
(fom)*(fore): (f om)(2t) sit € 0,1/2]

(fova)(2t—1) site]l/2,1]

D’ou f, est bien un morphisme de groupe. O

Proposition. Dans les mémes conditions, si f est un homéomorphisme de X dans'Y,
alors fy est un isomorphisme de groupe. En particulier, m1 (X, xo) et 11 (Y, f(x0)) sont
les mémes (isomorphes).
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Démonstration. Puisque f est un homéomorphisme, f est continue. On a donc d’em-
blée avec notre proposition qui précéde que f, est un morphisme de groupe. I suffit de
montrer qu’il est en plus bijectif.

* Injectivité
Soit donc v € 71 (X, o). Supposons fi () = Cf(s,) (I’élément neutre de I’espace

d’arrivée).

Rappelons que f~! est une application continue de Y dans X. On a donc :

) = (o Hn) =
Et de plus :

fﬁl(f*(q/)) = fﬁl(cf(wo)) = Cgy-

Pourquoi peut-on écrire cette derniere égalité ? Car on sait :

f(CxO) = Cfﬁﬂo

Et f est bijective donc I’antécédent est unique ici.
On a montré en combinant nos deux égalités :

Y = Cxy

On reconnait I’élément neutre du groupe 71 (X, o) (espace de départ).
On a donc prouvé que f, était injective.

* Surjectivité

Soit v € m1 (Y, f(x0)).
Posons a = f~1(y).
On a bien « lacet en x :

(0) = f=1(7(0)) = (f 7" o (£)(0) = o
(1) = f1(v(1)) = (f 7" o (F))(z0) = o

(0%
(0%

« est continue comme composition d’application continue (f est un homéomorphisme).
Donc c’est bien un élément de 71 (X, ).

De plus, il est trivial de constater :

fila) =~
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Le morphisme f, est donc surjectif
Mais il est de plus injectif

C’est donc bien un isomorphisme de groupes. Eton a :

™ (X, o) = m (Y, f(20))-

Dans le sens ot ces deux groupes sont isomorphes. O

Remarque. On a ces corollaires intéressants :

— Sif:(X,2z9g) — Yetg:Y — Zou X, Y, Z sont des espaces topolo-
giques et f, g des applications continues, alors on a :

(fog)* = fxo g«
— (Ia)x = 1Ig
Deux espaces homéomorphes ont donc le méme groupe fondamental. On a exhibé une
condition suffisante pour comparer les groupes fondamentaux des différents espaces

topologiques (ou bien pour montrer que deux espaces ne sont pas homéomorphes par
contraposée).
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Chapitre 3

Revétements et Relevements

3.1 Revétements

3.1.0.1 Définitions

Oublions I’espace d’un instant nos homotopies, les groupes fondamentaux pour admi-
rer de nouveaux concepts qui - a premiere vue - n’ont pas de rapport avec ce qu’on a

déja étudié. Ils montreront néanmoins leur utilité capitale pour trouver le groupe fon-
damental d’un espace topologique quelconque.

Définition (revétement). Soient F, B deux espaces topologiques. Soit p € C(E, B).
p sera dit revétement si :

— p est surjective

— Pour tout b dans B, il existe un voisinage ouvert V de b tel que p~1(V) soit
une union disjointe d’ouverts (V;);c; (ot I est un ensemble discret non vide)
telle que p restreinte a I’'un de ces ouverts soit un homéomorphisme de V; dans

p(Vi).
Ecrit en langage mathématiques, cela donne :

— VbeB,3x € E, p(r)=b

— Vbe B,V eV®h), p'(V)=]|]V: et p|yv, homéomorphisme.
il
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Remarque. On notera ici les unions disjointes | | (et les unions en générales | J)

Tout comme I"’homotopie, la définition est a premiere vue assez complexe. Des exemples
nous aideront a la comprendre.

L’espace B sera appelé base, E ’espace total, et les V; les fibres du revétement. Il

est aussi fréquent de dire V' un voisinage bien revétu par p si I'union disjointe existe
avec p homéomorphisme sur ces espaces restreints.

3.1.1 Exemples classiques de revétements

Commencons par illustrer cette définition par un premier exemple classique dans ce
domaine : I’ exponentielle.

Exemple (exponentielle). Considérons le revétement suivant :

R — St
eXp: t N e,L't

R et S! sont clairement des espaces topologiques. R est donc 1’espace total, et S la
base. Au passage, peut-étre est-il judicieux de rappeler la définition de la sphere en
dimension n :

S*={zeR"™| ||z =1}

S! se représente donc ainsi :
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FIGURE 3.1 - St

L’ application exp est clairement surjective. Pour x € S!, il suffit de prendre un argu-
ment de z. Reste a vérifier la propriété la moins triviale.

Soit donc zg € St. On peut distinguer deux cas :
x si g # (1,0) : Prendre le voisinage : S' \ (1,0) convient.
De plus :

exp '(S'\ (1,0)) = | |]2km, 2km + 2x
keZ

Ce qui forme bel et bien une union disjointe. Il est ensuite simple de vérifier que :

Vk € Z, exp |j2xk,2rk+2+ €St un homéomorphisme sur S\ (1,0)
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FIGURE 3.2 -S' \ (1,0)

Le voisinage de x( est tout le cercle sauf le point noir sur ’axe des abscisses. On a en
observant exp~(S*) \ (1,0) :

™ A S VS —
—47 —2m 0 2 47

FIGURE 3.3 —exp (S \ (1,0))

On a donc découpé R en plusieurs petits intervalles ouverts disjoints explicités sur le
dessins. Et en effet sur chaque composante de ce découpage, exp parcours exactement
tout le cercle sauf (1, 0) et est bijective.

C’est ’analyse complexe qui permet d’affirmer que sa réciproque est elle aussi conti-
nue notamment grace a un théoréme : il existe une détermination holomorphe du lo-
garithme sur tout espace connexe par arcs ne comprenant pas 0. Mais cela n’est pas
essentiel dans notre étude.

*sizg = (1,0):

On peut dresser exactement le méme raisonnement que celui pris jusqu’a maintenant
en prenant comme voisinage S' \ (—1,0) au lieu de S \ (1,0).

38



Nous laissons au lecteur s’apporprier les notions si nécessaire avec cette seconde par-
tie de la preuve. Remarquons finalement, que pour I’exponentielle avec ces espaces, la
fibre est Z.

Exemple (application puissance). Considerons cette fois 1’application :

c* — Cx
P z — 2"

Oun € N* fixé
La base et I’espace total sont les mémes. Il s’agit du corps des complexe privé de son
neutre additif 0. On le note C*
Pour ce qui suit, un peu d’analyse complexe est utile. Commengons par le plus simple.
Py, est-elle surjective ?
Soit zy € C*. On peut le poser sous sa forme polaire :

20 = roew”

Avec 0y € [0, 27|
Puisque zp # 0, on a g > 0 et donc 0 et —z( sont distincts.
Il existe donc une et une unique demi-droite du plan en O qui passe par —zy. Notons-la

A,
A, ={z€Clarg(z) € arg(zy) + 7+ 27Z}

C’est-a-dire que :
re €A, = 3kEL, 0—0g=2kr+T

Représentons la situation :
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20

/AZU
FIGURE 3.4 — A, pour un certain zg

Nous ferons désormais de I’analyse complexe dans cet exemple. Si cela ne vous parle
pas, le troisieme et dernier exemple utilise lui aussi les complexes sans gros théoreme
d’analyse. Vous pouvez vous y référer également.

Continuons donc notre exemple ici. Il existe une détermination holomorphe du loga-
rithme sur C \ A, car c’est un plan privé d’une demi-droite.

Posons Loga une telle détermination. Elle est définie ainsi :

I [ C\A, — CF
oga - z +— In(|z|) + iarga(2)

Avec : arga(z) ’argument de z compris entre [0y — 7, 6y + 7|

Bien. On a montré qu’il existe une détermination holomorphe du logarithme, et qu’on
pouvait calculer le logarithme complexe de zg.

Cette premiere étape nous permet de montrer la surjectivité du revétement p,,. Effecti-
vement, a zg = roe'%, il nous suffit de poser :

o= (220202

n

Pour avoir :

Pn(zs) = 25" = exp(nLoga(zs)) = exp (”LOQA (eXp (MMW)))

n
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Puis :
pa(ee) = oxp (nE22C0) ) — exp(Loga ()

Et finalement :
Pn(2s) = 20

On a bien z, € C* et ainsi, I’application p,, est surjective.
pp p ]

Montrons désormais la propriété la plus dure. On cherche un voisinage de zq bien
revétu par py,.

Pour cela posons V(zy) = {z € C| |z| €]ro/2, 3ro/2[, arg(z) €]60/2, 300/2[}

O Re

FIGURE 3.5 — voisinage du point 2z

A-t-on désormais V' (z() bien revétu par p,, ?
Tout d’abord, V' (zg) est inclus dans C \ A, . Le logarithme existe donc dans tout le
voisinage V'(zp).

Soit alors z € p;; 1 (V(2))
Posons z = re?
Onaz" € V(z)

Or on sait que multiplier un complexe par un autre revient a multiplier les modules,
et a additionner les arguments.

On a alors avec 2" € V(%) :

— ™ €]ro/2, 3ro/2|
— nb 6]90/2, 390/2[+27TZ
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C’est-a-dire exatement :

_ n/To n/3rg
7"6] R 2[
00 360

> oA < .

— poqu a'rgument., on pourrait étre .tente de poser ] 2n 2n [mals r.appelons-nous
qu’il existe plusieurs autres solutions ! Il s’agit ici des racines n-iemes. On a en
fait :

] 00/2 4 2wk  3600/2 + 27k
0 €

)
n n

Ou k € [0, n — 1] sont nos n solutions pour §

11 suffit alors de poser :

n/ 242 2+2
Vi = {ZE(C |Z| G] n 7;0’ n 3”)[7 arg(z) €:|00/ + 71']6" 390/ + 27k |:}
V 2 2 n n

O, encore une fois, k € [0, n — 1]

Les V}, sont clairement des ouverts de C*
Il est facile de vérifier que les Vi ne s’intersectent pas (cela repose sur le fait que
fp < 2m) et il est simple également de vérifier I’inclusion réciproque :

Vk € [0, n—1], pn(Vi) C V(20)

On a donc montré ce résultat :

Vzo € C*, IV (2) € V(20), P, ( |_| Vi

O, pour tout k € [0, n — 1]

Vi = {zE(C E e} \f \/7[ }90/2:27%’ 390/2n+27rk [}
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Wi

Q Oy,

Va

FIGURE 3.6 — Représentations des V}, dans le cas particulier n = 3

On a donc montré I’union disjointe. Voici notre derniere question : 1’application p,,
est-elle un homéomorphisme sur I'un des V}, ? Soit donc k € [0,n — 1]

Py, est évidemment continue car polynomiale et on a effectivement une réciproque
continue car sur Vj comme justifié précédemment, il existe une détermination holo-
morphe du logarithme. On a donc une réciproque locale a notre revétement :

V(o) — Vi

9k ¢ z — exp(

loga (2)+2imk
n

Voici la réciproque continue recherchée. On a finalement montré que 1’application :

¢ — C*
P z — 2"

Est un revétment a n fibres (notre premier exemple présentant un nombre fini de fibre !)

Exemple (exponentielle complexe). Voici un autre exemple. On considére la méme
application que dans notre premier exemple mais 1’on change 1’espace total et ainsi la

base :
R
exp :

—
eit

~ O

ol C* désigne C \ {0}
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L’espace total est donc C, la base C*.
Alors langons-nous : 1’application est-elle surjective ?

La réponse est évidemment oui. Démontrons-le :

Soit zg € C*. On peut écrire cet élément sous sa forme polaire :
29 = roe'?

Puisque zg # 0, on a ry > 0. Le logarithme naturel de r( est donc défini, et on peut

poser a = In(rg). Posons aussi b = 6. On a :

ea+zb — . ezb — eln(rg) . 6100 — 7"06200 = 2

On a donc prouvé que I’exponentielle complexe était surjective. Elle est de plus conti-
nue. On peut donc poursuivre. Vérifions que la seconde propriété sur les revétements
est vraie. Rappelons-la :

vbe B, IV eV®h), p '(V)=|]|Vi et ply,homéomorphisme
i€l

Soit donc zy € C*. Posons d’abord zg = 7€' avec 79 > 0 et 6 € [0, 27].
Distinguons deux cas :

*si0 #0
Dans ce cas-1a, posons encore une fois :

V(o) ={z€C|z=re? relry/2,3r0/2, 0 €]6/2,30/2[}

un voisinage de zg.
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o) Re

FIGURE 3.7 — voisinage d’un point a partie imaginaire non nulle

On a par la suite :

exp ' (V(z0)) = | | Vi

keZ

ou pour tout k € 7 :
Vi, ={z € C| Re(z) €]In(r9/2),In(3ro/2)[, Tm(z) €]2rk+0y/2, 27k+300/2[}

Cette petite propriété n’est pas trop ardue a montrer. Nous ne le ferons pas ici.

Remarquons que la famille (V})xez est bel et bien une famille de parties disjointes de
C. C’est-a-dire que les V}, sont deux-a-deux disjoints.
Représentons-les sur le plan complexe :
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|:|V2

+27

+27

-1

D N N

=,

-2

FIGURE 3.8 — exp~*(V(29)) ou encore Iunion disjointe des Vj

Il faut imaginer que cette famille de pavés ouverts et donc infinie en haut comme en
bas.

Finalement, remarquons qu’a k fixé, nous avons exp un homéomorphisme de V}, sur
exp(Vy). Cela vient du fait que sur chaque V%, le choix de I’argument nous est imposé.
11 doit appartenir & |27tk + 6y /2, 2wk +3600/2[. On transforme donc notre exponentielle
(non injective dans C) en un homéomorphisme sur un voisinage ouvert.
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L’argument de la continuité de la réciproque repose encore sur des théoremes d’analyse
complexe. (On choisit V' (z) connexe par arcs, ne rencontrant 0.)

De cette maniére on aura V' (z() bien revétu par p et Vi € I, V; est homéomorphe a
exp~1(V(z9)) comme Iillustre la figure ci-dessous :

Vi V(z0)
exp
>

exp | \_,1’1

FIGURE 3.9 — V(z) bien revétu

*si0=0:

La démonstration est sensiblement la méme, on peut prendre comme voisinage le
méme pour le rayon, et [—m/4, /4] pour I’argument par exemple. Le voisinage est
encore une fois connexe par arcs donc il n’y a pas de probléme pour construire exp un
homéomorphisme local.

Garder cet exemple en té€te peut s avérer utile lorsque 1’on parle de revétements. Dit
vulgairement, p est un revétement si I’image réciproque de 1’application p est une "pile
d’espaces superposés qui ne se touchent pas" vérifiant que p est un homéomorphisme
sur chacun d’eux. Tout cela de maniere locale. On illustre cette explication ci-dessous :

On a ici le revétement p représenté par la fleche en pointillé
L’espace total E est situé au dessus de 1’espace de base B

En quelconque point de I’espace de base, il existe cette "pile d’espaces superposés
disjoints" qui sont en fait des voisinages ouverts qui nous donnent toujours V,, si on 'y
applique p. Il s’agit d’une sorte de projection qui peut avoir beaucoup de réciproques
(autant que de V;). Il peut y en avoir une infinité ou non. On sait juste que la numéro-
tation des V; est discrete (C’est-a-dire qu’ils sont au plus dénombrables).
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Remarquons qu’en définissant le revétement ainsi, la premiere condition portant sur
la surjectivité de p devient sous-entendue.

FE T’espace total

"pile d’espaces disjoints"

V voisinage bien revétu

=

B I’espace de base

FIGURE 3.10 - Illustration représentative d’un revétement

Remarque. Le nombre de fibres est constant quel que soit le point dans 1’espace de base
choisi. On sait juste que ce nombre de fibres est au plus dénombrable. On peut autant
en avoir une fibre, en avoir 10 sur un autre espace et X (une infinité) encore ailleurs.
Il dépend simplement de I’espace de base, de 1’espace total et bien slir du revétement
choisi.
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3.2 Relevements

3.2.1 Définitions et résultats préliminaires
3.2.1.1 Définition

Définition (relevement). Soient F/, F, B trois espaces topologiques. Soit p un revé-
tement de ' dans B. Soit f un application continue de F' dans B. f une application
continue de F' dans F est appelée un relevement de f si le diagramme suivant com-
mute :

=

-
3

S5

C’est-a-dire, sil’on a :

Remarque. Commencgons par remarquer que le relévement est relatif a un revétement,
et a une application continue.

Commencons cette partie par un premier résultat agréable :

Proposition. Soient £/, F, B trois espaces topologiques. Soit p un revétement de £
dans B fix€. Soit f une application continue de /' dans B.
Soient f1, fo deux relevements de f (qui vont donc de F' dans E). Alors :

A={aeF|fi(a) = fr(a)}

est une partie ouverte et fermée de F

Démonstration. Montrons donc A ouverte, puis fermée.

% A est une partie ouverte :

Soit a € A. Le but est de montrer qu’il existe un ouvert de F' contenant a, sur lequel
f1 et fo sont égales. Trouver un voisinage vérifiant les mémes propriétés est suffisant.
Pour cela posons :
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Rappelons que : B ~
pofi=pofa=f
Donciciona: ~
p(x) =peo fila) = f(a) =b
Donc p(x) = b. Mais p est un revétement, il existe donc V' un voisinage de b tel que V'
est bien revétu par p.
C’est-a-dire :
pr V)= |V
i€l
ou [ est discret (inclus dans Z par exemple) et V; une famille d’ouverts disjoints.

Mais I’on sait € p~!(V). x est donc dans I'un de ces ouverts. Puisqu’ils sont dis-
joints, il est dans exactement un seul d’entre eux. Posons donc :

IEVio, ig €1

Ou 7 est donc unique ici. V;, est ouvert dans E' I’espace total. Mais fl, fg €C(F, E)
(sont continues de F' dans F).

Rappelons la définition de continuité :
feC(F, E) < VYacF, YW € V(f(a)), f~HW) € V(a)

Se lit " f est continue de F' dans F si et seulement si pour tout a dans F', pour tout
voisinage de f(a), I'image réciproque de ce voisinage par f est un voisinage de a"

Ici, on sait f1, fo continues. Donc, avec V;, voisinage de x et avec x = fl(a) = fa(a),
ona: . .
i Vi), f2 (Vi,), deux voisinages de a

Posons W I’intersection de ces deux voisinages. W est un voisinage de a dans F et :

AW) C Vi, fo(W)C Vi

On peut le montrer pour fl par exemple (cela fonctionne pareillement pour fg).
Ona: . . .
chl (‘/io)me (%O)Cfl (‘/20)

D’ou:

fl(W) - V’io
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Il nous reste a montrer W C A. On aura alors exhibé un voisinage de a contenu dans
A et - la propriété étant vraie pour tout a € A - on aura montré A ouvert.

Soit donc w € W. On peut dire deux choses :

fw) = p(fi(w)) = p(f2(w))
f(w) € Vi,

On sait finalement que p est un homéomorphisme de V;, dans V. On peut donc - avec
notre seconde condition - composer par p|(,_1 pour trouver :
20

fi(w) = fo(w)
Donc f; et f, sont égales sur W puis W C A et A est ouvert.
% A est une partie fermée :

11 nous suffit pour cela de montrer que F'\ A est ouvert.
Cette seconde partie ressemble a la premiere, nous irons donc un peu plus vite.

Soita € F'\ A.Ona f(a) # f2(a). Comme précedemment, on pose :

(fl(a)7f2(a)) = (x17x2)
fla) =10

On a par la suite :
p(z1) = p(z2) =b

On prend le méme voisinage V' de b que prédemment et 1’on a :

z1, ;2 €p (V) C |_| Vi
iel

Rappelons que les V; sont disjoints.
Posons donc : z1 € V;,, o € V, ol i; et iy sont uniques.

Si iy = iy alors avec p homéomorphisme sur V;, = V;, et p(z1) = p(x2), on au-
rait 1 = x5 donc f1(a) = fa(a) ce qui est absurde.

Donc i1 # io.

Soit j € {1,2}
Ona:

Vi, voisinage de x;
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Par continuité de fj, ona:
aW; € V(a) | f;(W;) C Vi,

Posons W = W7 N Ws. W est un voisinage de a dans F' et :

W) c Vi B(W)CV,
Mais V;, et V;, sont disjoints. Donc f1(W) et fo(W) le sont aussi avec les deux inclu-
sions qui précédent.

On a donc un voisinage W de a tel que :

Yw e W, fi(w) # fo(w)

C’est-a-dire W C F'\ A et donc A est fermée.

{a € F| fi(a) = f2(a)} est donc une partie ouverte est fermée de F.

Corollaire. On en déduit que si F' est connexe, alors deux relévements de f égaux en
un points sont les mémes.

La preuve de ce petit corollaire est simple :

Démonstration. Supposons F' connexe, et fl, f~2 deux relevements de f : FF — B
égaux en un point z de F. On sait {a € F | fi(a) = fa(a)} une partie ouverte et
fermée de F'. Avec I’ connexe, une telle partie est doqc soit I tout entier, soit (). Mais
elle n’est pas vide car 2 y appartient. Donc {a € F' | fi(a) = f2(a)} = F. Autrement
dit, f1 = fo. O

3.2.1.2 Groupe d’automorphisme
Définition (groupe d’automorphisme d’un revétement). Soient F/, B des espaces to-
pologiques. Soit p : E — B un revétement. Soit ¢ : £ — F un homéomorphisme.

1) sera dit automorphisme du revétement p si :

poy=p
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On notera I’ensemble des automorphsimes du revétement p ainsi :

Aut,(E)

Proposition. Aut,(E) est un sous-groupe de I’ensemble des morphismes de E dans
lui-méme.

Démonstration. 1l nous suffit de vérifier les axiomes de groupe. Cela n’est pas trop
ardu :

— Onabien I; € Aut,(E)

— Soient 91, Yo € Aut,(E). ¥ o 1 est clairement un homéomorphisme et :

poropy =poihy=p

— Si® € Aut,(FE) alors on a 1) homéomorphisme par définition. On a donc ¢)~*
son inverse une application continue de E dans lui-méme. et de plus :
Pour tout y € E alors on peut poser z = 1~ 1(y) et avoir :

pot ' (y) =pov ' (¥(x) = p(z) = p(¥(z)) = p(y)

Et avoir :
povyt=p

L’avant derniere égalité provient du fait que ¢ € Aut,(E)
On a donc bel et bien Aut,(E) un sous-groupe de I’ensemble des homéomorphismes
de E dans E. O

Remarque. Tout élément du groupe Aut,(E) est un relevement de p. En effet,
Le diagramme suivant est commutatif :

=

Y
-
i)

|

Proposition. Soient E, B des espaces topologiques avec E connexe. Soitp : E — B
un revétement. Aut,(E) agit librement sur E.



Démonstration. 1l nous suffit pour montrer cette proposition de considérer 1’action :

{Autp(E)xE — FE
(¢, ) — Y(x)

On a bel et bien une action de groupe.
Montrons donc qu’elle est libre Soit ¢ € Aut,(E). Supposons ¢ # I,.

Soitz € E.sitp-x =zalorsonay(z) =z

Mais E étant connexe, si ¢ coincide en un point avec 1’application I; alors les deux
sont égales (cela est vrai car I; est un relévement). Mais on a supposé ¢ # I; d’ou
absurdité !

Ainsi, ¢ - ¢ # x quel que soit z € E. C’est-a-dire que Aut,(E) agit librement sur £
et que notre action est libre. O

Proposition. On peut méme aller plus loin avec I'affirmation suivante : Soient £, B
des espaces topologiques, p € C(E, B) un revétement. Supposons E connexe. On a :

Vo € E, 3V € V(x),V € Auty(E)\ Iy, p(V) NV =0

C’est-a-dire que tout point admet un voisinage ouvert sur lequel 1 déplace tous les
points hors de celui-ci (sauf bien siir si i est I’identité).

Démonstration. Soient donc x € F. On sait par définition du revétement qu’il existe
V un voisinage de p(x) bien revétu par p. C’est-a-dire :

-1
p (V)= Vi
i€l
On peut poser z € V;, ou ¢ est unique dans I (car p restreinte a V; est un homéomor-

phisme).
Montrons par contraposée que si ¢(V;,) NV;, # 0 alors ¢ = 14

Supposons donc qu’il existe z € E qui vérifie :

z €V, etze (Vi)
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On peut poser z = ¢(y) et'on a:

et puisque y et z sont dans le méme voisinage ouvert V;, et que p restreint a ce voisinage
est un homéomorphisme, onay = z.

On a donc ¥ (y) = y pour un certain point. Mais F étant connexe, on en déduit par nos
résultats précédents que :

=14

On a montré par contraposée que si ¢ # I; on avait :

w(Ulo> N Uin =0

Ou Uj;, est un voisinage ouvert de x qui existe. On a donc exhibé un voisinage qui
convient et ainsi montré la proposition. O

Remarque. On dira que Aut, (E) agit librement et discrétement sur E. Librement dans
le sens déja expliqué et discrétement dans le sens o ¢ "bouge" tout le voisinage de
tout point donné (si différente de 1’identité).

3.2.1.3 Topologie quotient

Le but de cette partie est de munir un ensemble d’une topologie. On prépare en fait
le terrain pour relier continuité et groupes. Pour cela on a donc besoin d’ensembles
topologiques servant de base et d’applications continues.

Définition (topologie engendrée). Soient X un espace topologique, soit Y un en-
semble. Soit f : X — Y une application surjective.
On peut munir Y d’une famille {A;, i € I, }avecVie I, A; C Y.
Notons pour cela Tx la topologie sur X et 7" notre famille composée des A;. On la
définit ainsi :

VACY, AcT <+ f1A)cTx

Lemme. Dans le méme cadre que celui de la définition ci-dessus, T' est une topologie
sur'Y. Elle sera appelée topologie engendrée par f (ou bien topologie engendrée tout
court).
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Démonstration. Vérifions donc les axiomes de topologie :

Ona:
f71@0)=0€TxdoncheT
fFHY)=X €TxdoncY €T

On a vérifié le premier axiome. Continuons :

Suppposons A, B € T.0Ona:
A eTx et fYB)eTx

Mais T étant une topologie sur X, ona:

F7HA) N fTH(B) € Tx

C’est-a-dire :
fTYANB) € Tx

D’ou finalement :
ANBeT

11 ne nous reste plus que le dernier axiome.

Soit (A;)ier € TT une famille d’éléments de 7. Il nous faut vérifier que 'union de
cette famille est bien dans 7.

Soiti € I
Ona: A; € T donc f~1(A;) € Tx.

Cela étant vrai pour tout 7 € I et Ty étant une topologie, on a donc :

U r ') e7x

iel
Ce qui revient a affirmer :

! € Tx

U

el
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Et enfin :

UAiET

iel

On a donc montré le troisieme axiome.
On a donc T topologie sur Y que 1’on appellera topologie engendrée et que 1’on notera
désormais Ty O

Remarque. Cette définition (relative a une application f) rend cette fonction instanta-
nément continue puisque 1’image réciproque de tout ouvert est défini comme ouvert.

Définition (action continue). Soit G ~ F une action de groupe out E est un espace
topologique. Cette action sera dite continue si son morphisme associé :

D
g = ¢g

vérifie que :

Vg € G, ¢4 est une application continue de E dans E.

Dans ce cas on aura que quel que soit g € G, ¢4 continue, et sa réciproque ¢g-1
continue également (car g~ € G) et ainsi ¢, est un homéomorphisme de E dans F
quel que soit g € G.

Définition (topologie sur I’ensemble des orbites). On a défini des objets nous permet-
tant maintenant de relier topologie et groupes.

Soit donc G ~ E une action de groupe avec E espace topologique.
Notons F/G I’ensemble des orbites de cette action. On peut aussi noter :

| E — E/G
p'x»—)(’)m

On peut munir E/G de la topologie engendrée par p et on a donc p € C(E, E/G)

Lemme. p définie comme précédemment est une application ouverte. C’est-a-dire que
l’image directe de tout ouvert par p est ouverte.
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Démonstration. Soit donc U un ouvert inclus dans E. Puisque E/G est muni de la
topologie engendrée, on a p(U) ouvert si et seulement si :

p Y (p(U)) estouvert

Soitz € p~(p(U)). On a donc :

p(z) € p(U)

Ce qui est vrai si et seulement s’il existe u € U vérifiant : p(x) = p(u)
Mais 1’application p envoie un élément sur son orbite. Affirmer que p(x) = p(u) re-
vient donc a dire que x et u sont dans la méme orbite. On peut alors assurer I’existence
de g € Gtel que:

rT=g-u

On a donc montré

ceplpU) = uel,geG, r=g u

Ce qui signifie exactement :

Ou encore :

p~ o) = (J ¢,(U)

geG

Mais rappelons-nous que pour tout g € G, ¢4 est un homéomorphisme. C’est donc une
application ouverte (voir le chapitre 1 de cet écrit) et ainsi p~!(p(U)) est une réunion
d’ouverts donc est ouverte a son tour.

On a ainsi prouvé que p est une application ouverte. O

3.2.2 Caractérisation des revétements

Théoreme. Soient G un groupe, E un espace topologique connexe. Supposons que G
agisse sur F discretement et continiiement. C’est-a-dire - en notant ¢ le morphisme
associé - que ’on suppose :

Vg e G, ¢, € C(E, E)
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Et I’on suppose également :

Ve e E,Vge G\{e}, IV eV(x), VNgy(V)=10

Alorsp € C(E, E/G) qui a tout élément associe son orbite est un revétement et :

Auty(E) ~ G

(Ces deux groupes sont isomorphes)

Ce résultat est treés puissant. On a déja vu que tous les revétements et leur groupes
d’automorphismes vérifiaient cette propriété d’action libre et discrete (sous réserve
d’avoir E connexe). Il s’agit ici d’une sorte de réciproque. On affirme que si 1’on a une
action libre et discréte sur F I’espace total, alors on a un revétement p : £ — E/G

Remarque. La preuve qui suit est assez longue. Chaque étape n’est pas compliquée en
soit mais I’ensemble est dense. Un petit conseil pour suivre peut étre de lire g -  au
lieu de ¢, (z) car il s’agit de la méme chose, et de revoir les définitions d’orbite et de
revétement (présentes respectivement dans le chapitre 1 et dans le chapitre 3)

Démonstration. Soient donc G un groupe, F un espace topologique connexe et suppo-
sons que G agisse sur E discretement.

Notre objectif est de montrer que p : E — E/G est un revétement.

Or, p est clairement surjective. En effet si O € E/G est une orbite, elle est non vide
et il suffit de prendre € O pour avoir p(x) = O, c’est-a-dire un antécédent qui
convient.

On sait aussi que c’est une application continue car F/G est muni de la topologie

engendrée, et p est surjective ce qui est la seule hypothese pour définir cette topologie.

11 nous reste a montrer la condition la moins évidente :

VO € E/G, 3W € V(0), p Y (W)= ||W, et p|lw, homéomorphisme.
i€l

Soit donc O € E/G. On peut poser O = O, (c’est-a-dire de poser x € O car les
orbites ne sont jamais vides, et donc d’affirmer O I’ orbite de x).
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Rappelons cette hypothese cruciale :

Vee E,Vge G\{e}, IV eV(x), VNgy(V)=0

Toujours pour le méme x € E tel que O = O,, posons V' le voisinage de ce point (le
méme que celui de I’hypothese) et posons finalement W = p(V').

W est un voisinage ouvert de p(z) = O,. En effet, p(x) € W puisque p(z) € p(V) et
que V est un voisinage de z.

De plus W est ouvert car on a montré précédemment que p est une application ouverte.
Or on sait W = p(V') et V ouvert, on a bien W voisinage ouvert de p(z).

On a de plus, exactement comme dans la démonstration précédente :

(V) = ¢4(V)

geG

C’est-a-dire :

p W) = | ¢e(V)

e

Posons :
I=G
Vi € I, W; = Qﬁl(V)
On a finalement :
p W) =Jws
i€l

Il nous reste a montrer que cette union est disjointe, que les W, sont ouverts et que p
restreint a un W; est un homéomorphisme. Commencons par le fait d’avoir la réunion

disjointe.
Soient donc g1, g2 € G
Supposons qu’il existe a € Wy, N Wy,. Onadonc a € ¢4 (V) N ¢y, (V) puis :

a = ¢g, (V1) = ¢g,(v2)

ou U1, V2 € \%4
Rappelons aussi :

VQ S Gv (¢g)71 = ¢g_1
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On aurait donc en combinant nos deux lignes précédentes :

U1 = ¢91_1'g2 (UQ)

Posons g = g1 ! - go. On aurait donc :

v = ¢g(v2)
C’est-a-dire :

v €V Ngg(V)

Mais avec E connexe, on en déduit g = e. C’est-a-dire :

g gp=e

Puis :
91 = 92
Ainsi, ona Wy, = Wy,. On a donc montré :

Vil, ig € 1, Wil ﬁWi2 7&@:>W“ :Ww

C’est-a-dire que la réunion est disjointe. On a finalement :

P W) =W
i€l

Poursuivons. Il nous faut montrer que les W; sont tous ouverts.
En effet, soiti € 1
Wi = ¢i(V)

Mais rappelons que les ¢; sont des applications continues (il s’agit d’'une hypothese sur
I’action). On a donc les ¢; homéomorphismes de F dans F de réciproque ¢;—1 puis
des applications ouvertes.

Puisque V' est un voisinage ouvert, ¢;(V") est ouvert pour tout ¢ € I. Puis :

Vi € I, W; est ouvert

Il ne nous reste plus qu’a montrer que p restreint chacun des W; est un homéomor-
phisme.
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Soit donc encore une fois ¢ € 1.

Posons :
Wi — p(V)
pi z — O

Montrons que cette application est un homéomorphisme.

% bijectivité

* injectivité

Soient , y € W;. Supposons O, = O,. (p;(z) = p;(y)) x et y sont dans la méme

orbite.
On a donc pour un certain g € G :

Y= dg(x)

Puis :
y € WiN g (W;)

Carz eV
Finalement, encore sous 1I’hypothése E connexe, on peut écrire : g = e

Etpuisy = g-z = e-x = x etles antécédents sont donc les mémes. L’ applica-
tion est donc injective.

* surjectivité

Cette application est clairement surjective sur p(W;). Si y € p(W;), alors il existe
x € W tel que :
plx) =y

Reste a constater que p(V) = p(¢;(V))
En effet ¢;, a i fixé, est une bijection de V dans V' (¢; € Sy car action de groupe)
On a ainsi :

p(V) =p(¢:(V)) = p(W;)

Et puisque I’application est surjective sur p(W;), elle I’est aussi sur p(V') puisqu’il
s’agit du méme ensemble.

Notre application p|y, est donc une bijection. Elle est clairement continue car p I’est.
Il reste & montrer que sa réciproque 1’est elle aussi.
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% bijectivité réciproque

Cette partie est en fait déja réglée. Remarquons que p est une application ouverte.
On a donc p|yy, (ou bien p;) application ouverte également par restriction. Posons :

V) — W
pi - 0, — =z

Il nous faut montrer cette application continue. Soit U un ouvert de W;. Montrons que
I’image réciproque de U par p; ~! est ouvert ¢’est-a-dire de montrer :

(pi~)"H(U) ouvert

ou encore :
p;(U) ouvert

Ce qui est automatique avec p application ouverte.
On a donc p; ! continue et p|yy, un homéomorphisme. On a montré que p est donc un
revétement.

Cette longue preuve n’est pas encore finie. Il nous reste a prouver le résultat suivant :

Auty(E) ~ G

Rappelons que deux groupes sont isomorphes s’il existe un isomorphisme de groupe
de I’un vers 1’autre. Considérons 1’application suivante :

D
g ¢g

Commencons par voir quelque chose, ®(G) C Aut,(E). Eneffet, si g € G, ona ¢,
un homéomorphisme (d’inverse ¢,-1) car I’action est supposée continue et de plus :

Ve e E, p(z) =0, =0y = (po ¢y)(x)

Onaposéy =g-x = dg(x).
On abien O, = O, car x et y sont dans la méme orbite. Cela vient du faitque y = g- .
On adonc:

Vg e G, p=pog,
Ainsi ¢, € Aut,(FE) et on peut réécrire :
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(I):{ (Ga*ae) — (AUtp(E)voald)
g = ¢g

A-t-on un morphisme de groupes ?

Pour le savoir, soient g1, go € G. Soit aussi x € FE
Ona:

(g1 % 92)(7) = Pgyugs () = (91 % 92) T = g1 - (92 - )

Puis :

91-(92-2) = 91+ (g, (2)) = by, (99 (2)) = (Dg, © Pg,)(x) = (P(g1) © P(g2))(x)

C’est-a-dire :
Vg1, 92 € G, ®(g1 * g2) = ®(g1) 0 P(g2)

Donc @ est un morphisme de groupe. Il s’agissait en fait seulement des axiomes des
actions. Montrons-le bijectif et on aura construit un isomorphisme de G dans Aut,(E).

* injectivité

L’action ® est supposée discrete ce qui implique qu’elle est libre. Mais souvenons-nous
que toute action libre est fidele. En particulier ® est injective. (voir le chapitre 1).

* surjectivité

Soit ¥ un automorphisme du revétement. v est un homéomorphisme de F dans E et
ona:

p=poy

Cette seconde égalité nous affirme que v conserve les orbites. C’est-a-dire :

ye 0, = (y) € O,

Ce qui signifie que pour tout z, y € E':

/

JgeG y=g-2=39 €G, Y(y)=¢ =

On a donc :
1

y=g-x=39"€G, vy)=9"y
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Avec ici ¢ = ¢’ * g~ '. Pour un certain y € O, on a donc :

Y(y) = ¢g (y)

Rappelons que E est connexe et donc que deux relevements qui coincident en un point
sont les mémes. On a finalement :

ﬂ’ = ¢g”

On a montré ici : Aut,(E) C ®(G) mais I’on sait déja que ®(G) C Aut,(E)
On adonc:
®(G) = Aut,(E)

C’est-a-dire que P est surjective.

Ainsi, ® est un morphisme de groupe bijectif. Donc un isomorphisme de groupe.
On peut donc assurer :
G ~ Aut,(F)

Résumé :

— On a montré que dans le cas ol E' I’espace total est un espace connexe et qu’il
existe un revétement p défini sur E, alors Aut,(E) agit discrétement sur E.

— On a exhibé une sorte de réciproque. Si GG est un groupe qui agit discrétement et
continfiement sur E connexe, alors ’application £ — F/G qui a tout élément
associe son orbite est un revétement et :

G ~ Aut,(E)

65



Chapitre 4

Lien entre Revétements et
Groupe Fondamental

4.1 Relever les Chemins et les Homotopies

L’ objectif de cette partie est de relever les chemins puis les homotopies d’un espace
topologique. Pour cela, nous reprendrons nos notations du 2nd chapitre : Groupe fon-
damental. Nous ferons une premiere partie courte destinée a des rappels topologiques
qui nous serviront par la suite.

4.1.1 Lemme de Lebesgue, topologie analytique

Définition (distance). Soit X un ensemble. d : X x X — R sera appelée distance
sur X si elle vérifie :

- vx7 Yy € X7 d(x,y) = d(yvx)
— Ve,ye X, d(z,y) =0~z =y
— Va,y, z € X, d(z,2) < d(z,y) +d(y, z)

Ces axiomes sont respectivement appelés symétrie, séparation, inégalité triangulaire

Définition (espace métrique). On appelle espace métrique tout ensemble X muni
d’une distance d. On pourra noter un tel espace (X, d)

Définition (boule ouverte). Soit (X, d) un espace métrique. Soit z € X. Soit r > 0.
On appellera boule ouverte en x de rayon r que I’on notera B(x, r) I’ensemble :

B(z,r)={z€ X, d(z,z) <r}
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Définition (point intérieur). Soit (X, d) un espace métrique. Soit z € X. x sera dit
inérieur a X s’il existe r > 0 tel que :

B(z,r)C X

Définition (ouvert métrique). Soit (X, d) un espace topologique. Soit A C X. A sera
dit ouvert métrique de X si tout point de A est intérieur a A. C’est-a-dire, si :

Ya € A, Ir >0, B(a,7) C A

Proposition. Tout espace métrique est un espace topologique

Démonstration. Soit (X, d) un espace métrique. Posons 7 1’ensemble des ouverts mé-
triques de X. Il est simple de vérifier T topologie sur X. Elle sera appelée topologie
métrique. Cela signifie juste que tous nos travaux faits jusqu’ici s’appliquent aussi sur
ces espaces munis d’une distance. O

Remarque. Dans la pratique, la plupart de nos espaces sont métriques (tous nos exemples
reposent sur ces ensembles munis d’une distance). Notre écrit se focalise sur les espaces
topologiques simplement pour rester dans un contexte le plus général possible.

Ces brefs rappels étant faits, on peut énoncer un théoreme important (dont on ne pré-
sentera pas la démonstration).

Lemme (lemme de Lebesgue). Soit (X, d) un espace métrique compact. Soit (U;);cr
un recouvrement ouvert de X. Il existe § > 0 tel que :

Vee X, Jiel, B(x,0) CU;

0 sera appelée la constante de Lebesgue ou bien le nombre de Lebesgue

4.1.2 Relevement des chemins

Ce théoreme - dont nous ne ferons pas la démonstration - ayant été€ vu, nous sommes
désormais en disposition pour relever les chemins. Commencons sans plus tarder :

Proposition (relevement des chemins). Soient F, X deux espaces topologiques. Soit
p € C(E, X) un revétement.
Soit v € C([0,1], X) un chemin tracé dans X.

Alors il est possible de relever v en 5 un chemin de [0, 1] dans E.

Ce relevement est de plus unique a un "point de départ” pres. Nous éclaircirons cette
idée dans la preuve qui suit.
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Démonstration. Le but est de relever . C’est-a-dire, rappelons-le :

E
3 7 l
p

X

0,1]

On essaye de trouver 7 une application continue telle que le diagramme ci-dessus com-
mute. C’est-a-dire de construire un chemin qui arrive dans 1’espace total a partir d’un
chemin arrivant dans la base et d’un revétement fixé.

Pour cela prenons quelques dispositions. Posons :

7(0) = o

De plus,ona:

x=J {=)

rzeX

Mais I’on sait que chaque élément de X possede un voisinage bien revétu par p. (qui
vérifie la seconde propriété des revétements). On peut donc poser :

Vo € X, V; € V() un voisinage de = bien revétu par p

De telle maniére a avoir :

X:UVZ

zeX

On sait de plus que :
7 HX) =1[0,1]

Car tous les points de v sont a arrivée dans X. Avec notre recouvrement exhibé ci-
dessus, on obtient :

771 U Vel = [Oa 1]
reX

C’est-a-dire exactement :

U '7_1(Vz) = [07 1]

rzeX

On a donc ici déterminé un recouvrement ouvert de I’ensemble [0, 1] (ouvert car les V,
sont ouverts et ~y est continue). Mais ce dernier ensemble est compact (fermé borné en
dimension finie). On peut donc finalement extraire un sous recouvrement fini. Posons :

[07 1] = U Vil(vﬁi)

iel
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Ou z; € X quel que soit s € I et I est de cardinal fini.

Remarquons que 1’on sait de plus que [0,1] est un espace métrique. On peut par
exemple le munir de la distance :

[ 0,12 — Rt
d'{ (1.9) — |z—y]

On a donc un espace métrique compact. On a de plus un recouvrement ouvert fini de
[0, 1]. On peut appliquer le lemme de Lebesgue :

Il existe 6 > 0O tel que :

Vte[0,1], 3iel, B(t,d)n[0,1] c~ 1 (Va,)

i

Posons alors la subdivision arbitraire :
n—1
0,1] = | J [t tesa]
k=0

Avec (o, tn,) = (0, 1), de telle maniére & avoir |¢+1 —tx| < 28 pour tout k € [0, n—1]

Avec une telle subdivision, on a [t;, tr+1] inclus dans une boule de rayon § quel que
soit k € [0, n — 1].

On en déduit avec le lemme de Lebesgue que, pour tout £ € [0, n — 1], il existe
i € Itelquonait [tg, tpr1] C v 1(Va,)

i

En effet :
[te, thra]  C B((tk +te41)/2,6) 47 (Vi)

La premiere inclusion se déduit de la maniére dont on a subdivisé I’intervalle [0, 1], la
seconde par le lemme de Lebesgue.

Soit donc k € [0, n — 1] fixé cette fois.

On a donc I’existence d’un certain x; € X tel que :

[ty tes1]) C v (V)

Puis qu'on a:
Y[tk tesa]) € Vo,

x; étant un point dépendant de ¢ a chaque fois, remplacons V;,, par V; pour simplifier.
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On peut ensuite identifier / C N
C’est-a-dire qu’on pose la suite d’ouverts Vy, Vs, ...

Résumons. On a donc :

0,1 =Jr"'v)
el

[07 1} = L_J [tka tk—i—l]
k=0

Vk € [[O7 n— 1]], diel, ’y([tk, tk+1]) cV

Cette derniere ligne s’énnoncera ainsi avec I’identification I C N :

Vk € [[07 n— 1Ha "Y([tka tk+1]) C Vi

Cela signifie qu’il existe un nombre fini de voisinages ouverts tels que le tracé du che-
min soit dans la réunion de ces voisinages.
Mlustrons cela :

Y.

FIGURE 4.1 — Un chemin contenu dans des voisinages ouverts (ici, il y en a 5)
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On remarque de plus que pour tout k € I différent de la borne supérieure de I, on a :

Ve N Vig1 # 0

En effet, on a toujours :
’Y(tk—H) cVin Vk+1

Commengons désormais la construction de notre relévement ¥
Pour cela, nous opérerons par récurrence. Enoncons la propriété :

Vk € [1,n] Pk : "Ilestpossible de construire le chemin 7 sur [0, ¢]”

Faisons un petit point sur les indices pour que les choses soient claires :

Ona: Vk e [0, n — 1] v([tk, tk+1]) C Vit

Car nous avons identifiés les V; a des V}, ce qui nous permet cette écriture. Rappelons
aussi notre but étant de montrer P,,, on se propose de prouver Py a partir de Py pour
tout k € [1, n — 1] d’ob le principe de récurrence.

Initialisation :

Montrons P;. Est-il possible de construire y jusqu’en ¢ ?
Commengons par fixer zg € p~1({yo}). (Rappellons : o = 7(0)). On veut faire com-
mencer 7y par xo

On sait que v est a valeur dans V; sur [0,¢;] mais p étant un revétement et V; bien
revétu par construction, on a :

pt(Vh) = |_| Wi

JjeJ

Posons jo I'unique indice tel que xg € W7 j,
p étant bijectif sur Wy j,. On peut alors poser :

vt e [0, ta, 3(t) = (lw;,, 0 N()

De telle sorte a avoir 7 totalement inclus dans W j, sur [0, ¢1]
On a réussi a construire la premiere partie du chemin mais celui-ci dépend de z( le

point de base choisi. Gardons cela en téte et on peut désormais faire la seconde étape
de toute récurrence : 1’hérédité.
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W10 0,811

Vi n

5

FIGURE 4.2 — Relévement d’un chemin, premiere étape

Hérédité

Soit k € [1,n — 1] Supposons Pyi. On a donc 7 construit jusqu’en
Notre objectif est de prolonger 7 jusqu’en tg1

On sait déja une chose :
Y(tg) € Vie N Vs

Et on a également :
Y([tr, tht1]) C Vg

Avec V41 bien revétu par p.
On a alors :

P (Vi) = || Waia
jeJ

II nous suffit comme dans I’initialisation, de poser W, I'unique W1 ; tel que

Y(tk) € Wii1,j
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On a de plus p|Wj0 un homéomorphisme donc il nous suffit de poser (comme dans
I’initialisation) :
Vt € [th, treal, () = (ply, 0N (@)

De cette maniere on a construit une application continue 7 (continue car I’est par mor-
ceaux et I’est en les éventuels points de discontinuité : les ¢;) qui est un relevement du
chemin «y défini sur [0, t541]

Ainsi, Py est vraie
De cette maniere, Py, est vraie pour tout k € [1, n]
En particulier, P,, est vraie et donc il existe un relevement de - noté 7y un chemin de

[0, 1] dans I’espace total E.
Onapoy=v

Wi jo Wigo  Wi+1,jo

O

FIGURE 4.3 — Relevement d’un chemin, k-ieme étape

Sur la figure ci-dessus, il faut imaginer que les indices jo des W, j, ne sont pas tous
les mémes. Chacun d’entre eux est relatif a I’indice &k associé.

Il ne nous reste plus qu’a éclaircir cette notion d’unicité du releévement.

A 1z fixé, on a [0, 1] un espace connexe. On a donc le relevement de ~ passant par
xo unique (rappel : si I’espace de départ F - ici [0, 1] - est connexe, deux relevements
égaux en un point sont les mémes). Le relevement d’un chemin est donc relatif unique-
ment 2 son origine ¢ que 1’on choisi dans p~* ({yo})
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On en déduit qu’il existe exactement autant de relevements de v que d’éléments dans
P~ ({yo})-

Remarque. Puisque le relevement d’un chemin dépend uniquement de son point d’ori-
gine, on notera - a un chemin -y et a un revétement p fixé - I'unique relevement de
ayant pour origine x( ainsi :

. [01] — FE
”{ b At

Avec ainsi :
’7930 (0> = Zo

4.1.3 Relevement des homotopies

On s’attaque ici a un gros théoréme. Le but est cette fois de relever les homotopies.
Ennongons sans plus tarder le théoréeme :

Proposition (relevement des homotopies). Soient E, X deux espaces topologiques.
Soitp € C(E, X) un revétement.
Soit H € C(]0,1]?, X). On suppose qu’il existe yy, y1 € X vérifiant :

Vs €[0,1], H(s,0) =yo Vse€][0,1], H(s,1) =y

Alors il est possible de relever H en H une homotopie de [0, 1] dans E.

Comme pour le cas des chemins, ce relévement est unique a un "point de départ"” preés.

Démonstration. Le but est de relever H. C’est-a-dire de trouver une application H
telle que :

&=

0,12

b
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le diagramme ci-dessus commute.
Le début de cette preuve est assez similaire a celle sur les chemins. On a :

X=J {«}

zeX

Mais I’on sait que chaque z € X admet un voisinage V, bien revétu par p.
On a donc également :
X="v

zeX
On ade plus :
H™HX) = [0,1]?
D’ou:
H | Ve | =101
zeX

Et finalement :

U H_l(Vz) = [07 1]2

zeX

Or on sait que H est continue, que les V, sont ouverts. Ainsi, chaque H~1(V,,) est
ouvert.

Onadonc |J H~'(V,) un recouvrement ouvert de [0, 1]?
zeX

Or on sait que [0, 1]? est un espace métrique compact (fermé borné en dimension finie).
On peut donc extraire du recouvrement ouvert déja connu un sous recouvrement ouvert
fini.

On peut alors poser :

0,1 = J B (Vi)

icl

Ou [ est de cardinal fini.
On peut donc identifier d’ores et déja I C N pour avoir :

m

0,1 =J B (Vi)
i=1
Ou V; est le voisinage d’un point € X bien revétu par p que que soit ¢ € [1,m]

On a donc un recouvrement ouvert plus commode de [0, 1]2
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On sait déja que [0, 1]? est un espace métrique compact. On peut donc y appliquer aussi
le lemme de Lebesgue :

36 >0, V(s,t) €[0,1%, Ji e [1,m], B((s,t),6) C H (V)

Il nous reste alors a subdiviser [0, 1]? en plusieurs morceaux.
Pour cela, il nous suffit de poser :

C’est-a-dire exactement :

Avec :
VEk. |l e [[07 n— 1]], PkJ = [tk, tk+1] X [tl, tl+1]

Un pavé de [0, 1]? de telle sorte a avoir :

ty=0 = ti=0 = 0

R A
Yk, le[o, n—1], PMCB<< ”2’”1, “;”1)75)
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(0,1) (1,1)

Pnfl,O Pnfl,nfl

Py Py 1

FIGURE 4.4 — Subdivision de [0, 1]

En posant arbitrairement un telle subdivision de [0, 1]2, on a bien P contenu dans
une boule ouverte de rayon 0 quels que soient k, | € [0, n — 1]
On peut alors appliquer le lemme de Lebesgue :

Vk, 1€ [0, n—1], Jie[l,m], Pu C H (V)

Il nous est finalement possible de renommer chaque V; qui convient pour Py, ; par V;, ;
(quitte a prendre plusieurs fois le méme ou bien a ne pas tous les prendre) et on a
finalement :

Vk, | € [[0, n — 1ﬂ, PkJ C Hil(VkJ)

Finalement, on peut revoir notre numérotation de pavés comme une liste cette fois. Par
exemple on peut prendre :

Poo, Poa, Po2y ooy Pon—1, Pro, Piay ooy Pacin—t

Puis chercher a identifier cette liste a celle-ci :

Py, Py, ... Pyo_1, Pyo

Et a affirmer (quitte a réindicer encore une fois) :

Vk € [1,n%], P, Cc H (V)
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On cherche simplement a rendre les choses plus claires et plus concises avec ces chan-
gements d’indices pour pouvoir démarrer la récurrence. Ce qu’on peut désormais faire.
Voici notre propriété :

k
VEk € [1, n®], Pr: "Ilestpossible de relever H sur U P;"

Jj=1

On concluera de la méme maniere que pour le cas des chemins en affirmant que la
propriété étant vraie pour tout k € [1, n?], elle I’est particulierement pour k = n? et
le résultat sera montré.

Commencgons donc :

Initialisation
Montrons P Il nous faut relever H sur P;
Ainsi, soit zg € p~ ({yo})

On sait déja :
P1 C Hfl(Vl)

H(P]_)CV:[

Or on sait que 1 est un voisinage ouvert dans X, bien revétu par p

On a donc :
pt(W) = |_| Wi
i€l

Puisque 29 € p~" ({y0}) on a p(xo) = yo
Puis :
p(zo) € H(P1)

Ce qui nous donne :
p(wo) € Vi

Et finalement :
zo € p~ (V)

Puis, on peut noter ¢y € I ’'unique indice tel que xo € Wy ;, puisque I’on a une union
disjointe.
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Il nous suffit donc (comme pour les chemins) pour avoir p o H = H sur P; de po-
ser :
V(S,t) € [0’ 1]2a FI(S,t) = (p_1|W1,i0 © H)(Sv t)

Si I’initialisation de cette preuve ressemble beaucoup a celle sur les chemins, 1’hé-
rédité se corse.

Hérédité

Soit k € [1,n? — 1]
Supposons Py,
Montrons Py, 1

_ k
On suppose donc notre homotopie H relevée en H sur |J P;
j=1

Pour la suite, on pose :

k k
U@inka)={UP]| N P

A=
j=1 j=1
(0,1) (1,1)
P,._10 \Pr—1,n—1
Poo i | Pons
(0,0) (1,0)

FIGURE 4.5 — Deux exemples d’oll pourrait se trouver A (en rouge)

On a clairement A C Py
On en déduit :
AC H (Vi)
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Nous allons désormais raisonner par Analyse-Synthése sur la construction de H sur
Pra

Analyse

_ k41
Soit H une application qui est relevée de H sur |J P;
j=1
On a déja le résultat :
AC H Y (Viyr)

D’ou :
H(A) C Vs
Puis : -
H(A) Ccp ' (H(A))
Ainsi :

H(A) € p~! (Vi)

On a bien évidemment H une application continue. De la maniére dont on a construits
les pavés, on a A connexe par arcs.(Il s’agit d’un segment). La propriété connexe par arcs
étant un invariant topologique, on a :

H(A) connexe par arcs

De plus, on a Vj,11 bien revétu par p d’ou :

p (Vi) = |_| Wit1,
icl

Mais on a H(A) une partie connexe par arcs contenue dans une union disjointe. Elle
est donc contenue dans 1’une des composante de cette union. Autrement, elle ne serait
pas connexe par arcs. (Impossible de relier deux points continliement dans des espaces
disjoints).
On en déduit :

dig € 1, H(A) C Wk-i—l,io

Mais on sait que p restreint a Wy, ;, est un homéomorphisme. Si I’on doit avoir
po H = H sur A, il devient nécessaire de poser :

V(S,t) € A7 H(S,t) = (p71|Wk+1,i0 OH)(S7t)
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On a donc, avec A non vide, I’existence d’un élément (sg,tg) € P11 tel que :

H(s0,t0) = (0™ Wiy, © H) (50, t0)

11 nous reste a montrer que cette méme propriété est vraie pour tout (s,t) € Pxyq

On sait Py, 1 connexe par arcs (pavé). Donc H (P 1) connexe par arcs également.
Pour la méme raison que pour A4, et en sachant :

H(Piy1) Cp~ (Vi)

Car: ~
p(H(Pyt1)) C H(Pyt1) C Vi

On obtient :

H(Pyi1) C | Wit
el

Et finalement, H (P, 1) est connexe par arcs et donc est contenu dans un et un seul
Wit1,; et étant donné qu’on a montré H (Py1) N Wi, # () on a le résultat :

H(Pyy1) C Wiyt

Et on peut donc écrire :

V(s,t) € Posr, H(st) = (07 |Wiysy © H)(5,1)

Synthese

Vérifions la réciproque.
On a bien H continue comme composée d’applications continues par morceaux et
continue aux éventuels points de discontinuité.
Il est trivial de vérifier :
poH=H

k+1
On a réussi a étendre un relevement de H sur |J P;

=1
On a donc montré Py vraie

Ainsi, P, est vraie pour tout k € [1,n2] en particulier :

P, est vraie
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n—1
C’est-a-dire qu’il est possible de relever H sur |J Py
k,1=0
Et finalement, il est possible de relever H sur [0, 1]2
Le théoreme est démontré. Chargeons-nous de la partie concernant ’unicité d’un tel
relévement.

Comme pour le cas des chemins, si ’on fixe 2o € p~!(yp) alors on a unicité du rele-
vement avec [0, 1]? connexe de R?

On en déduit comme pour les chemins qu’il existe autant de relevements de H que
d’éléments dans p~! (yo) O

Remarque. Exactement comme pour les chemins, on pourra donc préciser avec quel
relevement de H nous travaillons en spécifiant le point de départ :

0

On aréussi a relever les chemins, relever les homotopies et ce, avec un point donné, de
maniere unique. Il nous reste nonobstant un résultat plus qu’intéressant a démontrer.

4.2 Théoremes Importants

Théoreme. Soient X, E deux espaces topologiques. Soit p : E — X un revétement.
Soient vy, 79 deux lacets tracés dans X de base xy. Supposons les homotopes. Alors
leurs relévements par rapport a p sont deux chemins homotopes. (Notamment, 71 et v
ont méme origine et méme extrémité)

Démonstration. Placons-nous dans le méme cadre que celui de I’énoncé. On se donne
donc 71 et vy, deux lacets de X de base g et on peut noter H : [0, 1]> — X ’homo-
topie de 1 & 2

Soit z € p~({z0})
Considérons H, I'unique relevement de H tel que :

vt €[0,1], H(0,t) ==z
Nous allons désormais utiliser chemins pour nous aider a conclure :
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[ 01] — E
o { s +— H.(s,0)
f01] — E
az: { s +— H.(s,1)
f01] — FE
as { t — H.(0,t)
o { 0,1 — FE
4 t — H.(1,t)

Commencgons :
On remarque tout d’abord :

Vs € [0,1], (poai)(s) = H(s,0) =z

Vs € [0,1], (poaz)(s) = H(s,1) =z

Puis que I’on a par ailleurs :

vt e [Oa ]-]7 (p © Cz)(t) = Zo
On a montré précédemment que le releévement de chemins ayant pour origine un point
donné (ici z) est unique.

On en déduit :
Q1 = Cy

On pourrait étre tenté d’affirmer :
Qg = Cy

Mais cela n’est pas nécessairement vrai. En effet, ao(s) est égal 2 H. (s, 1) mais ce
dernier chemin n’est pas dans 1’obligation de vérifier :

H(0,1) =2z

D’ol on a pas le méme point de départ et donc on ne peut pas appliquer le théoreme
d’unicité du relevement pour oo tout du moins pas pour ¢, mais on a en revanche :

Vs € [0,1], (poaz)(s) = H(s,1) =0

Et d’autre part :

Vs € [0,1], (pocg_ 1,1))(8) = (Poca,(0,1)) = To
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Et cette fois on a bien s — H_(s, 1) ainsi que s — H,(1,1) et s — H(0, 1) trois
relevements de méme origine. On peut donc appliquer le théoréme d’unicité :

Vs € [0,1], as(s) = H.(1,1) = H.(0,1)

On retrouve encore une fois ici un lacet constant. On peut poser :

a=H,(1,1) = H,(0,1)

De maniére a avoir :

Observons les deux autres chemins :
Pour a3, on sait :
vt e [07 1}? 71 (t) = H(07 t)

On en déduit que o : t — H,(0,t) est I'unique relévement de ~; ayant pour origine

H,(0,0) =z
C’est-a-dire : ~
vVt e [Oal]a Hz(oat) :a3(t) :Vlz(t)

On a notamment :
’771 z (1) =a

De la méme maniere, on a a4 I’unique relévement de v, au point z. On a donc :

vt e [071]7 Hz(lat) = 044(t) = ’}72z(t)

Et enfin :

To.(1) = Ho(1,1) = a = H.(0,1) = 71.(1)

On a donc 71, et V2, deux chemins ayant méme origine (explicite : z) mais aussi méme
extrémité : a
Ces deux chemins ont donc une chance d’étre homotopes et il suffit de constater que

H, est une homotopie de 71, a 72,
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En effet, H, est construite continue et on a :

[0,1], H(0,t) =1
— Vte [Oal]a H(]-at) = 72(15)
— Vs €[0,1], H(s,0) = z
— Vs€0,1], H(s,1) =a

(On oublie ici les |, pour simplifier la lecture)
Ainsi, on a bien le relevement de deux lacets homotopes dans X comme étant deux

chemins homotopes dans E. Le résultat est montré. O

a

72 E
H
z
p
72

v X

Zo

FIGURE 4.6 — Relevement de deux lacets homotopes

Sur la figure ci-dessus il faut donc imaginer que les lacetets noirs sont relevés en
bleu et que deux lacets homotopes se relévent non pas en deux lacets (pas nécessai-
rement) mais en deux chemins. On a tout de méme 1’extrémité des deux chemins dans
p~1({zo}) tout comme leur origine z

Voyons désormais un théoreme qui permettra d’établir un lien fort entre les notions de
revétement et celles du groupe fondamental

Définition (situation galoisienne). Soient £/, X deux espaces topologiques. Un sup-
pose E connexe par arcs. Soit p : ¥ — X un revétement. On sera dit en situation
galoisienne si Aut,(E) agit librement et transitivement sur les fibres. C’est-a-dire, si :

Vr € X, Va, b€ pt({x}), I € Aut,(E), ¥(a)=b
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Dit autrement, pour tout élément de la base (ici x), quels que soient a, b dans I’image
réciproque du revétement p par {z}, il existe un unique élément du groupe d’automor-
phisme de p noté ¢ vérifiant v(a) = b

Théoreme. Soient E, X deux espaces topologiques et p un revétement de E dans X
avec E connexe par arcs. On se place en situation galoisienne.

Soit zg € £

En notant p,. I’application associée a p (voir fin du chapitre 2) on a :

m1(X)/pe(m1(E)) ~ Autp(E)

Démonstration. Soient E, X deux espaces topologiques, soit p un revétement de F
dans X

On suppose E connexe par arcs et I’on se place en situation galoisienne.
Il peut étre judicieux pour commencer cette preuve de rappeler un résultat déja montré :

Soit # € X et soit y un lacet de X en base x. Soit z € p~!({x}). Il existe un unique
releévement de  qui est un chemin dans £ ayant pour origine z noté 7,

On sait de plus que : 7,(1) € p~1({x})

On a donc deux éléments dans p~({x}) qui sont :
— z
— '72(1)

On peut donc utiliser ici le fait que nous soyons en situation galoisienne pour assurer
Iexistence d’un unique 1, € Aut,(E) élément du groupe d’automorphisme tel que :

hy (2) =7:(1)
On peut désormais poser 1’application :

_ { m(X,z) — Aut,(E)
P Yo 7;[}’y
% p bien définie

Commengons comme toujours par prouver que 1’application est bien définie. Il nous
faut montrer que les images par p de deux lacets homotopes sont les mémes.
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Soient donc 7 et 72 deux lacets dans X de base x et qui soient homotopes. On pose
H I’homotopie de v1 & vs.

On sait qu’on peut relever ces trois applications, quitte a transformer les lacets en che-
mins d’origine z € E pour obtenir :

H une homotopie de 1 a V2

Etant en situation galoisienne, il existe donc un unique homéomorphisme 1., € Aut,(E)
vérifiant :

'(/)"/1 (Z) =a

Mais on remarque alors que :

Uy (2) = 72(1)

Autrement dit, I'unique morphisme ., vérifie la méme condition que .,
Par unicité, on a :

w’h = w’m

Puis :
p(11) = p(2)

On a ainsi montré 1’application p bien définie. Poursuivons. Notre but est de mon-
trer que p est un morphisme de groupe surjectif.

Commencons :

% p morphisme

Soient 1, 2 € w1 (X, ).

Posons :
0,1] — X

v 1 (2t) site[0,1/2]
t —
v2(2t — 1) sinon

La concaténation dans X des deux chemins

Soit z € F
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On sait qu’on peut relever v en 4 un chemin dans E d’origine 2
Il nous suffit ensuite de poser ceci :

0,1] — X
a: T1,(2¢) site0,1/2]
Y2+4,.(1)(2t —1) sinon

On remarque que « est continue. Elle est continue par morceaux et 1’est aussi en 1/2
car:

lim a(t) =24 _1)(0) =7.(1)

t—1/2%
li a(t) =711
. zq%_ (t) =.(1)

D’ot continuité. On a donc un chemin dans E d’origine 2
On remarque de plus que :

vt €[0,1/2],(poa)(t) = p(11.(2t)) = 71 (2t)

vt € [1/2,1], (poa)(t) = p(Tay, 1) (2t — 1)) = 72(2t — 1)

Ce qui nous assure :
poa=v

Par unicité du relevement pour ’origine z € E,on a:

a=7;

On a donc trouvé le relevement de «y notre concaténation de y; et y2

On peut également montrer :

Y24,(1) = Py, © V2,
Effectivement, on a :

Yoy (1)(0) = 712(1) = ¥y, (2)
(Y1 ©722)(0) = ¥, (725(0)) = ¢, (2)
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Ces deux chemins ont donc méme origine.

On ade plus :
PO Yoy (1) = 72

Et:
po (¢w1 Ofﬁz) = (po,lzb’}’l) ° Y2,

Mais 1., étant dans Aut,(E), ona:

(P°¢71)°’Y_2z :pofﬁz

Puis :
Po(Py, 0V2,) =po o, =2

On a donc deux relevements d’'un mé&me lacet égaux en leurs origines. On en conclut
qu’ils sont égaux.

D’ou:

V2q,. (1) = Yy © V2

On conclut sur la nature de p a ’aide de cette affirmation. En effet, p(+y; *v2) qui n’est
rien d’autre que 1., est par définition 1’unique automorphisme de Aut,(E) tel que :

On a donc :
Py (2) =7:(1) = a(l) = Y25,_1)(1)

’}72'}712(1)(1) = (’1/171 0’722)(1)

Par ce qu’on a prouvé précédemment
Ce qui nous donne :

Vz € P_l({x})7 Yy (2) = Uy (72 (1)) = by, (¥4,(2)) = (¥, 03, )(2)

C’est-a-dire :
p(71 *72) = p(71) © p(r2)
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Ce qui nous prouve que p est un morphisme de groupes.
% Image de p

On montre ici que p est surjectif.
En effet si ¢ € Aut,(F) on peut considérer z € p~1({z}) et remarquer :

(z,%(2)) € E?

Or on a supposé I connexe par arcs.
Il existe donc un chemin « tracé dans E tel que :

((0), (1)) = (2,9(2))

Puisque « est continue, que p I’est aussi, on peut poser v le chemin tracé dans X tel
que :
Y=pouw

On observe que ¥(0) = p(z) =z ety(l) = (poyh)(2) =p(z) =z
Voyons ce lacet v comme élément de 71 (X, z)

On constate aisément que p(7y) = 1 vérifie :

Or on remarque que 7, est I’'unique relevement de ~ ayant pour origine z
On a donc par unicité :

Et de cette maniére :

Autrement dit, on a par unicité :

Et de cette maniére on a bien exhibé un antécédent v € 1 (X, x) & ¢ pour I’application
p. Autrement dit, le morphisme est surjectif.

% Noyau de p

On s’intéresse cette fois au noyau du morphisme de groupe p
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Soit donc v € my (X, x)
On suppose :

Ce qui est vrai si et seulement si :

Ce qui équivaut exactement a :
’_72(1) =z

Autrement dit, +y fait partie du noyau de p si et seulement si son chemin relevé dans £
est un lacet.
C’est-a-dire :

v € Ker(p) < 7, €m(E, z)

Mais rappelons que I’'on a :
Y=DPOo7:

D’ou, si v € Ker(p) alors on ay € p,(m(F, z)) car en effet, v = po 7, eton a vu
que 7, est un lacet en z
Ici, p, est I’application associée a p (voir chapitre 2)

On a ainsi montré :
Ker(p) C p«(mi(E, 2))

La réciproque est simple. Supposons que 7y € p, (71 (E, z))
Ona:
y=poa

Ouaem(E, z)

On a par la suite :

Mais par unicité du releévement en origine z, on a7y, = «
Ainsi :

y(2) = al) = 2

D’ol ¢, est I’unique morphisme de Aut,(E) tel que :

1., possede un point fixe : z
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On en déduit que 1), est I’identité puis que :

p«(m(E, 2)) C Ker(p)

Autrement dit, on a montré :
Ker(p) = p«(m(E, 2))
Il nous reste a utiliser le premier théoréme d’isomorphisme
Ona:
m (X, z)/Ker(p) ~ p(m (X, x))
Ce qui se traduit ainsi avec nos résultats précédents :

m (X, 2)/ps(m1(E, 2)) ~ Aut,(E)

On remplace I’expression du noyau (qu’on a déterminé) et celle de I’espace d’arrivée
car I’application est surjective (elle atteint chaque élément de Aut,(E))

Finalement, on sait que p est surjective (les revétements sont par définitions surjec-
tifs) donc on a p(E) = X et on sait également que cette application est continue.
Rappelons que E est supposé connexe par arcs. La propriété de connexité par arcs étant
un invariant topologique, et ayant :

X =p(E)
On en déduit X connexe par arcs. (voir la sous partie sur la connexité a la page 6)

On a donc F et X deux espaces connexes par arcs.

Il devient donc inutile de spécifier leur point de base concernant leurs groupes fon-
damentaux

On obtient enfin le résultat souhaité :

m1(X)/ps(m1(E)) =~ Aut,(E)

Corollaire. On se place sous les mémes hypotheses que dans le théoreme qui précéde.
Si I’on suppose de plus que E est simplement connexe, alors :

m(X) ~ Aut,(E)
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Démonstration. La preuve de ce petit résultat n’est pas trop compliquée. Supposons E
simplement connexe. On a 71 (F) = {0}

On sait de plus que p, est un morphisme de groupes car c’est une application asso-
ciée.
On a alors

p«(m(E)) = p({0}) = {p.(0)} = {0}

Dans le sens ot on trouve I’élément neutre de 71 (X). La derniére égalité ici se justifie
avec le fait d’avoir p, morphisme.

Ainsi :
m1(X)/pu(m1(E)) = Auty(E)

Se transforme en :
m1(X)/{0} = Aut, (E)

Puis, quotienter par le sous-groupe trivial laissant identique, on arrive finalement a :

m(X) ~ Aut,(E)

D’ou le résultat. O

Résumé :

On a donc découvert dans cette partie qu’il était possible de relever les lacets d’un
espace en chemins d’un autre tout en gardant le lien fort d’homotopie.

On a finalement réussi a - en situation galoisienne et avec £/ simplement connexe (ce
qui entraine la connexité par arcs) - établir un lien entre 1’espace total et la base X :

Le groupe fondamental de tout espace de base d’un revétement dont I’espace total est
simplement connexe est isomorphe au groupe d’automorphisme de ce méme
revétement.
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Chapitre 5

Classification d’Espaces

On s’intéresse dans ce chapitre a d’autre méthode de calcul du groupe fondamental.
Autre que par les revétements, on peut déterminer un groupe fondamental d’un espace
a partir d’un autre. Nous formaliserons tout cela.

5.1 Type d’Homotopie

Le but de cette partie est de regrouper les espaces ayant un point commun : le type
d’homotopie. Pour cela nous devons d’abord étendre notre définition des homotopies
sur les chemins, aux homotopies sur les applications continues.

5.1.1 Applications homotopes

Définition (applications homotopes). Soient X, Y deux espaces topologiques. Soient
fy, g € C(X,Y). f et g seront dites homotopes s’il existe H : [0,1] x X — Y une
application continue telle que :

— Vee X, H0,z) = f(x)
— VeeX, H(l,z) = g(x)

En pratique, on utilisera surtout la définition suivante (plus restreinte mais plus utile) :

Définition (applications homotopes relativement a une partie). Soient X, Y deux es-
paces topologiques. Soit A C X. Soient f, g € C(X, Y). f et g seront dites homotopes
relativement a A s’il existe H : [0, 1] x X — Y une application continue qui vérifie :
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— Vz e X, HO,z) = f(x)
— VeeX, H(l,z) = g(x)
— Ve A, Vse|0,1], glx) = f(z) = H(s,x)

Exemple. X =Y =R
Si I’on considere les deux applications :

J R — R
f{x —  exp(x)

J R — R
I 2 — (e—1ax+1

Alors on a f et g homotopes, on peut transformer une application linéaire en la fonc-
tion exp et elles le sont de plus relativement en deux points de R. Une figure (non a
I’échelle) illustrera cette idée :

FIGURE 5.1 — deux applications homotopes

Mais I’on peut construire d’autres exemples :

Exemple. Dans le méme cadre (sur C(R, R)), la figure représente encore une fois deux
applications homotopes :
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FIGURE 5.2 — Encore deux applications homotopes

Remarquons que cette fois, les deux applications sont homotopes relativement a tout
un intervalle.

Remarque. Montrer que deux fonctions sont homotopes est bien plus fastidieux que
dans le cas des chemins (qui I’est déja parfois !). Nous ne nous attarderons donc pas la
dessus et utiliserons surtout cette définition pour la théorie.

Notons d’ailleurs que I’on peut désormais assurer :

Deux chemins homotopes le sont relativement a {0, 1}

5.1.2 Type d’homotopie d’espaces topologiques

Définition (type d’homotopie). Soient X, Y deux espaces topologiques. On dit que
X et Y ont méme type d’homotopie s’il existe f € C(X, Y)etg € C(Y, X) telles que :

f o g est homotope a 1,
g o f est homotope a I,

Proposition. X ~Y <= X et Y ont méme type d’homotopie est une relation d’équi-
valence.
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Démonstration. On connait désormais les relations d’équivalence. Alors commengons :

* réflexivité
Soit X un espace topologique. Posons f = g = I, . On a bien les deux conditions :

f o g esthomotope a I,
g o f est homotope a I,

vérifiées. Ainsi = est réflexive

* symétrie

Soient X, Y deux espaces topologiques. Supposons X ~ Y. X et Y ont donc méme
type d’homotopie. Donc Y et X ont méme type d’homotopie. Donc Y ~ X. Donc ~
est symétrique (trivial)

% transitivié

Soient X, Y, Z trois espaces topologiques. Supposons X ~ Y etY ~ Z.On a
I’existence de :

f: X —Y
g:Y — X
h:Y —Z
1: 2 —Y

continues qui vérifient :

f o g est homotope a I,
g o f est homotope a I,

h o 7 est homotope a I4,,
i o h est homotope a I,

Posons :
" {X — Z
z — (hof)(2)
Z — X
’ { 2 (goi)2)
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Ona:

aob=ho fogoiquiesthomotope a h o4 qui est homotope a I,
De méme :

boa=goioho fhomotopeago fhomotope a Iy,

De plus, a et b sont continues comme composées.
La relation = est donc transitive.

C’est finalement une relation d’équivalence. O

On en déduit ce corollaire intéressant :

Corollaire. Si X et Y sont deux espaces topologiques homéomorphes (il existe f de
X dans Y continue bijective a réciproque continue) alors, X et Y ont méme type
d’homotopie.

Démonstration. 11 suffit de considérer f~! (qui est ainsi continue) 2 la place de g dans
la définition du type d’homotopie (trivial). O

Théoreme. Soient X, Y deux espaces topologiques connexes par arcs et qui ont méme
type d’homotopie. On a :

m1(X) et w1 (Y') isomorphes

Démonstration. Soientdonc X, Y deux espaces topologiques connexes par arcs, ayant
méme type d’homotopie.

Ilexiste f : X — Y etg:Y — X continues telles que :

f o g esthomotope a I,
g o f est homotope a I,

Fixons z € X.
Nous allons utiliser dans cette preuve les fonctions associées a f et g :
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| m(X,z) — m(Y, f(x))
Je: { v > foy
{ m (Y, f(z)) — m(X,(go f)(z))
* vy = foxy

Rappelons que I’'on a :

(fog)x=friogs

Notons H ’homotopie de I’identité a f o g, et notons que 1’on a le résultat suivant :

(fog)x=¢c
ou :
c estun chemin qui lie (f o g)(z) ax

e est:
o { m(X,z) — m(X,(fog)(z))
e vy — ckyxct

Montrons-le :

Soity € m(X,x).Ona:

(f o g)(y) un lacet de base (f o g)(z). Donc un élément de 71 (X, (f o g)(x)). Il
faut montrer que ce lacet est le méme que (7). C’est-a-dire, puisque nous sommes
dans 71 (X, (f o g)(z)), qu’il nous faut montrer que ces deux lacets sont homotopes.

Pour cela exhibons I’homotopie (de lacets donc) en question :

0,1 — X

c(2t) site[0,(1—s)/2]

(4t —3) sit e [(s+3)/4,1]

On a donc montré que pour tout v dans 71 (X, z), (f 0 ¢)«(y) = @c(7). On a donc :

(fog) =
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On en déduit que (f o g), c’est-a-dire f, o g, est un isomorphisme (car égal a ¢, lui-
méme isomorphisme). Puis que f, surjective.

Par exactement la mé€me preuve en considérant g o f au lieu de f o g, on a g, o f,
isomorphisme, d’ou f, est injective.

On sait déja que f, est un morphisme de groupe, et on a donc montré de plus qu’il était
bijectif.

Finalement, f, est un isomorphisme de groupes de 71(X) dans 71(Y). Les deux
groupes fondamentaux sont donc isomorphes. O

Proposons un résumé des dernieres preuves qui ne sont pas toutes simples :
Résumé :

On a montré que deux espaces homéomorphes ont méme groupe fondamental.

Par la suite, on a vu que deux espaces homéomorphes ont méme type d’homotopie,
puis que deux espaces ayant méme type d’homotopie (et connexes par arcs) ont méme
groupe fondamental.

Traduit mathématiquement, on a :

X homéomorphe 8 Y = X, Y ont méme type d’homotopie = 71 (X ) isomorphe a 71 (V)

On a donc trouvé de réelles conditions pour que deux espaces aient le méme groupe
fondamental.

5.2 Espaces Contractiles et Rétractes

5.2.1 Contractions

Définition (espace contractile). Soit X un espace topologique connexe. X sera dit
contractile s’il a le méme type d’homotopie qu’un point {y}. (Y = {y} dans les
notations prises jusqu’ici.)

Remarque. Deux espaces contractiles ont donc le méme type d’homotopie.

Corollaire. Si X est un espace contractile, alors il est simplement connexe.
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Démonstration. La preuve de ce corollaire est rndue simple grace a tous nos théoreme
établis précédemment :

Si X est contractile, il a le méme type d’homotopie que {z} un point. Mais I’espace
{x} est clairement simplement connexe. Son groupe fondamental contient seulement
le chemin constant ¢, puisqu’il n’y a rien d’autre dans {x}. Mais rappelons-nous que :

X, Y méme type d’homotopie = 71 (X ) ~ m1(Y)

Ot pour étre plus exact, les groupes fondamentaux sont isomorphes. De plus, X étant
ouvert, on a X connexe par arcs (car X est connexe) et ainsi on a bien :

m1(X) =~ m({0}) = {0}
D’ou X est simplement connexe. O

Proposition (exemple d’application). Soit n € N*. On a R™ contractile.

Démonstration. Soit donc n € N*. On a R™ un espace topologique. Il nous suffit en-
suite de montrer que R™ a le méme type d’homotopie que {0}.

Pour cela considérons f, g nos deux applications :

g:{{o} — R

0 — ORn

0 — 0

peor{ ) = 10

On a donc ici déja I’identité, méme pas besoin de I’homotoper. Puis :

o[RBT — R
g ’ Tr ORH
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Ici il faut opérer un peu plus. Il suffit de considérer I’homotopie suivante :

I [0,1]xR* — R"
(t,z) — tx

On a bien un homotopie puisque lorsque s = 0, H(s,2) = 0 pour tout x € R™ et
lorsque s = 1, H(s,z) = x quel que soit le vecteur z. O

Corollaire.
Vn € N*, R" est simplement connexe

Remarque. Voici donc ce a quoi sert le type d’homotopie. On a montré que certains
espaces €taient simplement connexes sans jamais parler de chemins. Juste en remar-
quant qu’ils étaient contractiles. Les chemins sont donc bien cachés sous cette notion :
le type d’homotopie.

Remarque. La notion d’espaces contractiles est en fait elle aussi imagée. Un espace
est contractile s’il se déforme continfiement en un point. On peut par exemple le com-
prendre pour R ou encore R? :

e

R2

FIGURE 5.3 — R2 contractile

5.2.2 Rétractions

Définition (espace rétract). Soit X un espace topologique. Soit A C X. On dit que A
est rétract s’il existe une application continue :

2% A
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Telle que r restreinte a A soit I’identité.

Définition (espace rétract par déformation). Soit X un espace topologique. Soit A C
X. On dit que A est rétract par déformation de X s’il existe une application continue :

2% A

telle que r soit homotope a I, relativement a A.

Remarque. Conctretement, rajouter "par déformation” signifie supposer en plus, que r
peut-&tre ramenée a I’identité continliement sur tout I’espace de départ.

Proposition. Soit X un espace topologique connexe par arcs. Soit A rétract par dé-
formation de X et connexe par arcs. On a :

m1(A) ~ 7 (X)
Dans le sens ou ces deux groupes sont isomorphes.

Démonstration. Nous utiliserons pour cela - encore une fois - les applications asso-
ciées. Pour cela on considere la surjection canonique :

i A — X
’ a — a
et bien siir son application associée (avec ag € A fixé) :

i 7T1(A7a0) — ﬂ'l(X,ao)
o a — a

On remarque dans un premier temps que :
: { A — A
ro7:
a — a
Cette application est donc I’identité. Dans un second temps, on a :
. { X — X
ior:

x +— (ior)(z)

On sait 7 homotope a I’identité. De plus, 7 restreinte a A (I’espace d’arrivée de r) est
égale a I’identité.
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On a donc ¢ o  homotope a I On a donc exhibé f et g les fonctions qui permettent de

définir le type d’homotopie et qui permettent également d’affirmer ici que A et X ont
méme type d’homotopie.

On en déduit finalement que 71 (A) ~ 71 (X) puisque X et A sont connexes par arcs.
O

Exemple. Voyons ensemble pour bien comprendre cette définition et cette proposition
un exemple simple de rétract par déformation

Y

] N
1 5

FIGURE 5.4 — Exemple simple de rétract par déformation

Onaici X = Ret A = [—1,5]. A est bien rétract par déformation de X puisque sa
rétraction (tracée en rouge) est bien identique sur A et est homotope a I’identité sur X
(fleches noires). On en conclut avec notre dernieére démonstration et nos connaissances
sur le groupe fondamental de R que 71 ([—1,5]) = 71 (R) = 0.

5.3 Espaces Produits

Dans cette courte section, nous nous intéressons au groupe fondamental de quelconque
espace produit. Nous avons pour cela une proposition intéressante.
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Proposition. Soient (X, x¢), (Y, yo) deux espaces topologiques pointés. On a :

T (X xY, (z0,%0)) ~ m (X, z0) x m1 (Y, yo)

C’est-a-dire que ces deux groupes sont isomorphes.

Démonstration. On considere pour cette preuve les deux applications :

] XxY — X
POV @) e
oy : { XxY — Y
VU () — oy
Respectivement la projection sur X et sur Y
On s’intéresse ensuite aux applications associées :
px. (X xY, (z0,%0)) — m(X,20)
. 7 > pxo7
oy (X xY, (z0,%0)) — m(Y,y0)
* Y — pyoy

Pour finalement poser :

{ T (X xY, (2o,90)) — (X, 20) x (Y, 0)
v — (ox. (1), 2y, (7))

Il nous reste a montrer que p est un isomorphisme de groupe.
% morphisme

p est I'application associée d’une fonction continue (projections). On a donc immé-
diatement p morphisme de groupes.

% injectivité

Soity € m (X xY, (xo,¥0))
Supposons :

p(’}/) = C(z0,y0)

On a alors une homotopie :

0,12 — m(X,m0) x 71 (Y, 90)
H{ (5,8) H(s,t)o Yo

105



Qui relie p() avec ¢(

Z0,Y0)

Mais ’espace d’arrivée de H étant 71 (X, xo) x m1(Y,y0) on peut poser 1’existence

de:
Hy : [0,1]2 — 7T1(X, J)o)
’ (Sa t) — Hx (Sa t)
Hy - [Oa 1]2 — 7Tl(YVa ZJO)
v (Svt) — HY(Sat)
Deux applications continues telles que :
H = HX X Hy

Dans le sens ou :

Y(s,t) € [0.1]%, H(s,t) = (Hx(s,t), Hx(s,t))

Et, en utilisant le fait que H soit une homotopie, on remarque :

) aHX ) = 2o
— Vs e [0,1], Hx(s,0) = zo
— Vs e [0,1], Hx(s,1) = zo

On a alors bel et bien Hx une homotopie que relie px () a ¢y,
De la méme maniere, on a Hy une homotopie qui relie py (7y) a ¢y,

On en déduit que :

v = (px(7), py (7)) est homotope a (cz,, ¢y, ) lui-méme égal a (4, )

C’est-a-dire v homotope au lacet constant
On obtient donc :
p(7) =0=17=0

C’est-a-dire que le morphisme de groupe est injectif.
% surjectivité

Soient 71, 2 deux lacets respectivement dans 71 (X, xo) et dans 71 (Y, yo)
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On veut montrer qu’il existe un antécédent par p a :

{ [031] — Wl(X7IO)X7Tl(KyO)
t — (m),2())

Pour cela il suffit simplement de prendre le méme lacet, mais de le voir comme a
support dans X x Y plutdt que dans deux espaces différents (on concatene les deux
lacets). L application :

{[0,1] — m (X xY, (x0, ¥0))
t o (), 72(t))

Est bien un antécédent pour 1’application précédente par p
On en déduit p surjective

On a donc trouvé un morphisme de groupes bijectif. Donc un isomorphisme de groupe
On en déduit la proposition. U
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Chapitre 6

Applications aux Espaces
Classiques

Nous avons étudié tout le long de cet écrit, plusieurs méthodes et théorémes permettant
de déterminer le groupe fondamental d’un espace. Dans ce chapitre, nous proposons
I’application de tous nos résultats sur certains exemples des plus simples aux plus ar-
dus. On remplacera aussi le symbole "~" par "=" dans ce chapitre.

6.1 Groupe Fondamental de R"

On a déja vu dans le chapitre 5 que :
VYn > 1, R™ est simplement connexe

Autrement dit :
Vn > 1, 71 (R™) = {0}

On ne spécifie pas le point de base car R™ est convexe donc connexe par arcs.
Les détails de cette démonstration commencent a la page 101. L’idée est de montrer
que R"™ posséde le méme type d’homotopie qu’un point (par exemple {0}), d’oti :

m(R") = 71 ({0}) = {0}

L’espace vectoriel réel le plus utilisé a donc un groupe fondamental trivial quel que soit
sa dimension (finie).
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6.2 Groupe Fondamental des Convexes de R"

Soit C C R™ un convexe non vide.
Soient y; et o deux lacets tracés dans C basés en zy € C.

Posons : [0 1]2 o
) , —
H{ (s,8) = sm(t)+ (1 —s)n()

H est continue, bien a arrivée dans C' car celui-ci est convexe. On a donc une homotopie
de v; a2 (les axiomes de I’homotopie sont simples & montrer ici).

Ces deux lacets étant arbitraires, on a montré que tous les lacets dans C' sont homotopes
entre eux. C' étant convexe, il est connexe par arcs et on a donc :

m(C) = {0}

C’est-a-dire que tout convexe réel est simplement connexe. En particulier, le disque
(ou les boules en général, qu’elles soient ouvertes ou fermées), le carré ou encore les
hypercubes sont tous simplement connexes.

6.3 Groupe Fondamental du Cercle S!

Nous avons déja beaucoup étudié S' notamment avec le revétement de 1’exponentielle
complexe définie sur les réels.

En effet on a remarqué :
exn.d B — St
Pt o et

Un revétement (voir a la page 36) avec ici :

X =s!

L’espace de base, et :
EF=R

L’espace total du revétement. Bien siir avec p = exp

Il nous faut donc nous intéresser au groupe d’automorphisme de exp sur R
Soit ¢ : R — R un homéomorphisme.
Ona:

¥ € Autexp(R) <= expo i) = exp

Ce qui est vrai si et seulement si :

vVt € R, el = ¢t
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Si et seulement si :
VteR, ¢(t) —t € 2rZ

Posons désormais :

J R — R
f{t'—>1/1(t)—t

On sait que f est continue comme différence d’applications continues et qu’elle atteint
seulement les multiples de 27 (dans le cas ol ¢ € Autex,(R) ce qu’on suppose désor-
mais)

Par continuité, on en déduit f constante.
En effet, pour passer de 2wk, a 2wk, avec k1 # ko il nous faut - par le théoreme des
valeurs intermédiaires - atteindre des valeurs non comprises dans 277 ce qui implique

que ¢ ¢ Autexp(R)
Ainsi :

P € Autexp(R) <= 3k € Z, f =2k
C’est-a-dire :

Auteyp(R) = {th, € C(R,R) |Vt € R, ¢y (t) =t + 2k}

On peut donc établir un isomorphisme de groupes :

Z — Autep(R)
k — ’L/)k

Ce qui nous assure :
Autexp,(R) = Z

Bien. Vérifions si ce revétement nous place en situation galoisienne ou non.
Soit z € St.
Soient a, b € exp~!({z})

On peut déja assurer :
b—aec2nZ

Posons alors k € Z tel que :
b—a =27k

On a ’existence d’un unique élément de 1) € Autex,(R) tel que :

P(a) =b



En effet, il s’agit de ¢,
On a effectivement :
Yrp(a) =a+ 27k =b

Et puisqu’aucun autre élément de Autex,(R) ne vérifie cette condition, on est bien en
situation galoisienne.

On a de plus constaté précédemment que R était simplement connexe (pour n = 1)

On peut donc appliquer le dernier corollaire vu a la fin du chapitre 4. On a :

m(X) = Aut,(E)

C’est-a-dire ici :
71 (SY) = Autexp(R)

On a donc :
71(SY) = Autexp(R) = Z
Par transitivité, on obtient finalement :

T (SH =7

Le groupe fondamental du cercle est donc isomorphe & I’ensemble des entiers relatifs.
Voici donc le pouvoir du dernier théoréme montré dans cet écrit. Il permet - en passant
par les revétements - de déterminer le groupe fondamental d’espaces non triviaux.

Remarque. Voici comment comprendre intuitivement comment le groupe fondamental
du cercle est isomorphe a Z :
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Lo

FIGURE 6.1 — 71 (S?)

Pour avoir un lacet en ¢, il nous faut partir de x( et y revenir d’une maniere ou d’une
autre. L’ isomorphisme avec Z vient juste du fait que I’on "compte" le nombre de tours
faits sur le cercle pour revenir a xy. On peut en faire 3, -1500, ou O par exemple.

6.4 Groupe Fondamental de la Sphere S”

Nous avons déterminé le groupe fondamental de S' mais on s’attaque ici 2 plus gros.
La sphere en dimension n € N*.
Rappelons encore une fois que :

S"={zeR™| |z|=1}
Avec || . || 1a norme euclidienne en dimension n + 1
On a déja traité le cas de S'. On supposera donc ici n > 2
La preuve qui suit utilise un raisonnement subtil. On suppose une certaine condition
vérifiée tout d’abord, montrons le résultat voulu, et remarquons que méme si cette
condition n’est pas vérifiée, on peut se ramener au cas ou elle 1’est.
Eclaircissons cela

Soit donc «y un lacet de base xy € S™ a support dans S™

% On suppose que :
Vit € 10,1], v(t) # —xo (*)

112



C’est-a-dire que ~y ne croise jamais 1I’opposé de sa base.

FIGURE 6.2 — v ne croisant pas —zg en dimension deux

Sur la figure ci-dessus, on a v un chemin tracé (I’ellipse en haut de la sphere) qui vérifie
qu’aucun segment rouge ne coincide avec le segment bleu. Cette figure est représenta-
tive de la véracité de la condition (x)

Remarquons que de cette manilre, on a toujours le segment [y(¢), 2] qui ne croise
pas Ogn+1
C’est-a-dire que 'on a :

Vs €[0,1], sy(t)+ (1 —s)zg#0

De cette maniere on peut poser ’homotopie H telle que :

0,1 — S
H: szo+(1—s)y(t)
Tszot+ (1—s)7 (D]

On a bien H qui arrive dans S™ car :
Y(s,t) € [0,1]%, H(s,t) estun vecteur de R"*

V(s,t) € [07 1]2’ H H(s,1) H =1

H est continue car le dénominateur ne s’annule jamais (on 1’a jusitifié au-dessus). Elle
est donc composée d’applications continues d’ou continuité.
H est bien une homotopie de v a cg,
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En effet :

— Vte[0,1], H(0,t) = mg” =210 — (1)
— Vte[0,1], H(1,t) = % = 2 =20

— Vs €]0,1], H(s,0) = o] = o

— Vse|0,1], H(s,1) = Hig\l =9

On a donc bien v homotope au lacet trivial. Autrement dit, dans 71 (S™), onay = 0
quel que soit ~y vérifiant la condition (x).

% Supposons désormais que :
3t e [0,1], y(t) = —xo
C’est-a-dire que ~y ne vérifie pas la condition (x)
Notre but sera d”’homotoper « a un lacet 7’ en xq vérifiant la condition (x). Cest-a-dire
d’avoir :
H une homotopie de v a '
7/ un lacet de S™ tel que V¢ € [0, 1], ' (t) # —xo

De cette maniére on aura homotopé v a un lacet qu’on sait homotope au lacet trivial,
c’est-a-dire qu’on aura assuré :
7=0

Quel que soit le cas dans lequel on se trouve (que () soit vraie ou non).

Commencons dés maintenant.
Soit donc «y un lacet de S™, basé en zy € S™ ne vérifiant pas la condition (x).

Soit 7 > 0 un réel strictement positif arbitrairement choisi.
Posons Bgsn (—x, r) la boule ouverte en —z( dans S™. C’est-a-dire :

Bgn(—x0,7) = Brat1(—x9,7) NS"

Notons désormais cette boule B, pour nous simplifier I’écriture.
On sait que pour 7 suffisamment petit (plus petit que 1/2 par exemple), on a :

i) ¢ BT
C’est-a-dire que si la boule B, centrée en x est "petite", on ne peut pas y croiser xg.
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On en déduit :
B, C~(]0,1])

Puis :
’7_1(‘87‘) C]O7 1[

Or on sait que <y est une application continue car c’est un chemin. De plus, B, est une
boule ouverte. C’est donc un ouvert de S™.

On en déduit que v~ *(B,) est un ouvert contenu dans |0, 1]
Il est possible de décrire cet ouvert. En effet la figure suivante nous aide a le com-
prendre :

FIGURE 6.3 — B, centrée en —x

Et voici désormais le lacet qui peut s’y trouver :
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FIGURE 6.4 — L'ouvert v~ 1(B,.)

Sur la figure précédente, on a centré notre sphere de maniere a avoir —xg au centre.
De cette maniere on peut tracer le lacet v qui passe (au moins une fois) par —zy. On
constate que certains "bouts" de chemin rentrent et sortent dans B, sans passer par
—xp. On peut finalement assurer :

v NB,) = | Jai, bl

icl

Ou - a chaque fois - a; est I’instant pour lequel v commencge a rentrer dans B,, et b;
représente 1’instant ou le chemin sort de cette méme boule. Que ce "bout" de chemin
croise —z ou non. C’est-a-dire que pour tout i € I, a; < b;

Poursuivons. On s’intéresse désormais a v~ !({—x¢}) car on veut homotoper v a un
chemin qui ne le rencontre pas.

On sait déja :
{—3:0} C Br

7 {=wo}) v TH(By)

Puis :

v ({~ao}) € | |Jas, bil

icl
Ce qui nous donne le résultat :

v {=zo}) = | |ai, bl Ny ({—x0})

iel
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Puis :

v {=zo)) = | (Jai, ilny " ({=20}) ) 1)

iel
On sait que ]a;, b;[ Ny~ 1({—xo}) est un ouvert de 'espace v~ ({—z0})
On obtient donc ici un recouvrement ouvert de v~ ({—x¢})
Or on sait que {—¢} est fermé. On obtient par continuité de v que v~ ({—z¢}) est

un fermé de [0, 1].
[0, 1] étant lui-méme un compact, on en déduit que :

7~ ({—x0}) est un fermé borné de R

C’est-a-dire puisque R est de dimension finie (égale a un) qu'on a :

7~ ({~z0}) compact

On en déduit que 1’équation (1) nous exhibe le recouvrement ouvert d’un espace quel-
conque.
On peut utiliser la définition de la compacité pour extraire de ce recouvrement un re-

couvrement fini.
Autrement dit, on a I’existence d’un m € N* tel que :

v ({—zo}) = |_| (Jai, biln vy ({~=0}) )

Ce qui signifie sur le dessin que y ne passe qu’un nombre fini de fois sur —z(. Ceci
nous permet de travailler sur tous les intervalles (finis) |a;, b;[ et d’homotoper 7lj4,, 5,
aun chemin 7lj,,, 5, qui lui ne passe pas par —x.

De cette maniére on aura homotopé ~y & un lacet qui vérifie (*) et nous aurons v = 0
comme souhaité.

Soitdonc i € [1, m]
Cherchons a homotoper 7j,,, 5,| @ un chemin ne croisant pas —x

Comme expliqué précédemment, on peut représenter |},,, p,[ insi :
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FIGURE 6.5 — L'ouvert 74, , 5,

Sur la figure ci-dessus, on fixe un bout du lacet v qui passe par —zg en rentrant dans la
boule B,..

Posons 7lj4,, 5, le bout de chemin qui va de y(a;) a y(b;) en restant sur le bord de
la boule B,.. On peut le représenter :

FIGURE 6.6 — 7q,, v,

On sait qu’on peut homotoper le chemin bleu vers le chemin vert. Ce faisant, le bout
de chemin 7|},,, p,[ se transforme en Jj,,, 5,]-

118



Ainsi, on a homotopé 7|4, »,[ @ un chemin qui ne croise plus —x. En effectuant le
méme raisonnement pour tout ¢ € [1,m], on a bien v homotope a 4 mais ce dernier ne
croise jamais I’opposé de la base du lacet.

On peut méme assurer que ces deux lacets sont homotopes relativement a :

m

[Ov 1] \ |_| ]aiv bi[

=1

Car en dehors de la boule, les chemins coincident. Illustrons cela a 1’aide de la figure
6.4
En effet si I’on retrace cette figure :

FIGURE 6.7 — Le lacet -y qui passe par —zg

o

FIGURE 6.8 — Le lacet 7 qui ne passe pas par —xg
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On sait que 7 et v sont homotopes car le sont par morceaux et les points d’éventuelle
discontinuité (tels que les a;, b;) n’en rencontrent en fait pas.

Mais on a montré avec la premiére partie que sous I’hypothese (), tout lacet est trivial.
Or # respecte la condition (x)

Doncona:

Par transitivité, tout lacet 7, qu’il vérifie ou non la condition (x), est homotope au lacet
constant.

On en déduit que 71 (S™) est trivial (on omet le point de base, la sphére est connexe par
arcs).

Autrement dit :
Yn > 2, S™ est simplement connexe

6.5 Groupe Fondamental de I’Espace Epointé R"*

On s’intéresse ici au groupe fondamental de I’espace véctoriel réel de dimension n
dont on a omis le point 0.

Soitdoncn > 1

Posons les deux applications :

R — §nl
;- {

. — /|l

Qui ramene tout élément vers son vecteur directeur unitaire, et :

Sn—l — R"*
g.{ T — T

L’injection canonique. On a :

fo . Snfl — Snfl
g: r — T

Qui est égale a I’identité et :
R™ — R™*
s
v — xf |z
Qu’on peut homotoper vers I’identité avec cette homotopie :
0,1] xR*™ — R"*
H .

sx(llel~1)te
(s,2) El
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On a donc R™* et S”~! deux espaces qui ont méme type d”homotopie.
On en déduit que leurs groupes fondamentaux sont isomorphes.
Ainsi :

Vn >3, m(R"") = {0}

Et:
7T1(R2*) = 71'1(81) =7

R* n’est pas connexe par arcs. On a en revanche :

Vag € R*, m(R*,z¢) = {0}
Ce qui est vrai mais pas tres intéressant. Un autre espace qui I’est plus nous attend.

6.6 Groupe Fondamental du Tore T

Le Tore est un espace topologique. On note cet espace T™ (ou n € N*) et celui-ci est
construit comme le produit direct de n cercles S*.
On peut représenter cet espace avec n = 2 car il s’agit d’une surface plongée dans R? :

FIGURE 6.9 — Le Tore en dimension deux T2

Le Tore T™ étant construit comme produit de n cercles, on a :

7 (T") = m (St x ... x S1)
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On utilise le théoréme sur le groupe fondamental d’espaces produits (vu a la fin du
chapitre 5), et 'on a :

1 (T") = 1 (SH x . xm (S =Zx ... X Z

Puis finalement :
m (T") =72"

En particulier, 71 (T?) est égal a Z2
Si I’on regarde la figure ci-dessus, cela ne parait plus si abstrait.

Il y a en effet les lacets triviaux, il y a ceux qui "attrappent” le Tore en se placant
sur la tranche de cercle de ce dernier, ce qui nous donne un premier groupe de lacets,
ainsi que ceux qui sont "posés" sur le Tore.

On a donc deux groupes de lacets et si le groupe fondamental du cercle compte le
nombre de tours faits, celui du Tore compte le nombre de tours executés selon la tranche
du cercle mais aussi selon le haut du Tore. Cela simultanément d’ou le groupe fonda-

mental isomorphe 2 Z?2
Voici une illustration de ces dires :

FIGURE 6.10 — Les deux tours possibles sur le Tore T?

La "tranche de cercle" désigne le lacet rouge et "posés sur le Tore" fait référence au
lacet bleu.

6.7 Groupe Fondamental de I’Espace Projectif Réel P, (R)

Soit n > 2. L’espace projectif P, (R) représente I’ensemble des droites vectorielles de
Rn+1

Il nous est possible de le définir ainsi :
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L’espace projectif réel P, (R) est I’ensemble des vecteurs de norme égale & un, a
multiplication par —1 pres.

Détaillons ceci. On cherche 1’ensemble des droites de R*+1.

Pour cela les vecteurs de norme 1 suffisent. Autrement dit, ’ensemble des points de
S™ suffisent pour avoir toutes les droites possibles. On en a malheureusement deux fois
trop dans cette configuration.

En effet, a g un point donné de S™, on décrit une seule direction mais deux droites.
Celle portée par le vecteur xy comme prévu, mais aussi celle portée par —zg.

Autrement dit, on a :
P,(R) =S"/U,

Ou Uy = {—1,1}. On quotiente I’ensemble des directions par les deux destinations
possibles. Ceci nous permet d’obtenir I’ensemble des droites (et non plus des direc-
tions).

Considérons désormais 1’action :

UyxS* — S
(e,2) — ex

On affirme que cette action est discréte et continue. Développons-le :
* ’action est continue

Soite € {—1, 1} fixé.
L application :

s — S”

(e,2) — ex
est clairement continue. Notre action 1’est donc tout autant (par définition).
* [’action est discrete
Soit x € S™ fixé. Soit € un élément de U, différent de 1’élément neutre. On a donc
icie=—1
Soit 7 > 0 un nombre positif.
Posons :

V =B(z,r)NS"
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Un voisinage ouvert de x.

Pour r suffisamment petit, (par exemple plus petit que 1/3) le voisinage V' couvrira
moins de la moitié de la surface de la sphere. De cette maniere, le voisinage n’atteint
aucun de ses points opposés.

Nous aurons ici :

o(V)={e-z, 2eV}={-12,2€V}={-22€eV}=-V

Un autre ensemble totalement disjoint de V'

Autrement dit, on a montré le prédicat :

Vz € S”, Ve € Uy \ {1}, 3V € V(z), ¢(V)NV =0

C’est-a-dire que notre action est discrete.

Notre action est donc libre et discréte. On a de plus S™ un espace connexe.
On en déduit par le théoreme de caractérisation des revétements (voir page 58), que
’application :
[ s — P,(R)
b { r — D,

qui a chaque élément de S™ associe son orbite pour 1’action considérée - ce qui repré-
sente la droite portée par I’élément de S™ - est un revétement.

On sait de plus que :
Aut,(S™) = U,

On a désormais notre revétement a deux fibres, dont ’espace total est S™, et la base
est P,(R)

La question que nous sommes désormais en droit de nous poser est celle-ci : sommes-
nous ou non en situation galoisienne ?

Essayons de le montrer :

On a clairement S™ 1’espace total, connexe par arcs.
Soit D, une droite de P, (R). Soient a, b € p~*({D,.}).
Autrement dit, on a a, b deux vecteurs de R™+1 unitaires, tels que D, peut étre portée

par chacun de ces deux vecteurs.

On a donc :
a € {z,—z}
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be{zx,—x}

Dans tous les cas possibles, on a I’existence d’un unique élément ¢, de {14, —I;} tel
que :

b=1(a)

Autrement dit, nous sommes dans le cadre galoisien.
Puisque nous avons montré que la sphére en dimension n > 2 est simplement connexe,
on peut assurer :

m(X) = Aut,(E)

Ce qui signifie dans notre cas :

m1(Pr(R)) = Uy

C’est-a-dire que le groupe fondamental de 1’ensemble des droites dans R”** contient
deux éléments. Il existe seulement deux types de lacets sur cet espace qui sont non-
homotopes.

6.8 Groupe Fondamental du Ruban de Mobius

Le Ruban de Mdbius est un espace topologique non-orientable. On peut I’imaginer et
méme le construire.

11 suffit de prendre une feuille, d’en découper une bande ce qui nous donne un rectangle
plein en dimension deux.

On recolle ensuite les deux largeurs opposées mais en recollant le point gauche du bas
avec le point droit du haut et le point droit du bas avec le point gauche du haut.

La figure ci-dessous I’illustre : les deux fleches rouges sont les mémes.

FIGURE 6.11 — Construction d’un ruban de Mdbius
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Une fois cette figure construite, on replie le ruban sur lui-mé&me selon 1’axe pointillé
pour obtenir une surface a deux faces. On a construit notre ruban de Mobius.

FIGURE 6.12 — Ruban de M&bius constuit

On s’intéresse donc au groupe fondamental de cet espace. Commengons par remarquer
qu’il est clairement connexe par arcs, donc connexe.

Il nous sera aussi utile de le paramétrer. Commencons une description plus détaillée de
cet espace.

On peut commencer par poser la bande dans R? :

B=Rx][-1,1]

Dont voici la représentation :

FIGURE 6.13 — Notre bande B
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Si cette bande devait représenter notre ruban de Mdbius, il nous faudrait la quotienter
par la relation d’équivalence sur R? :

(x1,91) R (22,92) <= 3k € Z, (x1,y1) = (z2 + K, (—1)k3/2)

De telle maniére a ce que si (z,y) € B:

Yk €Z, (z,y) = (xz +k, (=1)Fy)

Effectivement, ce faisant, on a bien "recollé" les deux bords présents sur la figure 6.9.
Lorsque I’ordonnée croit suffisamment, on revient au point de départ mais dans I’ autre
sens. Progressons encore d’une unité et on revient au point de départ.

Voici une illustration :

FIGURE 6.14 — Déplacement sur le ruban de M&bius

De cette maniere, tous ces points-la sont les mémes. En effet étre d’un c6té ou de 1’autre
de la surface, s’il s’agit du méme point, ne change rien.
On a donc construit notre Ruban de Mobius.

On peut ainsi considérer 1’action sur la bande B = Rx [—1,1] :

{ ZxB — B
(kv(xay)) — (Z+ka (71)]6?/)

Dont ’ensemble des orbites B/Z, décrit I’espace M du ruban de Mgbius.
Comme annoncé précédemment, M est connexe par arcs. M est donc connexe.
Z agit clairement de maniere continue sur B.

En effet, a k € Z fixé, cette application :

be - { B — B
L @y) — (@t k, (DY)
est clairement continue.
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L action est de plus discrete. Effectivement, si (z,y) € B est fixé, alors quel que soit
k € Z*, il existe un voisinage ouvert de (z,y) de telle maniére a avoir :

¢k(V) NV=>0

Par exemple :
V= B((z,y),7)

Ou r est un réel positif suffisamment petit (1/2 fait ’affaire).

En effet, k£ étant non nul, tout point dans V' ayant pour premieére coordonnée a se verra
ajouter k dans ¢y (V).

Et pour r > 0 inférieur a un demi, on a une intersection vide.

FIGURE 6.15 — V n’intersectant aucun ¢ (V)

De cette maniere, aucun ¢ (V') n’entre en contact avec V. On a montré ici que notre
action était discrete.

On a donc une action discrete et continue. On en déduit par le théoreme de caracté-
risation des revétements que 1’application :
B — M
p: (

z, y) — O(m,y)

Qui a tout élément de la bande associe son orbite pour 1’action considérée, est un reve-
tement et nous avons de plus que :

Auty(B) =7
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Il nous reste a observer si nous sommes ou non en situation galoisienne avec ce revéte-
ment.

Soit (z,y) € M

Soient (a1, az), (b1,b2) € p~*({z,y})

Existe-il un unique ¢y, € Aut,(E) tel que ¢ (a) =?
Puisque a et b sont dans la méme orbite, on a :

3k € Z, (bi,bs) = (a1 +k, (—1)"as)
Il nous suffit de poser ensuite :

) B — B
¢k'{ (z,y) — (z+k (-1)y)

De cette maniére, on a bien ¢ (a) = b de plus, puisque tous les ¢y, sont de cette forme,
on a unicité d’un tel élément du groupe d’automorphisme de p.

On est donc placé - avec ce revétement - en situation galoisienne.

Il nous reste a voir si B est simplement connexe ou non.
Pour cela, on peut poser :

f: B — {0}
’ r — 0
J {0} — B
g r — T
g est I’injection canonique ici.
Ona: 0 0
0y — {0
fog { 0 — 0

Qui est donc égale a I’'indentité. Puis :

B — B
gof: Tz —

o

g o f est donc I’application nulle. Voici son homotopie a I’identité :
H:{ [0,1]xB — B

(s,z) > sz

On a donc montré ici que B avait le méme type d’homotopie que {0}. B est donc
contractile et on en déduit :

m(B) = {0}
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On a donc B simplement connexe. Il nous suffit d’appliquer notre théoréme pour
conclure :
Ona:

m(X) = Aut,(E)

C’est-a-dire ici :
m (M) = Aut,(B) = Z

Ce qui signifie :
1 (M) =7

Le groupe fondamental du Ruban de Mobius est donc 1’ensemble des entiers relatifs.
On remarque que le ruban de Mobius possede le méme groupe fondamental que le
cercle.

On le voit sur la figure 6.10, sur laquelle d’ailleurs est tracé un cercle noir au centre. Si
I’on veut partir d’un point et y revenir, on doit effectuer un nombre entier de tours de
Ruban et retrouver la base du lacet ensuite.

On a montré que le groupe fondamental du Ruban de Mébius était le groupe Z.

6.9 Groupe Fondamental de la Bouteille de Klein

Apres le Ruban de Mobius, on s’intéresse a la Bouteille de Klein qui est une surface
topologique qui ne posseéde ni intérieur ni extérieur. Voici une premiere figure de cet
espace :
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FIGURE 6.16 — Surface de la Bouteille de Klein dans R3

Commencons par une premiere remarque, cette illustration n’est qu’un objet qui nous
permet d’imaginer la Bouteille de Klein, mais celle-ci vit en dimension 4. En effet, on
ne peut normalement pas intersecter une surface avec elle-méme. On fait exception ici
pour pouvoir imaginer la bouteille comme un objet de dimension 2, plongé dans 1’es-
pace de dimension 3.

Normalement, la bouteille "trouve la place" pour revenir sur elle-méme sans s’intersec-
ter (elle la trouve dans la quatrieme dimension).

Commencons par construire et paramétrer un tel objet.

Voici comment on opere :

On commence par se donner un petit carré dont les bords sont orientés. Une fois recol-
1és, cela nous donnera bien une surface dans R3

FIGURE 6.17 — Construction de la Bouteille de Klein, premiere étape

On commence par recoller les cotés rouges ce qui nous donne un cylindre :
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FIGURE 6.18 — Construction de la Bouteille de Klein, seconde étape

On aimerait ensuite recoller les cotés bleus mais malheureusement nos fleches sont mal
orientées (et on obtiendrait un Tore en les recollant si elles étaient dans le méme sens)...

Notre but est donc de tirer le cylindre du bas, pour le faire passer a I’intérieur du tube

lui-méme. Ceci nous permettra d’avoir nos fleches bleus dans le méme sens (avec le
cercle bleu du bas emboité dans celui du haut).
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FIGURE 6.19 — Construction de la Bouteille de Klein, derniere étape

Apres passage a I’intérieur et recollement, comme illustré précédemment, on obtient
notre Bouteille de Klein :
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FIGURE 6.20 — Bouteille de Klein

Interrogeons-nous désormais sur son groupe fondamental. Pour cela, reconsidérons la
Bouteille de Klein sous forme d’un patron (comme sur la figure 6.17).
On peut essayer de le paramétrer notamment en rajoutant des axes sur cette figure :

Ya
Ll
N S | 1
_1:'

FIGURE 6.21 — Paramétrisation de la Bouteille de Klein

134



On remarque avec cette paramétrisation que lorsque yg 1’ordonnée est fixée, les points
(x, yo) et (x + k, yo) ol k est un entier relatif, sont confondus. En effet les fleches
rouges sont orientées dans le méme sens :

L ———

$+k7y0)

FIGURE 6.22 — Déplacement selon I’axe des abscisses sur la Bouteille de Klein

A T’inverse, lorsque - a abscisse fixée - on se déplace selon 1’axe des ordonnées, on
constate la méme construction que pour le Ruban de Mobius :
Fixons donc I’abscisse x on constate que 1’on a quelle que soit I’ordonnée y :

Vk € Z, (x0,y) = ((—1)*x0,y + k)

Cela s’observe sur le dessin :

(x‘f‘kﬁl}o)'

FIGURE 6.23 — Déplacement selon I’axe des ordonnées sur la Bouteille de Klein

Avec ces résultats et notre paramétrisation, on peut assurer que la Bouteille de Klein
nous est donnée par le quotient du plan R? par les deux relations :
Y (21,91), (v2,92) € R?:

(r1,91) Ra (22,y2) <= Tk, € Z, (x1,y1) = (w2 + K, y2)

(z1,91) R2 (22,92) = 3k, € Z, (w1,11) = ((—1)"z2, y2 + k)
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On peut donc considérer les deux applications :

{ R2 — R2
(z,y) — (x+1,y)

ﬁ'{ R?2 — R?
(xvy) — (—1’, Y+ 1)

Posons G le -sous-groupe de Isom(R?) (ensemble des isométries de R? dans lui-
méme) engendré par ces deux applications.

On remarque un premier résultat intéressant :
VY (z1,51), (22,92) € R?:
(z1,51) Ra (w2,2) <= Tk, € Z, (z1,41) = o ((w2,92))

(z1,91) Ro (22, y2) = Tk, € Z, (z1,y1) = B (2, y2)

On note que 1’on a de plus :

B*laﬁ — 0(71

En effet, soit (z,y) € R?
Ona:

B aB(x,y) =B a(—z, y+ 1) =" 1 -z, y+1)=(z—1, y)

a_l(may) = (.23 -1, y)

D’otl le résultat annoncé précédemment (on passe 3! de I’autre coté) :

aff = Ba~t

A T’aide de cette égalité, on a un objet qui nous permet de permuter les « et les 3. On
en déduit ce résultat :

Vo e G, A(m,n) € Z, p =a"p™

On peut désormais poser un isomorphisme de groupes :

Zx?l — G
(n,m) +—— a”B™
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Si certains se demandent d’oll vient ce nouveau groupe Z x Z, il désigne seulement Z>
muni d’une loi de composition interne qui n’est pas usuelle.
En effet, apres un bref calcul a la main, on remarque que 1’on a pas :

(04"1 ﬁml)(ang 6m2) — an1+n26m1+m2

Mais plutdt que I’'on a :

(™ ™) (a2 fM2) = Cknﬁr(fl)"?m1ﬁml+m2

Ainsi, dans Z x Z muni de saloi %, on a :
(n1,n2) * (M1, m2) = (n1 + v(n2)(m1), mi +mo)
Oul'ona:
- { 7 — Aul(Z)

k —

Et, quel que soit k dans Z :

Jz — Z
LT s (—DR

De cette maniére, on a bien isomorphie entre Z x Z et G car les lois de compositions
internes concordent.

Remarque. On appelle ce "changement de loi" dans un espace produit de deux groupes
A et B (ici on a deux fois Z) le produit semi-direct de A et B noté A x B, ou alors de
maniere moins implicite :

Ax,B

Ou I’on a donc :

V(al,bl), (a27b2) cA Xy B, (al,bl) * (ag,bg) = (a1 -l/(bl)(ag), bl . bg)

Avec v : B — Aut(A) un morphisme (Aut(A) est I’ensemble des isomorphismes de
A dans lui-méme, sans rapport avec Aut,(A) le groupe d’automorphisme).

On peut laisser le plaisir au lecteur de vérifier que nous avons bien un telle loi de
composition interne dans notre exemple.
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Porsuivons. On a donc G isomorphe a Z x Z
On peut finalement considérer 1’action de groupe :

{ GxR? — R?
(@™, (z,y)) = a"f™(z,y)

Dont I’ensemble des orbites R? /G décrit K 1’espace topologique de la Bouteille de
Klein. En effet, K est quotient des deux relations d’équivalences engendrées par « et
B ce qui nous donne le groupe G

On peut réécrire de maniere plus concrete cette action :

{ (ZxZ)xR* — R?

((TL, m)a ('Tvy)) — ((_l)mx+n7 y+m)
Cette action est continue, puisqu’a (n, m) dans Z? fixé, 1’application :
R? — R?

(mvy) — (<_1)"Lm+n7 y+m)

Est clairement continue.
L’action est discrete. Motrons-le :

Soit (z,y) € R?. Soitg € G \ {e}
Peut-on trouver un voisinage de (x, y) tel que son image par ¢, lui soit totalement dis-
jointe ?
On peut identifier g 4 un couple (n, m) et puisque ¢, 7 Iz, ona:
(n,m) # (0,0)

Sim # 0, le voisinage V' = B((z,y), r) pour r suffisamment petit convient. En effet
les ordonnées de ¢4((z,y)) et de (z,y) different de m qui est non nul. Illustrons-le :

Via,y)

oV O
é)

0

FIGURE 6.24 — ¢4(V) disjoint de V. Action discréte
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On a par exemple ici » = 1/2, ce qui nous assure que les différentes images du voisi-
nage, sont disjointes de ce dernier.

Dans le second cas ot m = 0, on an # 0 et on se retrouve avec I’action :

{ R2 — R2
(x,y) — (+n,y)

Ce qui fonctionne exactement de la méme facon. On passe juste de 1’axe des ordonnées
a celui des abscisses.

Le voisinage B((z,y),r) ou r < 1/2 convient de la méme maniére que dans le cas
m # 0.

L’action est donc discrete. Par le théoréme de caractérisation des revétements, I’ ap-
plication :
. R? — K
(@,y) = Oy

Qui a chaque élément de R? lui associe son orbite dans R? /G identifié a K, pour
I’action considérée, est un revétement.
On sait de plus que :

Aut,(R*) =G =7Zx7Z

Il nous reste a vérifier que nous sommes - avec ce revétement - en situation galoisienne.
Soit donc k € K un point sur la Bouteille de Klein.
Soient a, b € p~1({k}) deux éléments envoyés sur la méme orbite (celle de k).

On sait que les éléments de Aut,(R?) sont de la forme :

an/37n

De plus, puisque les deux éléments a et b sont envoyées dans la méme orbite, on a :

dJgeG, g-a=b

C’est-a-dire qu’il existe (n,m) € Z? vérifiant :
(bla b2) = ((_1)7na1 + n, az + m)
(On aposéicib = (by,b2) eta = (ay,as))
On constate qu’il existe un unique élément ¢ de Aut,(R?) qui vérifie :

¥(a) =b
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Qui nous est donné par :

On est donc bel et bien en situation galoisienne.
On a déja montré précédemment que R? était simplement connexe.

On a donc en appliquant notre théoréme vu au chapitre 4 :

m(K) = Aut,(R*) =G =2Zx, Z

Ainsi, le groupe fondamental de la Bouteille de Klein n’est rien d’autre que le produit
semi-direct de Z sur lui-mé&me noté Z x, Z avec v le morphisme :

| Z — Aut(Z)
”'{ Eo— {l— (=11}

On a calculé le groupe fondamental de 1a Bouteille de Klein. Celle-ci étant connexe par
arcs,ona:

m(K)=27 %, Z

C’est notre premier espace qui présente un groupe fondamental non abélien.

6.10 Groupe Fondamental du Huit

Dans cet exemple, notre espace est décrit ci-dessous :

FIGURE 6.25 — Lemniscate de Gerono ou Espace topologique du Huit

Il s’agit du lemniscate de Gerono, déja vu dans le chapitre 2. On peut le définir comme
union de deux cercles par une relation d’équivalence, mais nous choisierons notre an-
cienne paramétrisation donnée par :

X = {(sin(27t), cos(2nt)sin(27t)), ¢ € [0,1]}
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Ainsi sera défini I’espace du Huit ou bien du lemniscate. On se propose de calculer son
groupe fondamental.

Pour cela, nous devons d’abord construire un nouvel espace et oublier notre Huit pour
le moment.

Cet espace que nous appellerons Arbre et que nous désignerons par la notation A
contenu dans R? est défini par récurrence sur N. On appellera alors Ag, A1, etc... les
espaces successifs et A en sera la réunion.

*xan =0, on pose Ag = {0}
xan =1,onpose A; = ([-1,1] x {0}) U ({0} x[-1,1))

Lorsque I’on a construit A,, ot n € N*, on construit A, ainsi :

A toute arréte qui posséde une extrémité libre, on trace - a 1/3™ de cette extrémité - un
segment de longueur 2/3™ dont I’arréte considérée est la médiatrice.

Pour comprendre cette construction, construisons et dessinons les premiers A;.

FIGURE 6.26 — A;

Pour construire A, a partir de A;, on commence par remarquer qu’on a quatre arrétes
a extrémités libres. On peut donc tracer A comme évoqué dans la récurrence :
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FIGURE 6.27 — A1 U Ay

On peut en déduire son expression formelle :

Ag = {2/33x[~1/3,1/3] U {~2/3}x[—1/3,1/3] U [~1/3,1/3]x{2/3} U [~1/3,1/3)x{~2/3}

Poursuivons, pour n = 3 on peut encore une fois tracer sur chaque extrémité libre une
nouvelle médiatrice :

-

L

FIGURE 6.28 — A1 U Ay U A3
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Dont on peut encore une fois déduire 1’expression formelle :

As = {8/9¥x][~1/9,1/9] U {~8/9}x[~1/9,1/9] U[~1/9,1/9]x{8/9} U [~1/9,1/9]x{—8/9}
U {—2/9}x[5/9,7/9] U {2/9}x[5/9,7/9] U {2/9}x[~T7/9, —5/9] U {—~2/9}x[~7/9, —5/9]
U[5/9,7/91x{—2/9} U[5/9,7/9]x{2/9} U [~7/9, —5/9]x{2/9} U [~T7/9, —5/9)x{~2/9}

On remarque que le résultat peut tres vite se complexifier. En espérant que le lecteur
ait saisi la maniere dont on construit I’ Arbre, on le représentera ainsi :

e
e
Tt it
. T,
a 1
T+ +r+
7
ot

FIGURE 6.29-A= |J A4,
neN

A défaut de pouvoir I'illustrer totalement.
On munit cet arbre A d’une distance d définie ainsi :

V(z,y) € A, d(z,y)=n

Ou n—1 est le nombre d’arrétes qui séparent x et y (par convention, (—1) est le nombre
d’arrétes séparant un point de lui-méme). Voici quelques exemples pour illustrer cette
distance :
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FIGURE 6.30 — La distance d

Sur cette figure :

— 7 et x5 sont sur la méme arréte, non confondus, donc d(x1,x2) =1

— 7 et x5 sont séparés par une arréte. On a donc d(x1, x3) = 2

— 11 et x4 sont séparés par deux arrétes. Tout comme z3 et x4. On adonc d(z1, 24) =
d(Ig, .174) = d(I27I4) =3

— 1 et z7 sont confondus sur la méme arréte, on a donc d(z1,21) =0

Commengons par montrer quelques propriétés sur cet espace métrique (A, d).
* A est connexe

Montrons que A est connexe. Pour cela on opére par récurrence :

n

Pn:” U A; est connexe”
i=0
* Initialisation
On a clairement Ay connexe car ne contient qu’un seul point. On a de méme A,

connexe comme réunion de deux segments qui s’intersectent (bien que nous consi-
dérons la nouvelle topologie métrique engendrée par d).
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* Hérédité
Soit n € N*. Supposons P,,. Montrons P,, 1

Commencons par énoncer cette propriété (dont la preuve est facilement trouvable) :

X est un espace connexe < Vf € C(X,{0,1}), f est constante

11 nous faut donc montrer que toutes les applications continues a arrivée dans {0,1} :

n+1

f:UJ A —H{o1}

i=0
Sont constante.

Soit donc f une telle fonction.

n
On sait que |J A; est connexe. f restreinte a cet espace est donc constante.
i=0
On peut donc poser a € {0,1} tel que :

Vo € UAi’ flz)=a

1=0

Posons désormais :

Anir = || Cjnn
jeJ

Ou chaque C; ,, 11 est une composante connexe par arcs de A,, 1 avec ainsi J de car-
Jyn+ +

dinal fini dans cet exemple (on ne trace qu’un nombre fini de composantes a chaque

génération).

Par construction de A, on a :

Vj S J, ij-HOU A,’ #@

=0

On a donc deux espaces connexes dont I’intersection est non vide.
Ainsi :
Jzo € Cjn+1, f(20) =a

n
Car en effet, on peut prendre xy € C; ,+1 N |J A; eton adonc f constante égale a a
i=0

sur cet ensemble. D’olt f(zg) = a
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Or on sait que Cj 41 est connexe.
On a donc f constante sur C'j 1 tout en sachant qu’elle prend la valeur a en un point
de cet espace.

Ainsi :
f ‘Cj,n+1 =a
j € J étant arbitraire et J étant de caridnal fini, on a donc :

VielJ VeeCjuy, flz)=a

Vx € U Cint1, flx)=a

jeJ

C’est-a-dire :
Vo € Apt, f(z) =a

Puis :
n+1
Vo € U A, fl@)=a
i=0
n+1
C’est-a-dire que f est constante sur |J A;. La propriété étant vraie quelle que soit
i=0

n+1
fec ( U A4, {0, 1}), on a finalement :
i=0

n+1
U A; connexe.
i=0

L’hérédité est donc montrée.

On en déduit que P,, est vraie pour tout n € N, puis que :

A est connexe.

A étant I’espace total, il est donc fermé et surtout ouvert. On en déduit qu’il est égale-
ment connexe par arcs (car connexe et ouvert). On peut alors toujours relier continiie-
ment deux points qui appartiennent a A.

On montre ensuite que A est simplement connexe.
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Pour ce faire, on se propose de montrer A contractile.

Posons alors nos deux applications continues :

f:{A — {0}

r — 0

g:{{O} — A

0'—)0,4

Ou ici 04 désigne le centre de notre Arbre.

On obtient : 0 0)
—
fog: { 0 — 0

Egale donc, a I’identité, et :

of-A_>A
g'm»—>0A

Que I’on peut homotoper a I’identité par 1’application :

[ 0,]]xA — A
H{ (5,2) — (s)

Ou 7, est un chemin qui relie x a2 04 dans A. On a bien H continue et donc A possede
le méme type d’homotopie qu’un point. Notre Arbre est contractile.

On en déduit par notre corollaire sur ces espaces contractiles, que notre Arbre A est
simplement connexe.

Ces résultats préliminaires étant vus, on peut faire désormais le lien entre A et notre
espace du Huit X.

Pour cela on commence par orienter nos deux espaces :
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FIGURE 6.31 — 1’ Arbre A orienté

On n’a pas vraiment la place de le faire sur chaque arréte donc on le trace sur les plus
grandes mais il faut bien imaginer que chaque arréte verticale est orientée du bas vers
le haut, et que chaque arréte horizontale est orientée de gauche a droite.

FIGURE 6.32 — Le Huit X orienté

Le but est désormais d’envoyer chaque arréte orientée sur I’'une des deux boucles du
Huit.
On opere ainsi :

Soit z € A un point dans ’arbre. Il appartient nécessairement a une arréte de lon-
gueur strictement positive.
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On peut donc poser x € [a,b] ol [a,b] est une arréte verticale ou horizontale (for-
mellement, € {c} x [a,b] ou © € [a,b] x {c}) avec a < b et a, b deux points qui
intersectent d’autres arrétes.

On peut poser ensuite :
T—a

b—a

De telle sorte a avoir t,, € [0, 1] et :

x=(1—ty)a+t;b

On peut finalement considérer 1’application :

A — X
Piy L (sin(2wt,,), cos(2nt, ) sin(27t,)) si [a, b] est vertical
(—sin(27t, ), — cos(2wt,,) sin(27t,))  si [a, b] est horizontal

De telle sorte a envoyer toute arréte verticale sur la boucle de droite et toute arréte ho-
rizontale sur la boucle de gauche.

Si z se situe au début (resp. a la fin) d’une arréte, alors nous aurons t, petit (resp.
grand) et donc p(z) proche du centre du lemniscate.

Il faut imaginer que lorsque 1’on se déplace sur le lemniscate et que nous arrivons au
centre de ce dernier, nous avons quatre choix, faire demi-tour, aller tout droit, a droite
ou a gauche.

On a correspondance avec I’arbre grace a I’orientation (les fleches) et 1’identification
(les couleurs). En arrivant a une intersection d’arrétes, on se retrouve face au méme
dilemme.

On se doute que p est un revétement. Il nous faut pour le montrer considérer 1’ac-
tion qui, a un point donné sur 1’arbre x, est capable de le déplacer sur n’importe quelle
autre arréte de I’arbre avec le méme ¢,

Il nous faut pour ce faire introduire un nouveau groupe. Le groupe libre Lo

Voici comment on le défini :

On se donne deux générateurs : a qui, & un point donné x € A lui associe le point qui
possede le méme ¢, sur I’arréte horizontale la plus proche en suivant I’orientation des
fleches; et b qui, 2 un méme point x, lui associe le point qui posseéde le méme ¢, sur

I’arréte verticale la plus proche dans le sens des fleches.

On donne ci-dessous un exemple pour aider a la compréhension :
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++ o2y =+
T R A T
T T
Tt RN
rse
++

FIGURE 6.33 — Les applications a et b

Sur la figure précédente, on a avec la définitionde a et b :

— a(z3) =z, eta(zs) = a1
— b(l‘g) = T4, €t b(LUQ) =24

On pose L, le groupe libre sur Z engendré par ces deux éléments :

Ly, = {Ii a®b?, neN* Vie[l, n], (, Bi)€ ZQ}

Dit de maniere plus explicite, les éléments de Lo sont exactement les suites finies :

a®t bﬁl a2 b52 g% bﬁn

On peut également commencer par b ou finir par @ en autorisant o ou 3, nul.

On interdit simplement les simplifications triviales (par exemple, avoir o; = k, 5; =0
et a;41 = —k). Cela correspond sur ’arbre qu’il n’existe aucun élément de Lo qui
revient sur ses pas.

Ce groupe est appelé également produit libre et noté 7Z % 7. Nous garderons la notation
L2 ici.
Remarquons qu’on autorise dans ce groupe les éléments a~! et b~! qui nous per-
mettent d’aller dans toutes les directions et pas seulement a droite et en haut (le cas de
aetb).
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On peut enfin considérer 1’action :
Lo x A — A
( Hl a®ibbi, x) — H1 a®ibPi(z)

i=
Cette action est continue car est une isométrie (elle préserve la distance d), est-elle dis-
crete?

Pour le montrer, fixons x € X un point dans I’espace du Huit, et g € Lo un élément
du groupe différent de I’identité : g # I

Pouvons-nous trouver un voisinage de x qui est "totalement déplacé” par ¢, ?

Le pire des cas serait que g ne soit composé que d’un seul de ces quatre éléments :
a, b, a” ', b1 (si g est différente de 1’identité, ces quatre éléments sont ceux qui "em-
menent” le moins loin, pour la distance d, une image de son antécédent).

On sait que x appartient a une arréte que 1’on peut noter /. Si = est un point inté-
rieur a cet arréte, il nous suffit de considérer un voisinage de x totalement compris
dans I (ce qui est possible si x est un point intérieur). Si x appartient a I’adhérence de
notre arréte I, alors il nous suffit de considérer un voisinage qui ne comprend aucune
autre intersection que celle sur laquelle x est placée.

¢g(V)

FIGURE 6.34 — Zoom sur un x € A et sur V son voisinage

De cette maniere, ¢, mouvra tous les points du voisinage. En effet, on peut poser :

[e,d] C [a,b]
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Oulc,d =V
On obtiendra ainsi :
¢g(V) = [, d]

Ou [¢,d'] C [a’,b] est inclus dans une autre arréte que [a, b] (car g # I;) et puisque
I'onaa,b]N[a’,b'] =0, on aura :

[e,d]n[c,d] =10

Ce qui signifie exactement :

VNgy(V)=10

Et nous retrouvons bien une action discrete.
On a également remarqué I’ action continue, et on se rappelle qu’on a montré A connexe.
On peut alors utiliser le théoreme de caractérisation des revétements et :

/. A—>A/L2
P r — O,

Est un revétement. On remarque de plus que ’application :

A — X
D . (sin(2wt,,), cos(2nt, ) sin(27t,)) si [a, b] est vertical
* (—sin(27t, ), — cos(2wt,,) sin(27t,))  si [a, b] est horizontal

Associe, elle aussi, a chaque élément de A, son orbite dans A/ Lo, lui-méme identifié
aX.Onadonc:

b =p

Et on sait de plus que :
Auty(A) = Ly

On peut alors poursuivre. Montrons que ce revétement p nous place en situation galoi-
sienne.

Soit donc € X un point sur I’espace du huit.
Soient z; et zo deux éléments de p~!({x}). On sait qu’on a:

ty, =12

On se questionne donc sur I’existence d’un unique élément de ¢ de Aut,(A) (c’est-a-
dire de Lo) tel que :
P(z1) = 2
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21 et zo sont dans la méme orbite. Par définition, il existe donc g € Lo vérifiant :
g-z1 =22

C’est-a-dire :

bg(21) = 22

Mais puisque Lo s’identifie 2 Aut,(A), on a I’existence d’un élément ¢ € Aut,(A)
tel que :

Y(z1) = 22

Pour I’unicité, cela se complique. Commengons par prendre g, g’ € Lo tels que :
g-z1 =22

/
g 21 = %22

C’est-a-dire qu’on a deux "chemins" (ce ne sont pas des chemins au sens vu dans le
chapitre 2) guidés par une succession de a®’ et de b qui envoient tous les deux z; sur
2. On essaye de montrer que ces deux chemins sont les mémes.

Cela vient du fait qu’on travaille sur un arbre. C’est-a-dire que si I’on munit A de

la relation symétrique :
2R = d(z,2') =1

Alors quel que soit le couple de points (x,y) € A, on peut les relier par un unique
chemin (zg, 21, ... z,) avec :

(207 zn) = (‘Thy)
Et surtout :

Vi € [[O,Tl - 1]]7 ZiRZi-l—l

On I'illustre ci-dessous :
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++ ++
T . 21 T
T ‘F ':L. ‘F T
Tt EE
HF
++

FIGURE 6.35 — Amunide R

Ici on a bien x et y reliés par z; et z5. On se rend également compte que ce chemin est
unique. Prendre une mauvaise arréte nous obligera, tot ou tard, a faire demi-tour.

On se sert de ce fait pour montrer que ¢ = ¢'. Si les deux "chemins" étaient diffé-
rents mais amenaient au méme point 2o, alors au moins I’'un des deux contiendrait un
demi-tour; ce qu’on a expliqué impossible dans Lo un peu plus tot (on dit qu’on inter-
dit les opérations élémentaires dans le groupe libre).

On a donc g = ¢’ et unicitié de I’élément ¢ € Aut,(A) (identifié a L) qui vérifie :

Y(z1) = 22

Notre revétement p nous place donc en situation galoisienne.
On a de plus déja montré que A était simplement connexe car contractile, on se retrouve
donc avec le résultat suivant :

771(X) = Autp(A) = L2

Ou de la méme maniere :
m(X)=2Z x Z

Le groupe fondamental de 1’espace du Huit est donc le groupe libre engendré par deux
éléments, basé sur Z.
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Références

On présente dans cet ultime chapitre quelques références qui ont a la fois inspiré et
aidé a I’écriture de cet écrit, mais qui peuvent également servir d’ouverture au lecteur
sur des sujets plus vastes. Je recommande vivement la lecture et la découvertes de ces
nouveaux point de vues sur I’objet mathématique du groupe fondamental.

On retrouve les mémes propositions qui vont un peu plus loin avec le théoréme de Van
Kampen dans [Aud04] qui présente également une panoplie d’exercices qui peuvent
intéresser le lecteur. Une approche plus reliée a la définition du groupe fondamental
qu’aux revétement est présentée par [Lab08]. L’écrit [Lec13] nous introduit le méme
dernier exemple de 1’espace du Huit, ainsi qu’a la définition du groupe libre. Finale-
ment, un site bien construit sur ce theme du Groupe Fondamental nous est introduit ici :
[dSG14]. On peut également citer [eJD17] qui permet et apprend a tracer des figures
sur de tels écrits.

En espérant que le lecteur s’intéresse a ces écrits, je le remercie d’avoir lu jusqu’ici
et espere sincérement que le texte lui aura plu.
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FIGURES

Figure 6.9 :

https:
//latexdraw.com/how-to-draw—a-torus—-in-latex-using-tikz/

Figure 6.12 :

https://tex.stackexchange.com/questions/118563/
moebius-strip-using-tikz

Figure 6.16 :
https://pgfplots.net/klein-bottle/
Figure 6.20 :

https://tex.stackexchange.com/questions/77606/
making-a-labeled-klein-bottle-using-tikz-or-pgfplots
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