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Chapitre 1

Introduction et Rappels

1.1 Motivations et Prérequis

1.1.1 Motivations

Nous étudierons le long de cet écrit, le groupe fondamental et quelques-unes de ses
applications. Il s’agit d’un sujet plutôt abstrait lié à la topologie algébrique mais éga-
lement imagé, rempli d’exemples et souvent même dessiné. Cet objet est né par Henri
Poincaré en 1895.

Ce sujet a la polyvalence de relier les notions de groupes, celles de topologie avec l’uti-
lisation centrale d’aplications continues et se marie bien avec une branche de l’analyse
complexe dans le cas particulier de la dimension deux.

Le groupe fondamental montre son utilité dans la classification d’espaces. On asso-
cie à tout espace un objet : le groupe fondamental. L’idée sera de mettre dans la même
case deux espaces ayant un groupe fondamental similaire, ou de la même manière,
de séparer deux espaces qui n’ont pas le même groupe fondamental (critère de non
homéomorphisme). Il est également présent dans des sujets plus concrets tels que la
théorie des nœuds par exemple.

Le chapitre 1 sera destiné à des rappels, le 2nd, à la définition du groupe fondamen-
tal. Le chapitre 3 portera sur les revêtements dont nous ferons le lien avec le calcul
du groupe fondamental d’un espace dans le chapitre 4. Le chapitre 5 fera référence à
certaines méthodes permettant de calculer le groupe fondamental et le chapitre 6, qui
sera le dernier, introduira des exemples et le calcul concret des groupes fondamentaux
de certains espaces.
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1.1.2 Prérequis

Ce sujet s’adresse à un public ayant déjà quelques connaissances en topologie, et en
groupes. Malgré cela, nous ferons un 1er chapitre de rappels afin d’assurer des bases
communes.

1.2 Rappels et Définitions

1.2.1 Définitions topologiques

1.2.1.1 Notions d’espaces

Définition (espace topologique). Soit X un ensemble. Soit T une famille de parties de
X. T sera dite topologie sur X si :

— ∅ ∈ T et X ∈ T
— A ∈ T et B ∈ T ⇒ A ∩B ∈ T
— (Ai)i∈I ∈ T I ⇒

⋃
i∈I

Ai ∈ T où I est un ensemble.

On appellera ainsi tout ensemble X muni d’une topologie un espace topologique

Définition (ouverts et fermés). Soit X un espace topologique. Notons T sa topologie.
Soit A ⊂ X . A sera dit :

— ouvert si A ∈ T
— fermé si Ac ∈ T

Ici, Ac désigne X \A

Définition (voisinage). Soit X un espace topologique. Soient a ∈ X et V ⊂ X On
dira V voisinage de a s’il existe un ouvert U de X vérifiant :

a ∈ U ⊂ V

Remarque. On notera l’ensemble des voisinages de a ∈ X ainsi : V(a)

Définition (continuité). Soient E, F deux espaces topologiques. Soit f une applica-
tion de E dans F . f sera dite continue si :

∀W ∈ V(f(a)), f−1(W ) ∈ V(a)

On notera l’ensemble des applications continues de E dans F ainsi :

C(E,F )

Proposition. Soient E, F deux espaces topologiques. Soit f une application de E
dans F . f est continue si et seulement si l’image réciproque de tout ouvert dans F par
f est un ouvert de E
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Définition (homéomorphisme). Soient E, F deux espaces topologiques. Soit f une
application de E dans F . f sera dite un homéomorphisme si :

— f est continue
— f est bijective
— f−1 est continue

On dira alors que E et F sont homéomorphes.

Proposition. Tout homéomorphisme est une application ouverte c’est-à-dire que l’image
de tout ouvert par une telle application est ouverte.

Démonstration. Soient E, F deux espaces topologiques et f un homéomorphisme de
E dans F . f−1 est continue de F dans E. On a donc que pour tout ouvert U de E,
(f−1)−1(U) est un ouvert de F . C’est-à-dire que pour tout ouvert U de E, f(U) est
un ouvert de F . D’où f est une application ouverte.

1.2.1.2 Connexité

Définition (connexité). Soit X un espace topologique. Il sera dit connexe si les seules
parties de X à la fois ouvertes et fermées sont X et ∅

Définition (connexité par arcs). Soit X un espace topologique. X sera dit connexe par
arcs si quel que soit le couple de points (x, y) de X , il existe γ ∈ C([0, 1], X) tel que :

(γ(0), γ(1)) = (x, y)

Proposition. Soit X un espace topologique. Il existe (Ci)i∈I où I est un ensemble,
une famille d’espaces connexes (resp. connexes par arcs) deux-à-deux disjoints tels que
X soit la réunion de ces espaces. Chaque Ci sera appelé une composante connexe.

Proposition. La propriété de connexité (resp. par arcs) est un invariant topologique.
C’est-à-dire que l’image de tout connexe (resp. par arcs) par une application continue
d’un espace topologique vers un autre est connexe (resp. par arcs)

Proposition. Soit X un espace topologique et soit A ⊂ X . Si A est connexe par arcs,
alors A est connexe. On a de plus équivalence de ces notions dans le cas où A est une
partie ouverte de X .

1.2.1.3 Compacité

Définition (recouvrement ouvert). Soit X un espace topologique. On appellera recou-
vrement ouvert de X tout famille d’ouverts (Ui)i∈I ∈ P(X)I telle que :

X =
⋃
i∈I

Ui

Un tel recouvrement ouvert sera dit fini si I est de cardinal fini.
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Définition (compacité). Soit X un espace topologique. X sera dit compact si de tout
recouvrement ouvert de X on peut extraire un recouvrement ouvert fini de X

1.2.2 Rappels sur les groupes

Définition (loi de composition interne). Soit G un ensemble. Soit ∗ une application
définie sur G2. On la dit loi de composition interne si son image est incluse dans G.

Définition (groupe). Soit (G, ∗) un ensemble muni d’une loi de composition interne.
On dit que (G, ∗) est un groupe si :

— ∀x, y, z ∈ G, (x ∗ y) ∗ z = x ∗ (y ∗ z)
— ∃e ∈ G, ∀x ∈ G, x ∗ e = e ∗ x = x
— ∀x ∈ G, ∃y ∈ G, x ∗ y = e

Ici, x∗y désigne ∗(x, y). On adopte cette notation pour une loi de composition interne.
Revenons sur chaque point :

— On appelle cette propiété portant sur ∗ l’associativité. On dit que ∗ est associa-
tive.

— Un tel élément e est appelé élément neutre. On peut aussi noter le groupe
(G, ∗, e)

— On dit que y est l’inverse ou l’opposé de x. Il sera d’ailleurs souvent noté x−1.

Remarque. Notons que ces trois axiomes entraînent celui-ci parfois contenu dans le
troisième (dans la définition) : y ∗ x = e.

Définition (groupe abélien). Soit G un groupe. Il sera dit abélien ou commutatif si la
propriété suivante est vérifiée :

∀x, y ∈ G, x ∗ y = y ∗ x

Définition (morphisme de groupe). Soient (G, ∗) et (G′, ·) deux groupes.
Soit f une application de G dans G′

f sera dite morphisme de groupe si :

∀g1, g2 ∈ G, f(g1 ∗ g2) = f(g1) · f(g2)

Définition (isomorphie). SoientG etG′ deux groupes. Soit f un morphisme deG dans
G′. Si f est bijective, on pourra la qualifier d’isomorphisme. On dira de plus que G et
G′ sont isomorphes. Cela signifie qu’ils sont exactement les mêmes à notation près.
On notera :

G ≃ G′
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Définition (noyau, image d’un morphisme). Soient G, G′ deux groupes et f un mor-
phisme de G dans G′

On appelle noyau de f l’ensemble :

Ker(f) = {g ∈ G | f(g) = eG′}

On appelle image de f l’ensemble :

Im(f) = {g′ ∈ G′ | ∃g ∈ G, f(g) = g′}

Théorème (premier théorème d’isomorphisme). Soient G, G′ deux groupes et f un
morphisme de groupes de G dans G′

On a :
G/Ker(f) ≈ f(G)

Dans le sens où ces deux ensembles sont en bijection.

Remarque. Nous ne ferons pas la preuve de ce théorème, réservée aux ouvrages sur
la théorie des groupes ; mais ce même résultat nous permettra de montrer d’importants
théorèmes concernant le groupe fondamental.

Définition (action de groupe). Soit (G, ∗) un groupe et A un ensemble. Soit · une
application :

· :
{
G x A −→ A
(g, a) 7−→ g · a

· sera dit une action de G sur A si elle vérifie :

— ∀g, g′ ∈ G, ∀a ∈ A, g · (g′ · a) = (g ∗ g′) · a
— ∀a ∈ A, e · a = a

Remarque. Si on a une action de groupe de G sur A, on dira que G agit sur A et on
notera G↷ A.

On peut - grâce à la manière dont on a défini les actions - associer à tout élément
g ∈ G une bijection de A dans A :

ϕg :

{
A −→ A
a 7−→ g · a

On dit alors que l’application :

Φ :

{
G −→ SA
g 7−→ ϕg

est le morphisme de groupe associé à l’action G↷ A.
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Définition (orbite, stabilisateur). Soit G↷ A une action de groupe. Soit a ∈ A.

— On appelle orbite de a l’ensemble :

Oa = {g · a, g ∈ G}

— On appelle stabilisateur de a l’ensemble :

Sta = {g ∈ G, g · a = a}

Théorème (formule des classes).

∀a ∈ A, G/Sta ≃ Oa

Dans le sens où ces deux groupes sont isomorphes

Définition. Une action de groupe G↷ A est dite :

— fidèle si :
∀g ∈ G, (∀a ∈ A, g · a = a⇒ g = e)

(c’est-à-dire que le morphisme associé Φ est injectif)

— libre si :
∀g ∈ G, g ̸= e⇒ ∀a ∈ A, g · a ̸= a

(c’est-à-dire que quel que soit a ∈ A, Sta = {e})

— transitive si :
∀a, b ∈ A, ∃g ∈ G, g · a = b

(C’est-à-dire que quel que soit a ∈ A, Oa = A)

Remarque. Toute action libre est fidèle.
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Chapitre 2

Groupe Fondamental

2.1 Chemins, Lacets

2.1.1 Définition

Définition (chemin, lacet). Soit X un espace topologique. On appelle chemin dans X
toute application continue γ : [0, 1] −→ X . On appellera origine de γ le point γ(0),
extrémité de γ le point γ(1) et support de γ l’ensemble Im(γ) noté supp(γ)
Si de plus, on a :

γ(0) = γ(1) = x0

Alors on dira que le chemin γ est un lacet de base x0

Remarque. Un chemin défini sur [0, 1] sera dit simple s’il est injectif sur [0,1[. Gra-
phiquement, un chemin simple ne revient jamais sur son tracé, sauf éventuellement à
l’origine (attention, la réciproque est fausse selon la paramétrisation du chemin).

2.1.2 Exemples de chemins et de lacets

Exemple. Voici quelques chemins tracés dans X = R2 :

10



FIGURE 2.1 – Des chemins tracés dans R2

Ces chemins sont un peu aléatoires... Voyons des lacets plus concrets.

Exemple (cercle unité). X = C
l’application γ : [0, 1] −→ C définie par :

∀t ∈ [0, 1], γ(t) = exp(2iπt)

est un lacet dans C, de base 1C.

x
•

γ(0) = γ(1) = 1

y

O

γ(3/8)

FIGURE 2.2 – Cercle unité
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Exemple (lemniscate de Gerono). X = R2

Voici un autre lacet intéressant. On peut le définir de manière implicite :

x4 − x2 + y2 = 0 (1)

Se lit "le lieu géométrique des points (x, y) ∈ R2 vérifiant l’équation (1)."

x

y

O

FIGURE 2.3 – Lemniscate de Gerono, de paramètre a = 1

La forme explicite ici sera :

γ :

{
[0, 1] −→ R2

t 7−→ (sin(2πt), cos(2πt) sin(2πt))

Remarquons que nous avons ici un lacet qui n’est pas simple (non injectif).

En espérant que ces quelques exemples éclaircissent les notions de chemins et de lacets.
Essayons désormais de classer ceux-ci.

2.2 Homotopies, Classes d’Equivalences

2.2.0.1 Définitions

Dans cette partie,X désignera un espace topologique, et (X,x0) un espace topologique
pointé (x0 ∈ X).
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Définition (homotopie). Soient γ1, γ2 deux chemins tracés dans X . On les suppose
de même origine et de même extrémité. (resp. x0, x1). On appelle homotopie de γ1 à
γ2 toute application H : [0, 1]2 −→ X continue telle que :

— ∀t ∈ [0, 1], H(0, t) = γ1(t)
— ∀t ∈ [0, 1], H(1, t) = γ2(t)
— ∀s ∈ [0, 1], H(s, 0) = x0
— ∀s ∈ [0, 1], H(s, 1) = x1

Remarque.

On n’a pas toujours l’existence d’une telle application. Cela dépend des chemins γ1 et
γ2.

Cette définition à première vue abstraite, se révèlera très imagée. Nous la comprendrons
à travers de multiples exemples.

Deux chemins d’un espace topologique seront donc dits homotopes s’ils ont les mêmes
origines et extrémités, et s’il existe une homotopie de l’un à l’autre.

Exemple. Considérons les deux chemins γ1, γ2, de [0, 1] dans R2 définis comme suit :

∀t ∈ [0, 1], γ1(t) = (0, 2t− 1)

∀t ∈ [0, 1], γ2(t) =

{
(2t, 2t− 1) si t ∈ [0, 1/2]
(−2t+ 2, 2t− 1) sinon

Il exite une homotopie H : [0, 1]2 −→ R2 qui relie γ1 à γ2. La voici :

H :


[0, 1]2 −→ R2

(s, t) 7−→


(2st, 2t− 1) si t ∈ [0, 1/2]

(2s(1− t), 2t− 1) sinon

On peut tracer le support de ces deux chemins ainsi que deviner l’homotopie les reliant :

13



x

y

O

•

•

s↗

γ2

γ1

FIGURE 2.4 – Deux chemins homotopes

Ici on a nos deux chemins (tracés en bleu et en rouge) ainsi que la déformation continue
de l’un vers l’autre (en noir) avec l’homotopie décrite précédemment. On remarque
ainsi que deux chemins sont homotopes si et seulement si l’on peut déformer l’un vers
l’autre sans le rompre ou le casser, ni le recoller.

Exemple. X = {x ∈ R2, ∥ x ∥ > 1}

Voici un exemple de deux chemins qui ne sauraient être homotopes dans X :

γ1 :

{
[0, 1] −→ R2

t 7−→ (2t+ 2, 0)

γ2 :

{
[0, 1] −→ R2

t 7−→ (2t+ 2)(cos(2πt), sin(2πt))

14



x

y

O
• •

FIGURE 2.5 – Deux chemins non-homotopes

Sur cette figure, il faut imaginer que la zone grise n’appartient pas au plan. On se
propose de démontrer par le calcul que ces deux chemins (rouge et bleu) ne sont pas
homotopes. Cela utilise le théorème de passage à la douane (théorème de topologie,
son nom n’est pas universel). Commençons par le rappeler :

Théorème (passage à la douane). Soit X un espace topologique. Soient A,B ⊂ X
deux parties de l’espace. Supposons A connexe. Supposons :

A ∩B ̸= ∅

A ∩ (X \B) ̸= ∅
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Alors on a :
A ∩ Fr(B) ̸= ∅

Où Fr(B) désigne la frontière de B. C’est-à-dire :

Fr(B) = B̄ \
◦
B

Pour ceux qui connaissent l’intérieur et l’adhérence d’une partie d’un espace métrique.
Sinon, il suffit de penser Fr(B) comme le "bord" de B.

Poursuivons :
On pose ici X comme défini au début de l’exemple. Cet espace est clairement topolo-
gique.
Raisonnons par l’absurde. Supposons que ces deux chemins (bleu et rouge, respective-
ment γ1 et γ2) soient homotopes avec H l’homotopie de γ2 à γ1.
On a :

H :

{
[0, 1]2 −→ X
(s, t) 7−→ H(s, t)

Une application continue.

Soit t0 ∈ ]0, 1[ fixé, vérifiant que γ2(t0) ait une ordonnée non nulle. Par continuité
de H , on a en particulier : {

[0, 1] −→ X
s 7−→ H(s, t0)

Une application continue.
De plus, [0, 1] est un espace connexe. On en déduit par invariance topologique de la
connexité (voir chapitre 1) que :

A = {H(s, t0), s ∈ [0, 1]}

Est une partie connexe de X .
Posons désormais :

B = {(x, 0), x > 1}

Qui est contenue dans X .
On a :

H(0, t0) = γ2(t0) ∈ X \B

Car on a supposé γ2(t0) d’ordonnée non nulle.
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Donc A ∩ (X \B) ̸= ∅
Et :

H(1, t0) = γ1(t0) ∈ B

D’où A ∩B ̸= ∅
On en déduit par le théorème de passage à la douane que :

A ∩ Fr(B) ̸= ∅

Mais ici, Fr(B) = {(1, 0)}
Il existe donc s ∈]0, 1[ tel que :

H(s, t0) = (1, 0)

Ce qui est absurde car (1, 0) /∈ X .
On a donc contradiction. Une telle application continue H n’existe pas. C’est-à-dire
que γ1 et γ2 ne sont pas homotopes.

Exemple. Voici un dernier exemple de deux chemins non homotopes afin de s’assurer
de la compréhension du lecteur. Attention, ceux-ci sont des lacets etX est le plan privé
de deux points ici en noirs :

x

y

O
••

FIGURE 2.6 – Encore deux chemins non-homotopes

Si on essaye de déformer le lacet rouge (la déformation est en noire), on peut essayer
de l’amener au bleu jusqu’à être bloqué par le "trou" dans le plan. (Le gros point noir).
Il en est de même pour le lacet bleu, et donc les deux ne peuvent pas se rejoindre
continûement (sans se couper en deux). On a ici une première intuition : le plan privé
d’un ou plusieurs points peut contenir des chemins non-homotopes.
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Remarque. On peut tout aussi bien penser l’homotopie comme un "pincement". On
peut la représenter sous la forme d’un diagramme qu’on appellera donc diagramme
d’homotopie et cela se présente sous cette forme :

x0

x1

•

•

s

t

0 1

1

x1

x0

H(s, t)

FIGURE 2.7 – Représentation du diagramme d’homotopie

On représente ici le diagramme de l’homotopie entre le chemin rouge et le chemin bleu.
Sur la figure ci-dessus, on a sur le diagramme, s qui part de 0 avec le chemin vertical
γ1 en bleu, puis on augmente s ce qui nous amène jusqu’aux chemins intermédiaires
en pointillés, pour finalement arriver en s = 1 au chemin rouge.
Le côté horizontal du haut sur le carré représente donc x1, l’extrémité des chemins,
tandis que le côté horizontal du bas représente l’origine x0 comme indiqué.

2.2.1 Equivalence des chemins

Définition. Soient γ1 et γ2 deux chemins tracés dans X . On notera désormais γ1 ∼ γ2
si ces deux chemins sont homotopes.

Proposition. ∼ est une relation d’équivalence

On rappelle que si Z est un ensemble, R : Z2 −→ {V rai, Faux} est une relation
d’équivalence si :

— réflexivité : ∀z ∈ Z, zRz
— symétrie : ∀z1, z2 ∈ Z, z1Rz2 ⇒ z2Rz1
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— transitivité : ∀z1, z2, z3 ∈ Z, z1Rz2 et z2Rz3 ⇒ z1Rz3

(on note xRy si et seulement si R(x, y) est V rai au sens fonctionel)

Démonstration. Montrons donc que ∼ vérifie ces trois propriétés.
Soit X un espace topologique. Considérons ∼ comme définie précédemment.

⋆ réflexivité

Soit γ un chemin dans X . Posons :

H :

{
[0, 1]2 −→ X
(s, t) 7−→ γ(t)

On considère ici l’homotopie constante, toujours égale à γ, clairement continue. Ainsi,
∼ est réflexive.

⋆ symétrie

Soient γ1, γ2 deux chemins tracés dans X . Supposons que l’on ait γ1 ∼ γ2. C’est-
à-dire qu’il existe :

H :

{
[0, 1]2 −→ X
(s, t) 7−→ H(s, t)

une homotopie de γ1 à γ2.

Pour avoir une homotopie de γ2 à γ1, il suffirait de prendre celle qu’on a déjà et de
la parcourir en sens inverse.
Il suffit donc de poser :

H̃ :

{
[0, 1]2 −→ X
(s, t) 7−→ H(1− s, t)

On a donc exhibé une homotopie de γ2 à γ1. On a donc γ2 ∼ γ1 et notre relation est
symétrique.

⋆ transitivité

Soient donc γ1, γ2, γ3 trois chemins dans X tels que γ1 ∼ γ2 et γ2 ∼ γ3. C’est-
à-dire qu’on a l’existence de deux homotopies :
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K :

{
[0, 1]2 −→ X
(s, t) 7−→ K(s, t)

L :

{
[0, 1]2 −→ X
(s, t) 7−→ L(s, t)

où K connecte γ1 à γ2 et L, γ2 à γ3.
On sait déjà une chose :

∀t ∈ [0, 1], K(1, t) = L(0, t)

Autrement dit, nos deux homotopies ont un chemin commun : γ2. Il serait suffisant
pour montrer γ1 ∼ γ3 de parcourir K deux fois plus vite que prévu, de se reposer en
γ2 à mi-chemin puis de parcourir L deux fois plus vite également. C’est-à-dire que
l’application :

H :


[0, 1]2 −→ X

(s, t) 7−→


K(2s, t) si s ∈ [0, 1/2]

L(2s− 1, t) sinon

est une homotopie de γ1 à γ3. Elle est continue car l’est en γ2 et est continue par mor-
ceaux ailleurs. On a donc γ1 ∼ γ3.

Finalement, ∼ est transitive.

Ainsi, ∼ est une relation d’équivalence sur l’ensemble des chemins tracés dans X .

2.3 Groupe Fondamental

2.3.1 Définition

Définition (groupe fondamental). Comme vu ci-dessus, l’homotopie est une relation
d’équivalence sur l’ensemble des chemins. Soit (X,x0) un espace topologique pointé.
On définit le groupe fondamental de (X,x0) comme étant l’ensemble quotient :

π1(X,x0) = A / ∼

où A est l’ensemble des lacets de base x0.
L’idée est d’affirmer que deux chemins homotopes sont les mêmes. Si γ1 est homotope
à γ2, on peut noter [γ1] la classe de γ1. C’est-à-dire l’ensemble de tous les chemins
homotopes à γ1. On a ainsi γ1 homotope à γ2 dans A, ce qui est équivalent au fait de
dire [γ1] = [γ2] dans π1(X,x0) (ou bien dans A / ∼)
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Remarque. Nous travaillons avec des lacets désormais et non plus des chemins. Nous
justifierons cette restriction plus tard.

2.3.2 Structure de groupe

Dans cette partie, (X,x0) désigne un espace topologique pointé.

Définition (concaténation). Soient [γ1], [γ2] deux éléments de π1(X,x0). On appelle
concaténation de ces deux chemins la nouvelle classe de lacet définie par :

[γ] :


[0, 1] −→ X

t 7−→


[γ1] (2t) si t ∈ [0, 1/2]

[γ2] (2t− 1) sinon

[γ] est bien défini car lorsque t = 1/2 qui est le seul point d’éventuelle discontinuité,
on a γ(1/2) = γ1(1) = x0 = γ2(1) = γ(1/2)

On peut noter de manière plus explicite [γ] comme étant [γ1 ∗ γ2]

Définition (lacet constant). On définit le lacet constant en x0 l’application :

cx0
:

{
[0, 1] −→ X

t 7−→ x0

Dont on notera la classe ainsi : [cx0
]

Définition (lacet inverse). Soit γ un lacet de base x0. On définit son lacet inverse :

[γ̃] :

{
[0, 1] −→ X

t 7−→ [γ](1− t)

Cette application reste bel et bien un lacet de base x0.

Théorème. (π1(X,x0), ∗, [cx0
]) est un groupe.
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Démonstration. Soit (X,x0) un espace topologique pointé. ∗ est clairement une loi de
composition interne. La concaténation de deux lacets basés au même point en reste un.
On l’a affirmé dans la définition de la concaténation ∗. Montrons donc les axiomes du
groupe :

⋆ associativié de *

Soient [γ1], [γ2], [γ3] ∈ π1(X,x0).
On a d’une part :

[(γ1 ∗ γ2) ∗ γ3] :



[0, 1] −→ X

t 7−→


[γ1] (4t) si t ∈ [0, 1/4]

[γ2] (4t− 1) si t ∈]1/4, 1/2[

[γ3] (2t− 1) si t ∈ [1/2, 1]

et d’autre part :

[γ1 ∗ (γ2 ∗ γ3)] :



[0, 1] −→ X

t 7−→


[γ1] (2t) si t ∈ [0, 1/2]

[γ2] (4t− 2) si t ∈]1/2, 3/4[

[γ3] (4t− 3) si t ∈ [1/2, 1]

A première vue, ces lacets ne sont pas les mêmes. Mais alors, ∗ n’est pas associative?
et π1(X,x0), le groupe fondamental n’est pas un groupe?...

Bien sûr que si ! Rappelons-nous une chose : dans π1(X,x0), deux lacets homotopes
sont les mêmes. Il suffit donc de montrer que les lacets : (γ1 ∗ γ2) ∗ γ3 et γ1 ∗ (γ2 ∗ γ3)
sont homotopes.

Notons aussi une chose, ces lacets sont "presque" les mêmes. Il s’agit seulement du
temps de parcours qui diffère. On comprend donc pourquoi ces deux lacets sont les
mêmes dans π1(X,x0).

Exhibons tout de même l’homotopie en question pour cette fois :
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H :



[0, 1]2 −→ X

(s, t) 7−→


γ1(4t/(1 + s)) si t ∈ [0, (1 + s)/4]

γ2(4t− (s+ 1)) si t ∈](1 + s)/4, (2 + s)/4[

γ3((4t− s− 2)/(2− s)) si t ∈ [(2 + s)/4, 1]

Ainsi, notre loi de composition interne est bien associative.

⋆ [cx0 ] élément neutre

Soit donc γ un lacet de base x0. Montrons que [γ ∗ cx0
] = [cx0

∗ γ] = [γ]
On doit donc montrer :

γ ∗ cx0
homotope à γ lui-même homotope à cx0

∗ γ

Commençons par exprimer les deux lacets :

[γ ∗ cx0 ] :


[0, 1] −→ X

t 7−→


[γ] (2t) si t ∈ [0, 1/2]

[cx0
] sinon

[cx0
∗ γ] :


[0, 1] −→ X

t 7−→


[cx0

] si t ∈ [0, 1/2]

[γ] (2t− 1) sinon

L’Homotopie qui permet de passer de l’un à l’autre est décrite par ce diagramme :
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s

t

0 1

1

1/2

γ

cx0

cx0

FIGURE 2.8 – Diagramme d’homotopie de γ ∗ cx0
à cx0

∗ γ en passant par γ

Cela se lit ainsi :

A s = 0, le chemin augmente avec t linéairement sur l’axe vertical. Il parcourt γ à vi-
tesse double (quand t ≥ 1/2) puis se repose en x0. On a donc doncH(0, t) = γ∗cx0(t).
s augmente jusqu’en 1/2, on trouve le chemin γ à vitesse normale, puis s continue de
croître jusqu’en 1 où nous retrouvons cx0

∗ γ

Traduisons ce diagramme en application continue. Après un bref calcul à la main, on
trouve l’homotopie suivante :

∀s, t ∈ [0, 1] :
⋆ si s ≤ 1/2 :

H(s, t) =


γ(2t/(2s+ 1)) si t ∈ [0, (2s+ 1)/2]

x0 si t ∈](2s+ 1)/2, 1]

⋆ si s ≥ 1/2 :

H(s, t) =


x0 si t ∈ [0, (2s− 1)/2]

γ((2t− 2s+ 1)/(3− 2s)) si t ∈](2s− 1)/2, 1]

On peut justifier que H est continue en remarquant qu’elle l’est par morceaux, puis de
voir qu’elle l’est en les éventuels points de discontinuité (1/2).

Ainsi, on a bien [cx0 ] élément neutre pour ∗. Tout lacet avant ou après composition
par ce chemin trivial reste inchangé.
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⋆ existence d’inverses

Soit [γ] ∈ π1(X,x0) un lacet de base x0. Peut-on le composer par un autre avec ∗
pour rendre ce dernier égal (resp. homotope) à [cx0

] (resp. cx0
) ?

Pour cela, composons [γ] par ce qu’on a défini précédemment sont lacet inverse noté
[γ̃].

On a après simplification :

∀t ∈ [0, 1] :

[γ ∗ γ̃](t) =


[γ] (t) si t ∈ [0, 1/2]

[γ] (2− 2t) si t ∈]1/2, 1]

•x0

FIGURE 2.9 – Un lacet composé de son inverse

L’idée est la suivante : on part de x0 pour y revenir via γ (on parcout le lacet classique-
ment) pour ensuite revenir littéralement sur nos pas. C’est-à-dire parcourir γ à l’envers.
De cette manière, on revient à x0. C’est donc bien un lacet et reste à montrer qu’il est
égal à [cx0

]. C’est-à-dire homotope à cx0
.

Sur la figure 2.9, il faut imaginer que les deux "cercles" sont donc confondus.

On peut donc considérer l’homotopie qui va partir du "bout de γ" pour réduire petit
à petit ce demi-tour en un point. Laissons le dessin l’expliquer :
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•x0

FIGURE 2.10 – H(1/3, t)

•x0

FIGURE 2.11 – H(2/3, t)

Posons donc le diagramme d’homotopie suivant :

s

t

0 1

1

γ

γ̃

cx0

s0

FIGURE 2.12 – Diagramme d’homotopie de cx0
à γ ∗ γ̃

Ici, on tracé l’homotopie de cx0
à γ ∗ γ̃ mais puisqu’on a vu que ∼ est symétrique, cela

revient à dire qu’on a homotopé γ ∗ γ̃ à cx0
(ce qu’on voulait).

On en déduit la formule explicite de l’homotopie :
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H :



[0, 1]2 −→ X

(s, t) 7−→


γ(2t) si t ∈ [0, s/2]

γ(2s− 2t) si t ∈]s/2, s[

x0 si t ∈ [s, 1]

On a bien H continue et on a montré que dans π1(X,x0), [γ ∗ γ̃] = [cx0
].

Résumé :

Si l’on garde les mêmes notations, on a montré :
— (γ1 ∗ γ2) ∗ γ3 ∼ γ1 ∗ (γ2 ∗ γ3)
— cx0

∗ γ ∼ γ ∗ cx0
∼ γ

— γ ∗ γ̃ ∼ cx0

Ce qui est équivalent au fait d’affirmer que dans π1(X,x0)
— [(γ1 ∗ γ2) ∗ γ3] = [γ1 ∗ (γ2 ∗ γ3)]
— [cx0

∗ γ] = [γ ∗ cx0
] = [γ]

— [γ ∗ γ̃] = [cx0
]

Remarque. Voici donc l’utilité de travailler désormais avec des lacets et non plus des
chemins. Cela nous permet de construire un groupe. Un groupe relatif à tout espace.

Désormais, on pourra donc remplacer [cx0
] par 0 (comme élément neutre du groupe),

et [γ̃] par [γ−1] comme inverse d’un élément (du groupe).

2.3.3 Indépendance du point

On cherche dans cette partie, à se débarasser du x0 dans π1(X,x0). On a pour cela un
théorème :

Théorème (indépendance du point). SoitX un espace topologique. Soient x0, y0 deux
points de X .

Si ces deux points sont dans la même composante connexe par arcs deX , alors π1(X,x0)
et π1(X, y0) sont isomorphes. Ils sont les mêmes à notation près.
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Démonstration. Soient donc X un espace topologique. Soient x0 et y0 supposés dans
la même composante connexe par arcs. On a donc l’existence d’un chemin c qui relie
y0 à x0 :

c :

{
[0, 1] −→ X

t 7−→ c(t)

Tel que (c(0), c(1)) = (y0, x0)

On peut définir comme pour les lacets, le chemin inverse :

c−1 :

{
[0, 1] −→ X

t 7−→ c(1− t)

Tel que (c−1(0), c−1(1)) = (x0, y0) Et posons désormais :

φc :

{
π1(X,x0) −→ π1(X, y0)

[γ] 7−→ [c ∗ γ ∗ c−1]

⋆ φc bien définie

Il nous faut tout d’abord montrer que φc est une application bien définie. C’est-à-dire
que deux éléments qui sont les mêmes dans l’espace de départ ont même image à l’ar-
rivée (ce qui pour le moment n’est pas tout à fait clair).

Soient donc [γ1] et [γ2] dans π1(X,x0).
Supposons [γ1] = [γ2]. C’est-à-dire que les deux lacets sont homotopes.
A-t-on φc([γ1]) = φc([γ2])?
Autrement dit, ces deux lacets sont-ils homotopes?
Montrons-le :

[γ1] = [γ2]
⇒ [c ∗ γ1] = [c ∗ γ2]
⇒ [c ∗ γ1 ∗ c−1] = [c ∗ γ2 ∗ c−1]
⇒ φc([γ1]) = φc([γ2])

On a donc bien φc bien définie. Montrons désormais qu’elle ne dépend que de la classe
d’équivalence du chemin c et non pas de c lui-même.
Pour cela, prenons [γ] ∈ π1(X,x0) ainsi que c, c′ deux chemins envoyant y0 sur x0
qui sont homotopes.
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On a :

[c] = [c′]
⇒ [c ∗ γ] = [c′ ∗ γ]
⇒ [c ∗ γ ∗ c−1] = [c′ ∗ γ ∗ c′−1]
⇒ φc([γ) = φc′([γ]) On a donc φc = φc′ pour peu que c et c′ soient homotopes. (car

on l’a montré pour tout γ). Nous pouvons poursuivre.

⋆ φc morphisme

Soient [γ1], [γ2] deux éléments de π1(X,x0). On a :

φc([γ1 ∗ γ2]) = [c ∗ γ1 ∗ γ2 ∗ c−1] = [c ∗ γ1 ∗ c−1 ∗ c ∗ γ2 ∗ c−1] = φc([γ1]) ∗φc([γ2])

Attention à ne pas s’emmeller les pinceaux dans les différentes lois. Elles portent le
même symbole mais l’une est sur π1(X,x0), lautre sur π1(X, y0). De plus, remar-
quons que l’on peut établir tout cela grâce à l’associativité montrée plus haut.

⋆ φc isomorphisme

⋆ Injectivité

Soit [γ] ∈ π1(X,x0).
On a :

φc([γ]) = 0
⇒ [c ∗ γ ∗ c−1] = 0
⇒ [c ∗ γ] = [c]
⇒ [γ] = [c−1 ∗ c]
⇒ [γ] = 0

D’où φc est injective.

⋆ Surjectivité

Soit [γ] ∈ π1(X, y0)
Posons [α] = [c−1 ∗ γ ∗ c].

α est continue (car continue en 1/3 et 2/3) et :

[α] (0) = [c−1](0) = [c](1) = x0 [α] (1) = [c](1) = x0
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Donc [α] ∈ π1(X,x0) et il est très simple de vérifier que φc([α]) = [γ]. On a donc

prouvé notre morphisme φc surjectif

On a donc φc un isomorphisme.
On a ainsi montré qu’au sein d’une composante connexe d’un espace, le groupe fonda-
mental ne dépend pas du point choisi.

On en déduit la remarque qui suit :

Remarque. Si X est un espace connexe par arcs, noter π1(X) est donc légitime. Il
suffit de prendre n’importe quel point x0 ∈ X comme base pour définir le groupe
fondamental de X , puisqu’ils sont tous isomorphes. Nous nous réservons donc le droit
à cette notation pour les espaces connexes par arcs, avec lesquels nous travaillerons
beaucoup dans nos exemples.

Définition (connexité simple). SoitX un espace topologique connexe par arcs.X sera
dit simplement connexe si :

π1(X) ≃ {0}

C’est-à-dire que tous les chemins dans X sont homotopes entre eux. On peut aussi dire
que X est 1-connexe.

Notations :
Nous noterons désormais γ ∈ π1(X,x0) où (X,x0) est un espace topologique pointé
quelconque en ommettant les crochet habituels qui mentionnent la classe du lacet : [γ]
C’est-à-dire qu’à partir de maintenant, si γ et γ′ sont homotpes (pas nécessairement
égaux), on notera γ = γ′ sans se soucier des crochets.

2.4 Fonction Associée

Le but de cette partie est de comparer les groupes fondamentaux d’espaces par les ap-
plications continues. On se propose pour cela la définition d’un nouvel objet, la fonction
associée.
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Définition (fonction associée). Soient X, Y deux espaces topologiques. Soit f ∈
C(X, Y ). Pointons l’espace X en x0. On appelle fonction associée à f l’application :

f⋆ :

{
π1(X,x0) −→ π1(Y, f(x0))

γ 7−→ f ◦ γ

Proposition. Soit f ∈ C((X,x0), Y ). f⋆ est un morphisme de groupe.

Démonstration. Faisons la preuve en deux temps :
⋆ f⋆ bien définie

Soit f ∈ C((X,x0), Y ). Commençons par vérifier que f⋆ est bien définie. Il suffit
de montrer que :

Pour tout γ1 et γ2 des chemins dans la même classe d’homotopie (c’est-à-dire
[γ1] = [γ2] où encore γ1 et γ2 homotopes) alors [f ◦ γ1] = [f ◦ γ2] (c’est-à-dire f ◦ γ1

est homotope à f ◦ γ2).

Supposons donc qu’il existe une homotopie reliant γ1 à γ2 :

H :

{
[0, 1]2 −→ X
(s, t) 7−→ H(s, t)

Puis considérons :

H̃ :

{
[0, 1]2 −→ Y
(s, t) 7−→ (f ◦H)(s, t)

H̃ est continue comme composée d’application continue, et on peut vérifier aisément
que c’est une homotopie de f ◦ γ1 à f ◦ γ2.
En effet :

— ∀t ∈ [0, 1], H̃(0, t) = f ◦H(0, t) = (f ◦ γ1)(t)
— ∀t ∈ [0, 1], H̃(1, t) = f ◦H(1, t) = (f ◦ γ2)(t)
— ∀s ∈ [0, 1], H̃(s, 0) = f ◦H(s, 0) = f(x0)
— ∀s ∈ [0, 1], H̃(s, 1) = f ◦H(s, 1) = f(x0)
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On a donc construit une homotopie de f⋆(γ1) à f⋆(γ2). Ainsi f⋆ ne dépend que de la
classe d’homotopie, c’est donc une application bien définie sur π1(X,x0).

⋆ f morphisme
Montrons maintenant que c’est un morphisme de groupe.
Il suffit d’avoir :

f(γ1 ∗ γ2) = (f ◦ γ1) ∗ (f ◦ γ2)

Ce qui est évident car d’une part : f(γ1 ∗ γ2) = f ◦ γ où :

γ :


[0, 1] −→ X

t 7−→


γ1(2t) si t ∈ [0, 1/2]

γ2(2t− 1) si t ∈]1/2, 1[

Ainsi :

f(γ1 ∗ γ2) :


[0, 1] −→ Y

t 7−→


(f ◦ γ1)(2t) si t ∈ [0, 1/2]

(f ◦ γ2)(2t− 1) si t ∈]1/2, 1[

Et d’autre part :

(f ◦ γ1) ∗ (f ◦ γ2) :


[0, 1] −→ Y

t 7−→


(f ◦ γ1)(2t) si t ∈ [0, 1/2]

(f ◦ γ2)(2t− 1) si t ∈]1/2, 1[

D’où f⋆ est bien un morphisme de groupe.

Proposition. Dans les mêmes conditions, si f est un homéomorphisme de X dans Y ,
alors f⋆ est un isomorphisme de groupe. En particulier, π1(X,x0) et π1(Y, f(x0)) sont
les mêmes (isomorphes).
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Démonstration. Puisque f est un homéomorphisme, f est continue. On a donc d’em-
blée avec notre proposition qui précède que f⋆ est un morphisme de groupe. Il suffit de
montrer qu’il est en plus bijectif.

⋆ Injectivité

Soit donc γ ∈ π1(X,x0). Supposons f⋆(γ) = cf(x0) (l’élément neutre de l’espace
d’arrivée).

Rappelons que f−1 est une application continue de Y dans X . On a donc :

f−1(f⋆(γ)) = (f−1 ◦ f)(γ) = γ

Et de plus :

f−1(f⋆(γ)) = f−1(cf(x0)) = cx0 .

Pourquoi peut-on écrire cette dernière égalité ? Car on sait :

f(cx0
) = cfx0

Et f est bijective donc l’antécédent est unique ici.
On a montré en combinant nos deux égalités :

γ = cx0

On reconnaît l’élément neutre du groupe π1(X,x0) (espace de départ).
On a donc prouvé que f⋆ était injective.

⋆ Surjectivité

Soit γ ∈ π1(Y, f(x0)).
Posons α = f−1(γ).
On a bien α lacet en x0 :

α(0) = f−1(γ(0)) = (f−1 ◦ (f))(x0) = x0

α(1) = f−1(γ(1)) = (f−1 ◦ (f))(x0) = x0

α est continue comme composition d’application continue (f est un homéomorphisme).
Donc c’est bien un élément de π1(X,x0).

De plus, il est trivial de constater :

f⋆(α) = γ
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Le morphisme f⋆ est donc surjectif
Mais il est de plus injectif

C’est donc bien un isomorphisme de groupes. Et on a :

π1(X,x0) ≃ π1(Y, f(x0)).

Dans le sens où ces deux groupes sont isomorphes.

Remarque. On a ces corollaires intéressants :

— Si f : (X,x0) −→ Y et g : Y −→ Z où X, Y, Z sont des espaces topolo-
giques et f, g des applications continues, alors on a :

(f ◦ g)⋆ = f⋆ ◦ g⋆

— (Id)⋆ = Id

Deux espaces homéomorphes ont donc le même groupe fondamental. On a exhibé une
condition suffisante pour comparer les groupes fondamentaux des différents espaces
topologiques (ou bien pour montrer que deux espaces ne sont pas homéomorphes par
contraposée).
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Chapitre 3

Revêtements et Relèvements

3.1 Revêtements

3.1.0.1 Définitions

Oublions l’espace d’un instant nos homotopies, les groupes fondamentaux pour admi-
rer de nouveaux concepts qui - à première vue - n’ont pas de rapport avec ce qu’on a
déjà étudié. Ils montreront néanmoins leur utilité capitale pour trouver le groupe fon-
damental d’un espace topologique quelconque.

Définition (revêtement). Soient E, B deux espaces topologiques. Soit p ∈ C(E,B).
p sera dit revêtement si :

— p est surjective
— Pour tout b dans B, il existe un voisinage ouvert V de b tel que p−1(V ) soit

une union disjointe d’ouverts (Vi)i∈I (où I est un ensemble discret non vide)
telle que p restreinte à l’un de ces ouverts soit un homéomorphisme de Vi dans
p(Vi).

Ecrit en langage mathématiques, cela donne :

— ∀b ∈ B, ∃x ∈ E, p(x) = b
— ∀b ∈ B, ∃V ∈ V(b), p−1(V ) =

⊔
i∈I

Vi et p|Vi
homéomorphisme.
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Remarque. On notera ici les unions disjointes
⊔

(et les unions en générales
⋃

)
Tout comme l’homotopie, la définition est à première vue assez complexe. Des exemples
nous aideront à la comprendre.

L’espace B sera appelé base, E l’espace total, et les Vi les fibres du revêtement. Il
est aussi fréquent de dire V un voisinage bien revêtu par p si l’union disjointe existe
avec p homéomorphisme sur ces espaces restreints.

3.1.1 Exemples classiques de revêtements

Commençons par illustrer cette définition par un premier exemple classique dans ce
domaine : l’exponentielle.

Exemple (exponentielle). Considérons le revêtement suivant :

exp :

{
R −→ S1
t 7−→ eit

R et S1 sont clairement des espaces topologiques. R est donc l’espace total, et S1 la
base. Au passage, peut-être est-il judicieux de rappeler la définition de la sphère en
dimension n :

Sn = {x ∈ Rn+1 | ∥ x ∥= 1}

S1 se représente donc ainsi :
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x

y

O

FIGURE 3.1 – S1

L’application exp est clairement surjective. Pour x ∈ S1, il suffit de prendre un argu-
ment de x. Reste à vérifier la propriété la moins triviale.

Soit donc x0 ∈ S1. On peut distinguer deux cas :

⋆ si x0 ̸= (1, 0) : Prendre le voisinage : S1 \ (1, 0) convient.

De plus :
exp−1(S1 \ (1, 0)) =

⊔
k∈Z

]2kπ, 2kπ + 2π[

Ce qui forme bel et bien une union disjointe. Il est ensuite simple de vérifier que :

∀k ∈ Z, exp |]2πk,2πk+2π[ est un homéomorphisme sur S1 \ (1, 0)
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x

y

O
•

x0·

FIGURE 3.2 – S1 \ (1, 0)

Le voisinage de x0 est tout le cercle sauf le point noir sur l’axe des abscisses. On a en
observant exp−1(S1) \ (1, 0) :

• • •••
−4π −2π 0 2π 4π

FIGURE 3.3 – exp−1(S1 \ (1, 0))

On a donc découpé R en plusieurs petits intervalles ouverts disjoints explicités sur le
dessins. Et en effet sur chaque composante de ce découpage, exp parcours exactement
tout le cercle sauf (1, 0) et est bijective.

C’est l’analyse complexe qui permet d’affirmer que sa réciproque est elle aussi conti-
nue notamment grâce à un théorème : il existe une détermination holomorphe du lo-
garithme sur tout espace connexe par arcs ne comprenant pas 0. Mais cela n’est pas
essentiel dans notre étude.

⋆ si x0 = (1, 0) :

On peut dresser exactement le même raisonnement que celui pris jusqu’à maintenant
en prenant comme voisinage S1 \ (−1, 0) au lieu de S1 \ (1, 0).
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Nous laissons au lecteur s’apporprier les notions si nécessaire avec cette seconde par-
tie de la preuve. Remarquons finalement, que pour l’exponentielle avec ces espaces, la
fibre est Z.

Exemple (application puissance). Considèrons cette fois l’application :

pn :

{
C∗ −→ C∗

z 7−→ zn

Où n ∈ N∗ fixé
La base et l’espace total sont les mêmes. Il s’agit du corps des complexe privé de son
neutre additif 0. On le note C∗

Pour ce qui suit, un peu d’analyse complexe est utile. Commençons par le plus simple.
pn est-elle surjective?

Soit z0 ∈ C∗. On peut le poser sous sa forme polaire :

z0 = r0e
iθ0

Avec θ0 ∈ [0, 2π[

Puisque z0 ̸= 0, on a r0 > 0 et donc 0 et −z0 sont distincts.
Il existe donc une et une unique demi-droite du plan en 0 qui passe par −z0. Notons-la
∆z0 .

∆z0 = {z ∈ C | arg(z) ∈ arg(z0) + π + 2πZ}

C’est-à-dire que :

reiθ ∈ ∆z0 ⇐⇒ ∃k ∈ Z, θ − θ0 = 2kπ + π

Représentons la situation :
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Im

•
z0

•
−z0

•

∆z0

FIGURE 3.4 – ∆z0 pour un certain z0

Nous ferons désormais de l’analyse complexe dans cet exemple. Si cela ne vous parle
pas, le troisième et dernier exemple utilise lui aussi les complexes sans gros théorème
d’analyse. Vous pouvez vous y référer également.

Continuons donc notre exemple ici. Il existe une détermination holomorphe du loga-
rithme sur C \∆z0 car c’est un plan privé d’une demi-droite.

Posons Log∆ une telle détermination. Elle est définie ainsi :

Log∆ :

{
C \∆z0 −→ C∗

z 7−→ ln(|z|) + iarg∆(z)

Avec : arg∆(z) l’argument de z compris entre [θ0 − π, θ0 + π[

Bien. On a montré qu’il existe une détermination holomorphe du logarithme, et qu’on
pouvait calculer le logarithme complexe de z0.

Cette première étape nous permet de montrer la surjectivité du revêtement pn. Effecti-
vement, à z0 = r0e

iθ0 , il nous suffit de poser :

zs = exp

(
Log∆(z0)

n

)
Pour avoir :

pn(zs) = zs
n = exp(nLog∆(zs)) = exp

(
nLog∆

(
exp

(
Log∆(z0)

n

)))
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Puis :

pn(zs) = exp

(
n
Log∆(z0)

n

)
= exp(Log∆(z0))

Et finalement :
pn(zs) = z0

On a bien zs ∈ C∗ et ainsi, l’application pn est surjective.

Montrons désormais la propriété la plus dure. On cherche un voisinage de z0 bien
revêtu par pn.

Pour cela posons V (z0) = {z ∈ C | |z| ∈]r0/2, 3r0/2[, arg(z) ∈]θ0/2, 3θ0/2[}

O Re

Im

•
z0

V (z0)

FIGURE 3.5 – voisinage du point z0

A-t-on désormais V (z0) bien revêtu par pn ?
Tout d’abord, V (z0) est inclus dans C \ ∆z0 . Le logarithme existe donc dans tout le
voisinage V (z0).

Soit alors z ∈ p−1
n (V (z0))

Posons z = reiθ

On a zn ∈ V (z0)

Or on sait que multiplier un complexe par un autre revient à multiplier les modules,
et à additionner les arguments.

On a alors avec zn ∈ V (z0) :

— rn ∈ ]r0/2, 3r0/2[
— nθ ∈ ]θ0/2, 3θ0/2[ + 2πZ
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C’est-à-dire exatement :

— r ∈
]

n
√

r0
2 ,

n

√
3r0
2

[
— pour l’argument, on pourrait être tenté de poser

]
θ0
2n ,

3θ0
2n

[
mais rappelons-nous

qu’il existe plusieurs autres solutions ! Il s’agit ici des racines n-ièmes. On a en
fait :

θk ∈
]
θ0/2 + 2πk

n
,
3θ0/2 + 2πk

n

[
Où k ∈ [[0, n− 1]] sont nos n solutions pour θ

Il suffit alors de poser :

Vk =

{
z ∈ C | |z| ∈

]
n

√
r0
2
,

n

√
3r0
2

[
, arg(z) ∈

]
θ0/2 + 2πk

n
,
3θ0/2 + 2πk

n

[}

Où, encore une fois, k ∈ [[0, n− 1]]

Les Vk sont clairement des ouverts de C∗

Il est facile de vérifier que les Vk ne s’intersectent pas (cela repose sur le fait que
θ0 < 2π) et il est simple également de vérifier l’inclusion réciproque :

∀k ∈ [[0, n− 1]], pn(Vk) ⊂ V (z0)

On a donc montré ce résultat :

∀z0 ∈ C∗, ∃V (z0) ∈ V(z0), p−1
n (V (z0)) =

n−1⊔
k=0

Vk

Où, pour tout k ∈ [[0, n− 1]]

Vk =

{
z ∈ C | |z| ∈

]
n

√
r0
2
,

n

√
3r0
2

[
, arg(z) ∈

]
θ0/2 + 2πk

n
,
3θ0/2 + 2πk

n

[}
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Im

V0

V1

V2

FIGURE 3.6 – Représentations des Vk dans le cas particulier n = 3

On a donc montré l’union disjointe. Voici notre dernière question : l’application pn
est-elle un homéomorphisme sur l’un des Vk ? Soit donc k ∈ [[0, n− 1]]

pn est évidemment continue car polynomiale et on a effectivement une réciproque
continue car sur Vk comme justifié précédemment, il existe une détermination holo-
morphe du logarithme. On a donc une réciproque locale à notre revêtement :

gk :

{
V (z0) −→ Vk

z 7−→ exp
(
log∆(z)+2iπk

n

)
Voici la réciproque continue recherchée. On a finalement montré que l’application :

pn :

{
C∗ −→ C∗

z 7−→ zn

Est un revêtment à n fibres (notre premier exemple présentant un nombre fini de fibre !)

Exemple (exponentielle complexe). Voici un autre exemple. On considère la même
application que dans notre premier exemple mais l’on change l’espace total et ainsi la
base :

exp :

{
C −→ C∗

t 7−→ eit

où C∗ désigne C \ {0}
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L’espace total est donc C, la base C∗.
Alors lançons-nous : l’application est-elle surjective?

La réponse est évidemment oui. Démontrons-le :

Soit z0 ∈ C∗. On peut écrire cet élément sous sa forme polaire :

z0 = r0e
iθ0

Puisque z0 ̸= 0, on a r0 > 0. Le logarithme naturel de r0 est donc défini, et on peut

poser a = ln(r0). Posons aussi b = θ0. On a :

ea+ib = ea · eib = eln(r0) · eiθ0 = r0e
iθ0 = z0

On a donc prouvé que l’exponentielle complexe était surjective. Elle est de plus conti-
nue. On peut donc poursuivre. Vérifions que la seconde propriété sur les revêtements
est vraie. Rappelons-la :

∀b ∈ B, ∃V ∈ V(b), p−1(V ) =
⊔
i∈I

Vi et p|Vi
homéomorphisme

Soit donc z0 ∈ C∗. Posons d’abord z0 = r0e
iθ0 avec r0 > 0 et θ0 ∈ [0, 2π[.

Distinguons deux cas :

⋆ si θ ̸= 0
Dans ce cas-là, posons encore une fois :

V (z0) = {z ∈ C | z = reiθ, r ∈]r0/2, 3r0/2[, θ ∈]θ/2, 3θ/2[}

un voisinage de z0.

44
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Im

•
z0

V (z0)

FIGURE 3.7 – voisinage d’un point à partie imaginaire non nulle

On a par la suite :
exp−1(V (z0)) =

⊔
k∈Z

Vk

où pour tout k ∈ Z :

Vk = {z ∈ C | Re(z) ∈] ln(r0/2), ln(3r0/2)[, Im(z) ∈]2πk+θ0/2, 2πk+3θ0/2[}

Cette petite propriété n’est pas trop ardue à montrer. Nous ne le ferons pas ici.

Remarquons que la famille (Vk)k∈Z est bel et bien une famille de parties disjointes de
C. C’est-à-dire que les Vk sont deux-à-deux disjoints.
Représentons-les sur le plan complexe :
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V0

V1

V2

V−1

V−2

+2π

+2π

...

...

O Re

Im

FIGURE 3.8 – exp−1(V (z0)) ou encore l’union disjointe des Vk

Il faut imaginer que cette famille de pavés ouverts et donc infinie en haut comme en
bas.
Finalement, remarquons qu’à k fixé, nous avons exp un homéomorphisme de Vk sur
exp(Vk). Cela vient du fait que sur chaque Vk, le choix de l’argument nous est imposé.
Il doit appartenir à ]2πk+θ0/2, 2πk+3θ0/2[. On transforme donc notre exponentielle
(non injective dans C) en un homéomorphisme sur un voisinage ouvert.
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L’argument de la continuité de la réciproque repose encore sur des théorèmes d’analyse
complexe. (On choisit V (z0) connexe par arcs, ne rencontrant 0.)

De cette manière on aura V (z0) bien revêtu par p et ∀i ∈ I , Vi est homéomorphe à
exp−1(V (z0)) comme l’illustre la figure ci-dessous :

Vi exp

exp |−1
Vi

•
z0

V (z0)

FIGURE 3.9 – V (z0) bien revêtu

⋆ si θ = 0 :
La démonstration est sensiblement la même, on peut prendre comme voisinage le
même pour le rayon, et [−π/4, π/4] pour l’argument par exemple. Le voisinage est
encore une fois connexe par arcs donc il n’y a pas de problème pour construire exp un
homéomorphisme local.

Garder cet exemple en tête peut s’avérer utile lorsque l’on parle de revêtements. Dit
vulgairement, p est un revêtement si l’image réciproque de l’application p est une "pile
d’espaces superposés qui ne se touchent pas" vérifiant que p est un homéomorphisme
sur chacun d’eux. Tout cela de manière locale. On illustre cette explication ci-dessous :

On a ici le revêtement p représenté par la flèche en pointillé

L’espace total E est situé au dessus de l’espace de base B

En quelconque point de l’espace de base, il existe cette "pile d’espaces superposés
disjoints" qui sont en fait des voisinages ouverts qui nous donnent toujours Vx si on y
applique p. Il s’agit d’une sorte de projection qui peut avoir beaucoup de réciproques
(autant que de Vi). Il peut y en avoir une infinité ou non. On sait juste que la numéro-
tation des Vi est discrète (C’est-à-dire qu’ils sont au plus dénombrables).

47



Remarquons qu’en définissant le revêtement ainsi, la première condition portant sur
la surjectivité de p devient sous-entendue.

•x

B l’espace de base

Vx voisinage bien revêtu

Vi1

Vi2

Vi3

...

"pile d’espaces disjoints"

E l’espace total E

B

p

FIGURE 3.10 – Illustration représentative d’un revêtement

Remarque. Le nombre de fibres est constant quel que soit le point dans l’espace de base
choisi. On sait juste que ce nombre de fibres est au plus dénombrable. On peut autant
en avoir une fibre, en avoir 10 sur un autre espace et ℵ0 (une infinité) encore ailleurs.
Il dépend simplement de l’espace de base, de l’espace total et bien sûr du revêtement
choisi.
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3.2 Relèvements

3.2.1 Définitions et résultats préliminaires

3.2.1.1 Définition

Définition (relèvement). Soient E, F, B trois espaces topologiques. Soit p un revê-
tement de E dans B. Soit f un application continue de F dans B. f̃ une application
continue de F dans E est appelée un relèvement de f si le diagramme suivant com-
mute :

E

p

��
F

f̃
??

f // B

C’est-à-dire, si l’on a :
p ◦ f̃ = f

Remarque. Commençons par remarquer que le relèvement est relatif à un revêtement,
et à une application continue.

Commençons cette partie par un premier résultat agréable :

Proposition. Soient E, F, B trois espaces topologiques. Soit p un revêtement de E
dans B fixé. Soit f une application continue de F dans B.
Soient f̃1, f̃2 deux relèvements de f (qui vont donc de F dans E). Alors :

A = {a ∈ F | f̃1(a) = f̃2(a)}

est une partie ouverte et fermée de F

Démonstration. Montrons donc A ouverte, puis fermée.
⋆ A est une partie ouverte :
Soit a ∈ A. Le but est de montrer qu’il existe un ouvert de F contenant a, sur lequel
f1 et f2 sont égales. Trouver un voisinage vérifiant les mêmes propriétés est suffisant.
Pour cela posons :

f̃1(a) = f̃2(a) = x

f(a) = b
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Rappelons que :
p ◦ f̃1 = p ◦ f̃2 = f

Donc ici on a :
p(x) = p ◦ f̃1(a) = f(a) = b

Donc p(x) = b. Mais p est un revêtement, il existe donc V un voisinage de b tel que V
est bien revêtu par p.
C’est-à-dire :

p−1(V ) =
⊔
i∈I

Vi

où I est discret (inclus dans Z par exemple) et Vi une famille d’ouverts disjoints.

Mais l’on sait x ∈ p−1(V ). x est donc dans l’un de ces ouverts. Puisqu’ils sont dis-
joints, il est dans exactement un seul d’entre eux. Posons donc :

x ∈ Vi0 , i0 ∈ I

Où i0 est donc unique ici. Vi0 est ouvert dans E l’espace total. Mais f̃1, f̃2 ∈ C(F, E)
(sont continues de F dans E).

Rappelons la définition de continuité :

f̃ ∈ C(F, E) ⇐⇒ ∀a ∈ F, ∀W ∈ V(f̃(a)), f̃−1(W ) ∈ V(a)

Se lit "f̃ est continue de F dans E si et seulement si pour tout a dans F , pour tout
voisinage de f̃(a), l’image réciproque de ce voisinage par f̃ est un voisinage de a"

Ici, on sait f̃1, f̃2 continues. Donc, avec Vi0 voisinage de x et avec x = f̃1(a) = f̃2(a),
on a :

f̃1
−1

(Vi0), f̃2
−1

(Vi0), deux voisinages de a

Posons W l’intersection de ces deux voisinages. W est un voisinage de a dans F et :

f̃1(W ) ⊂ Vi0 f̃2(W ) ⊂ Vi0

On peut le montrer pour f̃1 par exemple (cela fonctionne pareillement pour f̃2).
On a :

W ⊂ f̃1
−1

(Vi0) ∩ f̃2
−1

(Vi0) ⊂ f̃1
−1

(Vi0)

D’où :
f̃1(W ) ⊂ Vi0
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Il nous reste à montrer W ⊂ A. On aura alors exhibé un voisinage de a contenu dans
A et - la propriété étant vraie pour tout a ∈ A - on aura montré A ouvert.

Soit donc w ∈W . On peut dire deux choses :

f(w) = p(f̃1(w)) = p(f̃2(w))

f(w) ∈ Vi0

On sait finalement que p est un homéomorphisme de Vi0 dans V . On peut donc - avec
notre seconde condition - composer par p|−1

Vi0
pour trouver :

f̃1(w) = f̃2(w)

Donc f̃1 et f̃2 sont égales sur W puis W ⊂ A et A est ouvert.

⋆ A est une partie fermée :

Il nous suffit pour cela de montrer que F \A est ouvert.
Cette seconde partie ressemble à la première, nous irons donc un peu plus vite.

Soit a ∈ F \A. On a f̃1(a) ̸= f̃2(a). Comme précedemment, on pose :

(f̃1(a), f̃2(a)) = (x1, x2)

f(a) = b

On a par la suite :
p(x1) = p(x2) = b

On prend le même voisinage V de b que prédemment et l’on a :

x1, x2 ∈ p−1(V ) ⊂
⊔
i∈I

Vi

Rappelons que les Vi sont disjoints.
Posons donc : x1 ∈ Vi1 , x2 ∈ Vi2 où i1 et i2 sont uniques.

Si i1 = i2 alors avec p homéomorphisme sur Vi1 = Vi2 et p(x1) = p(x2), on au-
rait x1 = x2 donc f̃1(a) = f̃2(a) ce qui est absurde.
Donc i1 ̸= i2.

Soit j ∈ {1, 2}
On a :

Vij voisinage de xj
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Par continuité de f̃j , on a :

∃Wj ∈ V(a) | f̃j(Wj) ⊂ Vij

Posons W =W1 ∩W2. W est un voisinage de a dans F et :

f̃1(W ) ⊂ Vi1 f̃2(W ) ⊂ Vi2

Mais Vi1 et Vi2 sont disjoints. Donc f̃1(W ) et f̃2(W ) le sont aussi avec les deux inclu-
sions qui précédent.

On a donc un voisinage W de a tel que :

∀w ∈W, f̃1(w) ̸= f̃2(w)

C’est-à-dire W ⊂ F \A et donc A est fermée.

{a ∈ F | f̃1(a) = f̃2(a)} est donc une partie ouverte est fermée de F .

Corollaire. On en déduit que si F est connexe, alors deux relèvements de f égaux en
un points sont les mêmes.

La preuve de ce petit corollaire est simple :

Démonstration. Supposons F connexe, et f̃1, f̃2 deux relèvements de f : F −→ B
égaux en un point x de F . On sait {a ∈ F | f̃1(a) = f̃2(a)} une partie ouverte et
fermée de F . Avec F connexe, une telle partie est donc soit F tout entier, soit ∅. Mais
elle n’est pas vide car x y appartient. Donc {a ∈ F | f̃1(a) = f̃2(a)} = F . Autrement
dit, f̃1 = f̃2.

3.2.1.2 Groupe d’automorphisme

Définition (groupe d’automorphisme d’un revêtement). Soient E, B des espaces to-
pologiques. Soit p : E −→ B un revêtement. Soit ψ : E −→ E un homéomorphisme.
ψ sera dit automorphisme du revêtement p si :

p ◦ ψ = p
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On notera l’ensemble des automorphsimes du revêtement p ainsi :

Autp(E)

Proposition. Autp(E) est un sous-groupe de l’ensemble des morphismes de E dans
lui-même.

Démonstration. Il nous suffit de vérifier les axiomes de groupe. Cela n’est pas trop
ardu :

— On a bien Id ∈ Autp(E)
— Soient ψ1, ψ2 ∈ Autp(E). ψ1 ◦ ψ2 est clairement un homéomorphisme et :

p ◦ ψ1 ◦ ψ2 = p ◦ ψ2 = p

— Si ψ ∈ Autp(E) alors on a ψ homéomorphisme par définition. On a donc ψ−1

son inverse une application continue de E dans lui-même. et de plus :
Pour tout y ∈ E alors on peut poser x = ψ−1(y) et avoir :

p ◦ ψ−1(y) = p ◦ ψ−1(ψ(x)) = p(x) = p(ψ(x)) = p(y)

Et avoir :
p ◦ ψ−1 = p

L’avant dernière égalité provient du fait que ψ ∈ Autp(E)
On a donc bel et bien Autp(E) un sous-groupe de l’ensemble des homéomorphismes
de E dans E.

Remarque. Tout élément du groupe Autp(E) est un relèvement de p. En effet,
Le diagramme suivant est commutatif :

E

p

��
E

ψ
??

p // B

Proposition. SoientE, B des espaces topologiques avecE connexe. Soit p : E −→ B
un revêtement. Autp(E) agit librement sur E.
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Démonstration. Il nous suffit pour montrer cette proposition de considérer l’action :

{
Autp(E) x E −→ E

(ψ, x) 7−→ ψ(x)

On a bel et bien une action de groupe.
Montrons donc qu’elle est libre Soit ψ ∈ Autp(E). Supposons ψ ̸= Id.

Soit x ∈ E. si ψ · x = x alors on a ψ(x) = x

Mais E étant connexe, si ψ coïncide en un point avec l’application Id alors les deux
sont égales (cela est vrai car Id est un relèvement). Mais on a supposé ψ ̸= Id d’où
absurdité !

Ainsi, ψ · x ̸= x quel que soit x ∈ E. C’est-à-dire que Autp(E) agit librement sur E
et que notre action est libre.

Proposition. On peut même aller plus loin avec l’affirmation suivante : Soient E, B
des espaces topologiques, p ∈ C(E,B) un revêtement. Supposons E connexe. On a :

∀x ∈ E, ∃V ∈ V(x),∀ψ ∈ Autp(E) \ Id, ψ(V ) ∩ V = ∅

C’est-à-dire que tout point admet un voisinage ouvert sur lequel ψ déplace tous les
points hors de celui-ci (sauf bien sûr si ψ est l’identité).

Démonstration. Soient donc x ∈ E. On sait par définition du revêtement qu’il existe
V un voisinage de p(x) bien revêtu par p. C’est-à-dire :

p−1(V ) =
⊔
i∈I

Vi

On peut poser x ∈ Vi0 où i0 est unique dans I (car p restreinte à Vi est un homéomor-
phisme).
Montrons par contraposée que si ψ(Vi0) ∩ Vi0 ̸= ∅ alors ψ = Id

Supposons donc qu’il existe z ∈ E qui vérifie :

z ∈ Vi0 et z ∈ ψ(Vi0)

54



On peut poser z = ψ(y) et l’on a :

p(y) = p(ψ(y)) = p(z)

et puisque y et z sont dans le même voisinage ouvert Vi0 et que p restreint à ce voisinage
est un homéomorphisme, on a y = z.
On a donc ψ(y) = y pour un certain point. Mais E étant connexe, on en déduit par nos
résultats précédents que :

ψ = Id

On a montré par contraposée que si ψ ̸= Id on avait :

ψ(Ui0) ∩ Ui0 = ∅

Où Ui0 est un voisinage ouvert de x qui existe. On a donc exhibé un voisinage qui
convient et ainsi montré la proposition.

Remarque. On dira queAutp(E) agit librement et discrètement surE. Librement dans
le sens déjà expliqué et discrètement dans le sens où ψ "bouge" tout le voisinage de
tout point donné (si différente de l’identité).

3.2.1.3 Topologie quotient

Le but de cette partie est de munir un ensemble d’une topologie. On prépare en fait
le terrain pour relier continuité et groupes. Pour cela on a donc besoin d’ensembles
topologiques servant de base et d’applications continues.

Définition (topologie engendrée). Soient X un espace topologique, soit Y un en-
semble. Soit f : X −→ Y une application surjective.
On peut munir Y d’une famille {Ai, i ∈ I, } avec ∀i ∈ I, Ai ⊂ Y .
Notons pour cela TX la topologie sur X et T notre famille composée des Ai. On la
définit ainsi :

∀A ⊂ Y, A ∈ T ⇐⇒ f−1(A) ∈ TX

Lemme. Dans le même cadre que celui de la définition ci-dessus, T est une topologie
sur Y . Elle sera appelée topologie engendrée par f (ou bien topologie engendrée tout
court).
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Démonstration. Vérifions donc les axiomes de topologie :

On a :

f−1(∅) = ∅ ∈ TX donc ∅ ∈ T

f−1(Y ) = X ∈ TX donc Y ∈ T

On a vérifié le premier axiome. Continuons :

Suppposons A, B ∈ T . On a :

f−1(A) ∈ TX et f−1(B) ∈ TX

Mais TX étant une topologie sur X , on a :

f−1(A) ∩ f−1(B) ∈ TX

C’est-à-dire :
f−1(A ∩B) ∈ TX

D’où finalement :
A ∩B ∈ T

Il ne nous reste plus que le dernier axiome.

Soit (Ai)i∈I ∈ T I une famille d’éléments de T . Il nous faut vérifier que l’union de
cette famille est bien dans T .

Soit i ∈ I
On a : Ai ∈ T donc f−1(Ai) ∈ TX .

Cela étant vrai pour tout i ∈ I et TX étant une topologie, on a donc :⋃
i∈I

f−1(Ai) ∈ TX

Ce qui revient à affirmer :

f−1

[⋃
i∈I

Ai

]
∈ TX
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Et enfin : ⋃
i∈I

Ai ∈ T

On a donc montré le troisième axiome.
On a donc T topologie sur Y que l’on appellera topologie engendrée et que l’on notera
désormais TY

Remarque. Cette définition (relative à une application f ) rend cette fonction instanta-
nément continue puisque l’image réciproque de tout ouvert est défini comme ouvert.

Définition (action continue). Soit G ↷ E une action de groupe où E est un espace
topologique. Cette action sera dite continue si son morphisme associé :

Φ :

{
G −→ SE
g 7−→ ϕg

vérifie que :

∀g ∈ G, ϕg est une application continue de E dans E.

Dans ce cas on aura que quel que soit g ∈ G, ϕg continue, et sa réciproque ϕg−1

continue également (car g−1 ∈ G) et ainsi ϕg est un homéomorphisme de E dans E
quel que soit g ∈ G.

Définition (topologie sur l’ensemble des orbites). On a défini des objets nous permet-
tant maintenant de relier topologie et groupes.

Soit donc G↷ E une action de groupe avec E espace topologique.
Notons E/G l’ensemble des orbites de cette action. On peut aussi noter :

p :

{
E −→ E/G
x 7−→ Ox

On peut munir E/G de la topologie engendrée par p et on a donc p ∈ C(E, E/G)

Lemme. p définie comme précédemment est une application ouverte. C’est-à-dire que
l’image directe de tout ouvert par p est ouverte.
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Démonstration. Soit donc U un ouvert inclus dans E. Puisque E/G est muni de la
topologie engendrée, on a p(U) ouvert si et seulement si :

p−1(p(U)) est ouvert

Soit x ∈ p−1(p(U)). On a donc :

p(x) ∈ p(U)

Ce qui est vrai si et seulement s’il existe u ∈ U vérifiant : p(x) = p(u)
Mais l’application p envoie un élément sur son orbite. Affirmer que p(x) = p(u) re-
vient donc à dire que x et u sont dans la même orbite. On peut alors assurer l’existence
de g ∈ G tel que :

x = g · u

On a donc montré

x ∈ p−1(p(U)) ⇐⇒ ∃u ∈ U, ∃g ∈ G, x = g · u

Ce qui signifie exactement :

p−1(p(U)) =
⋃

g∈G, u∈U
g · u

Ou encore :
p−1(p(U)) =

⋃
g∈G

ϕg(U)

Mais rappelons-nous que pour tout g ∈ G, ϕg est un homéomorphisme. C’est donc une
application ouverte (voir le chapitre 1 de cet écrit) et ainsi p−1(p(U)) est une réunion
d’ouverts donc est ouverte à son tour.

On a ainsi prouvé que p est une application ouverte.

3.2.2 Caractérisation des revêtements

Théorème. Soient G un groupe, E un espace topologique connexe. Supposons que G
agisse sur E discrètement et continûement. C’est-à-dire - en notant ϕ le morphisme
associé - que l’on suppose :

∀g ∈ G, ϕg ∈ C(E, E)
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Et l’on suppose également :

∀x ∈ E, ∀g ∈ G \ {e}, ∃V ∈ V(x), V ∩ ϕg(V ) = ∅

Alors p ∈ C(E, E/G) qui a tout élément associe son orbite est un revêtement et :

Autp(E) ≃ G

(Ces deux groupes sont isomorphes)

Ce résultat est très puissant. On a déjà vu que tous les revêtements et leur groupes
d’automorphismes vérifiaient cette propriété d’action libre et discrète (sous réserve
d’avoir E connexe). Il s’agit ici d’une sorte de réciproque. On affirme que si l’on a une
action libre et discrète sur E l’espace total, alors on a un revêtement p : E −→ E/G

Remarque. La preuve qui suit est assez longue. Chaque étape n’est pas compliquée en
soit mais l’ensemble est dense. Un petit conseil pour suivre peut être de lire g · x au
lieu de ϕg(x) car il s’agit de la même chose, et de revoir les définitions d’orbite et de
revêtement (présentes respectivement dans le chapitre 1 et dans le chapitre 3)

Démonstration. Soient doncG un groupe, E un espace topologique connexe et suppo-
sons que G agisse sur E discrètement.

Notre objectif est de montrer que p : E −→ E/G est un revêtement.

Or, p est clairement surjective. En effet si O ∈ E/G est une orbite, elle est non vide
et il suffit de prendre x ∈ O pour avoir p(x) = Ox c’est-à-dire un antécédent qui
convient.

On sait aussi que c’est une application continue car E/G est muni de la topologie
engendrée, et p est surjective ce qui est la seule hypothèse pour définir cette topologie.

Il nous reste à montrer la condition la moins évidente :

∀O ∈ E/G, ∃W ∈ V(O), p−1(W ) =
⊔
i∈I
Wi et p|Wi

homéomorphisme.

Soit donc O ∈ E/G. On peut poser O = Ox (c’est-à-dire de poser x ∈ O car les
orbites ne sont jamais vides, et donc d’affirmer O l’orbite de x).
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Rappelons cette hypothèse cruciale :

∀x ∈ E, ∀g ∈ G \ {e}, ∃V ∈ V(x), V ∩ ϕg(V ) = ∅

Toujours pour le même x ∈ E tel que O = Ox, posons V le voisinage de ce point (le
même que celui de l’hypothèse) et posons finalement W = p(V ).

W est un voisinage ouvert de p(x) = Ox. En effet, p(x) ∈W puisque p(x) ∈ p(V ) et
que V est un voisinage de x.
De plusW est ouvert car on a montré précédemment que p est une application ouverte.
Or on sait W = p(V ) et V ouvert, on a bien W voisinage ouvert de p(x).

On a de plus, exactement comme dans la démonstration précédente :

p−1(p(V )) =
⋃
g∈G

ϕg(V )

C’est-à-dire :
p−1(W ) =

⋃
g∈G

ϕg(V )

Posons :

I = G

∀i ∈ I, Wi = ϕi(V )

On a finalement :
p−1(W ) =

⋃
i∈I

Wi

Il nous reste à montrer que cette union est disjointe, que les Wi sont ouverts et que p
restreint à un Wi est un homéomorphisme. Commençons par le fait d’avoir la réunion

disjointe.
Soient donc g1, g2 ∈ G
Supposons qu’il existe a ∈Wg1 ∩Wg2 . On a donc a ∈ ϕg1(V ) ∩ ϕg2(V ) puis :

a = ϕg1(v1) = ϕg2(v2)

où v1, v2 ∈ V
Rappelons aussi :

∀g ∈ G, (ϕg)
−1 = ϕg−1
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On aurait donc en combinant nos deux lignes précédentes :

v1 = ϕg1−1·g2(v2)

Posons g = g1
−1 · g2. On aurait donc :

v1 = ϕg(v2)

C’est-à-dire :
v1 ∈ V ∩ ϕg(V )

Mais avec E connexe, on en déduit g = e. C’est-à-dire :

g1
−1 · g2 = e

Puis :
g1 = g2

Ainsi, on a Wg1 =Wg2 . On a donc montré :

∀i1, i2 ∈ I, Wi1 ∩Wi2 ̸= ∅ =⇒Wi1 =Wi2

C’est-à-dire que la réunion est disjointe. On a finalement :

p−1(W ) =
⊔
i∈I

Wi

Poursuivons. Il nous faut montrer que les Wi sont tous ouverts.
En effet, soit i ∈ I

Wi = ϕi(V )

Mais rappelons que les ϕi sont des applications continues (il s’agit d’une hypothèse sur
l’action). On a donc les ϕi homéomorphismes de E dans E de réciproque ϕi−1 puis
des applications ouvertes.
Puisque V est un voisinage ouvert, ϕi(V ) est ouvert pour tout i ∈ I . Puis :

∀i ∈ I, Wi est ouvert

Il ne nous reste plus qu’à montrer que p restreint chacun des Wi est un homéomor-
phisme.
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Soit donc encore une fois i ∈ I .
Posons :

pi :

{
Wi −→ p(V )
x 7−→ Ox

Montrons que cette application est un homéomorphisme.

⋆ bijectivité

⋆ injectivité

Soient x, y ∈ Wi. Supposons Ox = Oy . (pi(x) = pi(y)) x et y sont dans la même
orbite.
On a donc pour un certain g ∈ G :

y = ϕg(x)

Puis :
y ∈Wi ∩ ϕg(Wi)

Car x ∈ V
Finalement, encore sous l’hypothèse E connexe, on peut écrire : g = e

Et puis y = g · x = e · x = x et les antécédents sont donc les mêmes. L’applica-
tion est donc injective.

⋆ surjectivité

Cette application est clairement surjective sur p(Wi). Si y ∈ p(Wi), alors il existe
x ∈Wi tel que :

p(x) = y

Reste à constater que p(V ) = p(ϕi(V ))
En effet ϕi, à i fixé, est une bijection de V dans V (ϕi ∈ SV car action de groupe)
On a ainsi :

p(V ) = p(ϕi(V )) = p(Wi)

Et puisque l’application est surjective sur p(Wi), elle l’est aussi sur p(V ) puisqu’il
s’agit du même ensemble.

Notre application p|Wi
est donc une bijection. Elle est clairement continue car p l’est.

Il reste à montrer que sa réciproque l’est elle aussi.
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⋆ bijectivité réciproque

Cette partie est en fait déjà réglée. Remarquons que p est une application ouverte.
On a donc p|Wi

(ou bien pi) application ouverte également par restriction. Posons :

pi
−1 :

{
p(V ) −→ Wi

Ox 7−→ x

Il nous faut montrer cette application continue. Soit U un ouvert de Wi. Montrons que
l’image réciproque de U par pi−1 est ouvert c’est-à-dire de montrer :

(pi
−1)−1(U) ouvert

ou encore :
pi(U) ouvert

Ce qui est automatique avec p application ouverte.
On a donc pi−1 continue et p|Wi

un homéomorphisme. On a montré que p est donc un
revêtement.

Cette longue preuve n’est pas encore finie. Il nous reste à prouver le résultat suivant :

Autp(E) ≃ G

Rappelons que deux groupes sont isomorphes s’il existe un isomorphisme de groupe
de l’un vers l’autre. Considérons l’application suivante :

Φ :

{
G −→ SE
g 7−→ ϕg

Commençons par voir quelque chose, Φ(G) ⊂ Autp(E). En effet, si g ∈ G, on a ϕg
un homéomorphisme (d’inverse ϕg−1 ) car l’action est supposée continue et de plus :

∀x ∈ E, p(x) = Ox = Oy = (p ◦ ϕg)(x)

On a posé y = g · x = ϕg(x).
On a bien Ox = Oy car x et y sont dans la même orbite. Cela vient du fait que y = g ·x.
On a donc :

∀g ∈ G, p = p ◦ ϕg

Ainsi ϕg ∈ Autp(E) et on peut réécrire :
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Φ :

{
(G, ∗, e) −→ (Autp(E), ◦, Id)

g 7−→ ϕg

A-t-on un morphisme de groupes?

Pour le savoir, soient g1, g2 ∈ G. Soit aussi x ∈ E
On a :

Φ(g1 ∗ g2)(x) = ϕg1∗g2(x) = (g1 ∗ g2) · x = g1 · (g2 · x)

Puis :

g1 · (g2 · x) = g1 · (ϕg2(x)) = ϕg1(ϕg2(x)) = (ϕg1 ◦ ϕg2)(x) = (Φ(g1) ◦ Φ(g2))(x)

C’est-à-dire :
∀g1, g2 ∈ G, Φ(g1 ∗ g2) = Φ(g1) ◦ Φ(g2)

Donc Φ est un morphisme de groupe. Il s’agissait en fait seulement des axiomes des
actions. Montrons-le bijectif et on aura construit un isomorphisme deG dansAutp(E).

⋆ injectivité

L’action Φ est supposée discrète ce qui implique qu’elle est libre. Mais souvenons-nous
que toute action libre est fidèle. En particulier Φ est injective. (voir le chapitre 1).

⋆ surjectivité

Soit ψ un automorphisme du revêtement. ψ est un homéomorphisme de E dans E et
on a :

p = p ◦ ψ

Cette seconde égalité nous affirme que ψ conserve les orbites. C’est-à-dire :

y ∈ Ox =⇒ ψ(y) ∈ Ox

Ce qui signifie que pour tout x, y ∈ E :

∃g ∈ G, y = g · x =⇒ ∃g′ ∈ G, ψ(y) = g′ · x

On a donc :
y = g · x =⇒ ∃g′′ ∈ G, ψ(y) = g′′ · y
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Avec ici g′′ = g′ ∗ g−1. Pour un certain y ∈ Ox, on a donc :

ψ(y) = ϕg′′(y)

Rappelons que E est connexe et donc que deux relèvements qui coïncident en un point
sont les mêmes. On a finalement :

ψ = ϕg′′

On a montré ici : Autp(E) ⊂ Φ(G) mais l’on sait déjà que Φ(G) ⊂ Autp(E)
On a donc :

Φ(G) = Autp(E)

C’est-à-dire que Φ est surjective.

Ainsi, Φ est un morphisme de groupe bijectif. Donc un isomorphisme de groupe.
On peut donc assurer :

G ≃ Autp(E)

Résumé :

— On a montré que dans le cas où E l’espace total est un espace connexe et qu’il
existe un revêtement p défini sur E, alors Autp(E) agit discrètement sur E.

— On a exhibé une sorte de réciproque. SiG est un groupe qui agit discrètement et
continûement surE connexe, alors l’applicationE −→ E/G qui a tout élément
associe son orbite est un revêtement et :

G ≃ Autp(E)
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Chapitre 4

Lien entre Revêtements et
Groupe Fondamental

4.1 Relever les Chemins et les Homotopies

L’objectif de cette partie est de relever les chemins puis les homotopies d’un espace
topologique. Pour cela, nous reprendrons nos notations du 2nd chapitre : Groupe fon-
damental. Nous ferons une première partie courte destinée à des rappels topologiques
qui nous serviront par la suite.

4.1.1 Lemme de Lebesgue, topologie analytique

Définition (distance). Soit X un ensemble. d : X x X −→ R+ sera appelée distance
sur X si elle vérifie :

— ∀x, y ∈ X, d(x, y) = d(y, x)
— ∀x, y ∈ X, d(x, y) = 0 ⇐⇒ x = y
— ∀x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z)

Ces axiomes sont respectivement appelés symétrie, séparation, inégalité triangulaire

Définition (espace métrique). On appelle espace métrique tout ensemble X muni
d’une distance d. On pourra noter un tel espace (X, d)

Définition (boule ouverte). Soit (X, d) un espace métrique. Soit x ∈ X . Soit r > 0.
On appellera boule ouverte en x de rayon r que l’on notera B(x, r) l’ensemble :

B(x, r) = {z ∈ X, d(x, z) < r}
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Définition (point intérieur). Soit (X, d) un espace métrique. Soit x ∈ X . x sera dit
inérieur à X s’il existe r > 0 tel que :

B(x, r) ⊂ X

Définition (ouvert métrique). Soit (X, d) un espace topologique. Soit A ⊂ X . A sera
dit ouvert métrique de X si tout point de A est intérieur à A. C’est-à-dire, si :

∀a ∈ A, ∃r > 0, B(a, r) ⊂ A

Proposition. Tout espace métrique est un espace topologique

Démonstration. Soit (X, d) un espace métrique. Posons T l’ensemble des ouverts mé-
triques de X . Il est simple de vérifier T topologie sur X . Elle sera appelée topologie
métrique. Cela signifie juste que tous nos travaux faits jusqu’ici s’appliquent aussi sur
ces espaces munis d’une distance.

Remarque. Dans la pratique, la plupart de nos espaces sont métriques (tous nos exemples
reposent sur ces ensembles munis d’une distance). Notre écrit se focalise sur les espaces
topologiques simplement pour rester dans un contexte le plus général possible.

Ces brefs rappels étant faits, on peut énoncer un théorème important (dont on ne pré-
sentera pas la démonstration).

Lemme (lemme de Lebesgue). Soit (X, d) un espace métrique compact. Soit (Ui)i∈I
un recouvrement ouvert de X . Il existe δ > 0 tel que :

∀x ∈ X, ∃i ∈ I, B(x, δ) ⊂ Ui

δ sera appelée la constante de Lebesgue ou bien le nombre de Lebesgue

4.1.2 Relèvement des chemins

Ce théorème - dont nous ne ferons pas la démonstration - ayant été vu, nous sommes
désormais en disposition pour relever les chemins. Commençons sans plus tarder :

Proposition (relèvement des chemins). Soient E, X deux espaces topologiques. Soit
p ∈ C(E, X) un revêtement.
Soit γ ∈ C([0, 1], X) un chemin tracé dans X .

Alors il est possible de relever γ en γ̄ un chemin de [0, 1] dans E.

Ce relèvement est de plus unique à un "point de départ" près. Nous éclaircirons cette
idée dans la preuve qui suit.
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Démonstration. Le but est de relever γ. C’est-à-dire, rappelons-le :

E

p

��
[0, 1]

γ̄
==

γ // X

On essaye de trouver γ̄ une application continue telle que le diagramme ci-dessus com-
mute. C’est-à-dire de construire un chemin qui arrive dans l’espace total à partir d’un
chemin arrivant dans la base et d’un revêtement fixé.

Pour cela prenons quelques dispositions. Posons :

γ(0) = y0

De plus, on a :
X =

⋃
x∈X

{x}

Mais l’on sait que chaque élément de X possède un voisinage bien revêtu par p. (qui
vérifie la seconde propriété des revêtements). On peut donc poser :

∀x ∈ X, Vx ∈ V(x) un voisinage de x bien revêtu par p

De telle manière à avoir :
X =

⋃
x∈X

Vx

On sait de plus que :
γ−1(X) = [0, 1]

Car tous les points de γ sont à arrivée dans X . Avec notre recouvrement exhibé ci-
dessus, on obtient :

γ−1

[ ⋃
x∈X

Vx

]
= [0, 1]

C’est-à-dire exactement : ⋃
x∈X

γ−1(Vx) = [0, 1]

On a donc ici déterminé un recouvrement ouvert de l’ensemble [0, 1] (ouvert car les Vx
sont ouverts et γ est continue). Mais ce dernier ensemble est compact (fermé borné en
dimension finie). On peut donc finalement extraire un sous recouvrement fini. Posons :

[0, 1] =
⋃
i∈I

γ−1(Vxi
)
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Où xi ∈ X quel que soit i ∈ I et I est de cardinal fini.

Remarquons que l’on sait de plus que [0, 1] est un espace métrique. On peut par
exemple le munir de la distance :

d :

{
[0, 1]2 −→ R+

(x, y) 7−→ |x− y|

On a donc un espace métrique compact. On a de plus un recouvrement ouvert fini de
[0, 1]. On peut appliquer le lemme de Lebesgue :

Il existe δ > 0 tel que :

∀t ∈ [0, 1], ∃i ∈ I, B(t, δ) ∩ [0, 1] ⊂ γ−1(Vxi
)

Posons alors la subdivision arbitraire :

[0, 1] =

n−1⋃
k=0

[tk, tk+1]

Avec (t0, tn) = (0, 1), de telle manière à avoir |tk+1−tk| < 2δ pour tout k ∈ [[0, n−1]]

Avec une telle subdivision, on a [tk, tk+1] inclus dans une boule de rayon δ quel que
soit k ∈ [[0, n− 1]].

On en déduit avec le lemme de Lebesgue que, pour tout k ∈ [[0, n − 1]], il existe
i ∈ I tel qu’on ait [tk, tk+1] ⊂ γ−1(Vxi)

En effet :
[tk, tk+1] ⊂ B((tk + tk+1)/2, δ) ⊂ γ−1(Vxi

)

La première inclusion se déduit de la manière dont on a subdivisé l’intervalle [0, 1], la
seconde par le lemme de Lebesgue.

Soit donc k ∈ [[0, n− 1]] fixé cette fois.

On a donc l’existence d’un certain xi ∈ X tel que :

[tk, tk+1] ⊂ γ−1(Vxi)

Puis qu’on a :
γ([tk, tk+1]) ⊂ Vxi

xi étant un point dépendant de i à chaque fois, remplaçons Vxi
par Vi pour simplifier.
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On peut ensuite identifier I ⊂ N
C’est-à-dire qu’on pose la suite d’ouverts V1, V2, ...

Résumons. On a donc :
[0, 1] =

⋃
i∈I

γ−1(Vi)

[0, 1] =

n−1⋃
k=0

[tk, tk+1]

∀k ∈ [[0, n− 1]], ∃i ∈ I, γ([tk, tk+1]) ⊂ Vi

Cette dernière ligne s’énnoncera ainsi avec l’identification I ⊂ N :

∀k ∈ [[0, n− 1]], γ([tk, tk+1]) ⊂ Vk

Cela signifie qu’il existe un nombre fini de voisinages ouverts tels que le tracé du che-
min soit dans la réunion de ces voisinages.
Illustrons cela :

γ

FIGURE 4.1 – Un chemin contenu dans des voisinages ouverts (ici, il y en a 5)
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On remarque de plus que pour tout k ∈ I différent de la borne supérieure de I , on a :

Vk ∩ Vk+1 ̸= ∅

En effet, on a toujours :
γ(tk+1) ∈ Vk ∩ Vk+1

Commençons désormais la construction de notre relèvement γ̄
Pour cela, nous opérerons par récurrence. Enonçons la propriété :

∀k ∈ [[1, n]] Pk : ”Il est possible de construire le chemin γ̄ sur [0, tk]”

Faisons un petit point sur les indices pour que les choses soient claires :

On a : ∀k ∈ [[0, n− 1]] γ([tk, tk+1]) ⊂ Vk+1

Car nous avons identifiés les Vi à des Vk ce qui nous permet cette écriture. Rappelons
aussi notre but étant de montrer Pn, on se propose de prouver Pk+1 à partir de Pk pour
tout k ∈ [[1, n− 1]] d’où le principe de récurrence.

Initialisation :

Montrons P1. Est-il possible de construire γ̄ jusqu’en t1 ?
Commençons par fixer x0 ∈ p−1({y0}). (Rappellons : y0 = γ(0)). On veut faire com-
mencer γ̄ par x0

On sait que γ est à valeur dans V1 sur [0, t1] mais p étant un revêtement et V1 bien
revêtu par construction, on a :

p−1(V1) =
⊔
j∈J

W1,j

Posons j0 l’unique indice tel que x0 ∈W1,j0

p étant bijectif sur W1,j0 . On peut alors poser :

∀t ∈ [0, t1], γ̄(t) = (p|−1
W1,j0

◦ γ)(t)

De telle sorte à avoir γ̄ totalement inclus dans W1,j0 sur [0, t1]

On a réussi à construire la première partie du chemin mais celui-ci dépend de x0 le
point de base choisi. Gardons cela en tête et on peut désormais faire la seconde étape
de toute récurrence : l’hérédité.
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•y0

W1,j0 •x0

•y1

γ

γ̄|[0,t1]

V1

FIGURE 4.2 – Relèvement d’un chemin, première étape

Hérédité

Soit k ∈ [[1, n− 1]] Supposons Pk. On a donc γ̄ construit jusqu’en tk
Notre objectif est de prolonger γ̄ jusqu’en tk+1

On sait déjà une chose :
γ(tk) ∈ Vk ∩ Vk+1

Et on a également :
γ([tk, tk+1]) ⊂ Vk+1

Avec Vk+1 bien revêtu par p.

On a alors :
p−1(Vk+1) =

⊔
j∈J

Wk+1,j

Il nous suffit comme dans l’initialisation, de poser Wj0 l’unique Wk+1,j tel que

γ(tk) ∈Wk+1,j
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On a de plus p|Wj0
un homéomorphisme donc il nous suffit de poser (comme dans

l’initialisation) :
∀t ∈ [tk, tk+1], γ̄(t) = (p|−1

Wj0
◦ γ)(t)

De cette manière on a construit une application continue γ̄ (continue car l’est par mor-
ceaux et l’est en les éventuels points de discontinuité : les tk) qui est un relèvement du
chemin γ défini sur [0, tk+1]

Ainsi, Pk+1 est vraie

De cette manière, Pk est vraie pour tout k ∈ [[1, n]]
En particulier, Pn est vraie et donc il existe un relèvement de γ noté γ̄ un chemin de
[0, 1] dans l’espace total E.
On a p ◦ γ̄ = γ

•
x0 •

γ(tk)

W1,j0 W2,j0
...

Wk,j0 Wk+1,j0

...

...

FIGURE 4.3 – Relèvement d’un chemin, k-ième étape

Sur la figure ci-dessus, il faut imaginer que les indices j0 des Wk,j0 ne sont pas tous
les mêmes. Chacun d’entre eux est relatif à l’indice k associé.

Il ne nous reste plus qu’à éclaircir cette notion d’unicité du relèvement.

A x0 fixé, on a [0, 1] un espace connexe. On a donc le relèvement de γ passant par
x0 unique (rappel : si l’espace de départ F - ici [0, 1] - est connexe, deux relèvements
égaux en un point sont les mêmes). Le relèvement d’un chemin est donc relatif unique-
ment à son origine x0 que l’on choisi dans p−1({y0})
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On en déduit qu’il existe exactement autant de relèvements de γ que d’éléments dans
p−1({y0}).

Remarque. Puisque le relèvement d’un chemin dépend uniquement de son point d’ori-
gine, on notera - à un chemin γ et à un revêtement p fixé - l’unique relèvement de γ
ayant pour origine x0 ainsi :

γ̄x0
:

{
[0, 1] −→ E

t 7−→ γ̄x0
(t)

Avec ainsi :
γ̄x0(0) = x0

4.1.3 Relèvement des homotopies

On s’attaque ici à un gros théorème. Le but est cette fois de relever les homotopies.
Ennonçons sans plus tarder le théorème :

Proposition (relèvement des homotopies). Soient E, X deux espaces topologiques.
Soit p ∈ C(E, X) un revêtement.
Soit H ∈ C([0, 1]2, X). On suppose qu’il existe y0, y1 ∈ X vérifiant :

∀s ∈ [0, 1], H(s, 0) = y0 ∀s ∈ [0, 1], H(s, 1) = y1

Alors il est possible de relever H en H̄ une homotopie de [0, 1]2 dans E.

Comme pour le cas des chemins, ce relèvement est unique à un "point de départ" près.

Démonstration. Le but est de relever H . C’est-à-dire de trouver une application H̄
telle que :

E

p

��
[0, 1]2

H̄
<<

H // X
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le diagramme ci-dessus commute.
Le début de cette preuve est assez similaire à celle sur les chemins. On a :

X =
⋃
x∈X

{x}

Mais l’on sait que chaque x ∈ X admet un voisinage Vx bien revêtu par p.
On a donc également :

X =
⋃
x∈X

Vx

On a de plus :
H−1(X) = [0, 1]2

D’où :

H−1

[ ⋃
x∈X

Vx

]
= [0, 1]2

Et finalement : ⋃
x∈X

H−1(Vx) = [0, 1]2

Or on sait que H est continue, que les Vx sont ouverts. Ainsi, chaque H−1(Vx) est
ouvert.

On a donc
⋃
x∈X

H−1(Vx) un recouvrement ouvert de [0, 1]2

Or on sait que [0, 1]2 est un espace métrique compact (fermé borné en dimension finie).
On peut donc extraire du recouvrement ouvert déjà connu un sous recouvrement ouvert
fini.
On peut alors poser :

[0, 1]2 =
⋃
i∈I

H−1(Vxi)

Où I est de cardinal fini.
On peut donc identifier d’ores et déjà I ⊂ N pour avoir :

[0, 1]2 =

m⋃
i=1

H−1(Vi)

Où Vi est le voisinage d’un point x ∈ X bien revêtu par p que que soit i ∈ [[1,m]]

On a donc un recouvrement ouvert plus commode de [0, 1]2

75



On sait déjà que [0, 1]2 est un espace métrique compact. On peut donc y appliquer aussi
le lemme de Lebesgue :

∃δ > 0, ∀(s, t) ∈ [0, 1]2, ∃i ∈ [[1,m]], B((s, t), δ) ⊂ H−1(Vi)

Il nous reste alors à subdiviser [0, 1]2 en plusieurs morceaux.
Pour cela, il nous suffit de poser :

[0, 1]2 =

n−1⋃
k,l=0

Pk,l

C’est-à-dire exactement :

[0, 1]2 =

n−1⋃
l=0

(
n−1⋃
k=0

Pk,l

)

Avec :
∀ k. l ∈ [[0, n− 1]], Pk,l = [tk, tk+1] x [tl, tl+1]

Un pavé de [0, 1]2 de telle sorte à avoir :

tk=0 = tl=0 = 0

tk=n = tl=n = 1

∀ k, l ∈ [[0, n− 1]], Pk,l ⊂ B

((
tk + tk+1

2
,
tl + tl+1

2

)
, δ

)

76



...

... ...P0,0 P0,n−1

Pn−1,0 Pn−1,n−1......

(0, 0) (1, 0)

(1, 1)(0, 1)

FIGURE 4.4 – Subdivision de [0, 1]2

En posant arbitrairement un telle subdivision de [0, 1]2, on a bien Pk,l contenu dans
une boule ouverte de rayon δ quels que soient k, l ∈ [[0, n− 1]]
On peut alors appliquer le lemme de Lebesgue :

∀k, l ∈ [[0, n− 1]], ∃i ∈ [[1,m]], Pk,l ⊂ H−1(Vi)

Il nous est finalement possible de renommer chaque Vi qui convient pour Pk,l par Vk,l
(quitte à prendre plusieurs fois le même ou bien à ne pas tous les prendre) et on a
finalement :

∀k, l ∈ [[0, n− 1]], Pk,l ⊂ H−1(Vk,l)

Finalement, on peut revoir notre numérotation de pavés comme une liste cette fois. Par
exemple on peut prendre :

P0,0, P0,1, P0,2, ..., P0,n−1, P1,0, P1,1, ..., Pn−1,n−1

Puis chercher à identifier cette liste à celle-ci :

P1, P2, ... Pn2−1, Pn2

Et à affirmer (quitte à réindicer encore une fois) :

∀k ∈ [[1, n2]], Pk ⊂ H−1(Vk)
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On cherche simplement à rendre les choses plus claires et plus concises avec ces chan-
gements d’indices pour pouvoir démarrer la récurrence. Ce qu’on peut désormais faire.
Voici notre propriété :

∀k ∈ [[1, n2]], Pk : "Il est possible de relever H sur
k⋃
j=1

Pj "

On concluera de la même manière que pour le cas des chemins en affirmant que la
propriété étant vraie pour tout k ∈ [[1, n2]], elle l’est particulièrement pour k = n2 et
le résultat sera montré.
Commençons donc :

Initialisation

Montrons P1 Il nous faut relever H sur P1

Ainsi, soit x0 ∈ p−1({y0})
On sait déjà :

P1 ⊂ H−1(V1)

D’où :
H(P1) ⊂ V1

Or on sait que V1 est un voisinage ouvert dans X , bien revêtu par p
On a donc :

p−1(V1) =
⊔
i∈I

W1,i

Puisque x0 ∈ p−1({y0}) on a p(x0) = y0
Puis :

p(x0) ∈ H(P1)

Ce qui nous donne :
p(x0) ∈ V1

Et finalement :
x0 ∈ p−1(V1)

Puis, on peut noter i0 ∈ I l’unique indice tel que x0 ∈W1,i0 puisque l’on a une union
disjointe.
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Il nous suffit donc (comme pour les chemins) pour avoir p ◦ H̄ = H sur P1 de po-
ser :

∀(s, t) ∈ [0, 1]2, H̄(s, t) = (p−1|W1,i0
◦H)(s, t)

Si l’initialisation de cette preuve ressemble beaucoup à celle sur les chemins, l’hé-
rédité se corse.

Hérédité

Soit k ∈ [[1, n2 − 1]]
Supposons Pk
Montrons Pk+1

On suppose donc notre homotopie H relevée en H̄ sur
k⋃
j=1

Pj

Pour la suite, on pose :

A =

k⋃
j=1

(Pj ∩ Pk+1) =

 k⋃
j=1

Pj

 ∩ Pk+1

...

... ...P0,0 P0,n−1

Pn−1,0 Pn−1,n−1......

(0, 0) (1, 0)

(1, 1)(0, 1)

FIGURE 4.5 – Deux exemples d’où pourrait se trouver A (en rouge)

On a clairement A ⊂ Pk+1

On en déduit :
A ⊂ H−1(Vk+1)
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Nous allons désormais raisonner par Analyse-Synthèse sur la construction de H̄ sur
Pk+1

Analyse

Soit H̄ une application qui est relevée de H sur
k+1⋃
j=1

Pj

On a déjà le résultat :
A ⊂ H−1(Vk+1)

D’où :
H(A) ⊂ Vk+1

Puis :
H̄(A) ⊂ p−1(H(A))

Ainsi :
H̄(A) ⊂ p−1(Vk+1)

On a bien évidemment H̄ une application continue. De la manière dont on a construits
les pavés, on aA connexe par arcs.(Il s’agit d’un segment). La propriété connexe par arcs
étant un invariant topologique, on a :

H̄(A) connexe par arcs

De plus, on a Vk+1 bien revêtu par p d’où :

p−1(Vk+1) =
⊔
i∈I

Wk+1,i

Mais on a H̄(A) une partie connexe par arcs contenue dans une union disjointe. Elle
est donc contenue dans l’une des composante de cette union. Autrement, elle ne serait
pas connexe par arcs. (Impossible de relier deux points continûement dans des espaces
disjoints).
On en déduit :

∃i0 ∈ I, H̄(A) ⊂Wk+1,i0

Mais on sait que p restreint à Wk+1,i0 est un homéomorphisme. Si l’on doit avoir
p ◦ H̄ = H sur A, il devient nécessaire de poser :

∀(s, t) ∈ A, H̄(s, t) = (p−1|Wk+1,i0
◦H)(s, t)
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On a donc, avec A non vide, l’existence d’un élément (s0, t0) ∈ Pk+1 tel que :

H̄(s0, t0) = (p−1|Wk+1,i0
◦H)(s0, t0)

Il nous reste à montrer que cette même propriété est vraie pour tout (s, t) ∈ Pk+1

On sait Pk+1 connexe par arcs (pavé). Donc H̄(Pk+1) connexe par arcs également.
Pour la même raison que pour A, et en sachant :

H̄(Pk+1) ⊂ p−1(Vk+1)

Car :
p(H̄(Pk+1)) ⊂ H(Pk+1) ⊂ Vk+1

On obtient :
H̄(Pk+1) ⊂

⊔
i∈I

Wk+1,i

Et finalement, H̄(Pk+1) est connexe par arcs et donc est contenu dans un et un seul
Wk+1,i et étant donné qu’on a montré H̄(Pk+1) ∩Wk+1,i0 ̸= ∅ on a le résultat :

H̄(Pk+1) ⊂Wk+1,i0

Et on peut donc écrire :

∀(s, t) ∈ Pk+1, H̄(s, t) = (p−1|Wk+1,i0
◦H)(s, t)

Synthèse

Vérifions la réciproque.
On a bien H̄ continue comme composée d’applications continues par morceaux et
continue aux éventuels points de discontinuité.
Il est trivial de vérifier :

p ◦ H̄ = H

On a réussi à étendre un relèvement de H sur
k+1⋃
j=1

Pj

On a donc montré Pk+1 vraie

Ainsi, Pk est vraie pour tout k ∈ [[1, n2]] en particulier :

Pn2 est vraie
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C’est-à-dire qu’il est possible de relever H sur
n−1⋃
k,l=0

Pk,l

Et finalement, il est possible de relever H sur [0, 1]2

Le théorème est démontré. Chargeons-nous de la partie concernant l’unicité d’un tel
relèvement.

Comme pour le cas des chemins, si l’on fixe x0 ∈ p−1(y0) alors on a unicité du relè-
vement avec [0, 1]2 connexe de R2

On en déduit comme pour les chemins qu’il existe autant de relèvements de H que
d’éléments dans p−1(y0)

Remarque. Exactement comme pour les chemins, on pourra donc préciser avec quel
relèvement de H nous travaillons en spécifiant le point de départ :

H̄x0

On a réussi à relever les chemins, relever les homotopies et ce, avec un point donné, de
manière unique. Il nous reste nonobstant un résultat plus qu’intéressant à démontrer.

4.2 Théorèmes Importants

Théorème. Soient X, E deux espaces topologiques. Soit p : E −→ X un revêtement.
Soient γ1, γ2 deux lacets tracés dans X de base x0. Supposons les homotopes. Alors
leurs relèvements par rapport à p sont deux chemins homotopes. (Notamment, γ̄1 et γ̄2
ont même origine et même extrémité)

Démonstration. Plaçons-nous dans le même cadre que celui de l’énoncé. On se donne
donc γ1 et γ2 deux lacets de X de base x0 et on peut noter H : [0, 1]2 −→ X l’homo-
topie de γ1 à γ2

Soit z ∈ p−1({x0})

Considérons H̄z l’unique relèvement de H tel que :

∀t ∈ [0, 1], H̄(0, t) = z

Nous allons désormais utiliser chemins pour nous aider à conclure :
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α1 :

{
[0, 1] −→ E

s 7−→ H̄z(s, 0)

α2 :

{
[0, 1] −→ E

s 7−→ H̄z(s, 1)

α3 :

{
[0, 1] −→ E

t 7−→ H̄z(0, t)

α4 :

{
[0, 1] −→ E

t 7−→ H̄z(1, t)

Commençons :
On remarque tout d’abord :

∀s ∈ [0, 1], (p ◦ α1)(s) = H(s, 0) = x0

∀s ∈ [0, 1], (p ◦ α2)(s) = H(s, 1) = x0

Puis que l’on a par ailleurs :

∀t ∈ [0, 1], (p ◦ cz)(t) = x0

On a montré précédemment que le relèvement de chemins ayant pour origine un point
donné (ici z) est unique.
On en déduit :

α1 = cz

On pourrait être tenté d’affirmer :
α2 = cz

Mais cela n’est pas nécessairement vrai. En effet, α2(s) est égal à H̄z(s, 1) mais ce
dernier chemin n’est pas dans l’obligation de vérifier :

H(0, 1) = z

D’où on a pas le même point de départ et donc on ne peut pas appliquer le théorème
d’unicité du relèvement pour α2 tout du moins pas pour cz mais on a en revanche :

∀s ∈ [0, 1], (p ◦ α2)(s) = H(s, 1) = x0

Et d’autre part :

∀s ∈ [0, 1], (p ◦ cH̄z(1,1))(s) = (p ◦ cH̄z(0,1)) = x0
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Et cette fois on a bien s 7−→ H̄z(s, 1) ainsi que s 7−→ H̄z(1, 1) et s 7−→ H̄z(0, 1) trois
relèvements de même origine. On peut donc appliquer le théorème d’unicité :

∀s ∈ [0, 1], α2(s) = H̄z(1, 1) = H̄z(0, 1)

On retrouve encore une fois ici un lacet constant. On peut poser :

a = H̄z(1, 1) = H̄z(0, 1)

De manière à avoir :
α1 = cz

α2 = ca

Observons les deux autres chemins :
Pour α3, on sait :

∀t ∈ [0, 1], γ1(t) = H(0, t)

On en déduit que α3 : t 7−→ H̄z(0, t) est l’unique relèvement de γ1 ayant pour origine
H̄z(0, 0) = z
C’est-à-dire :

∀t ∈ [0, 1], H̄z(0, t) = α3(t) = γ̄1z(t)

On a notamment :
γ̄1z(1) = a

De la même manière, on a α4 l’unique relèvement de γ2 au point z. On a donc :

∀t ∈ [0, 1], H̄z(1, t) = α4(t) = γ̄2z(t)

Et enfin :
γ̄2z(1) = H̄z(1, 1) = a = H̄z(0, 1) = γ̄1z(1)

On a donc γ̄1z et γ̄2z deux chemins ayant même origine (explicite : z) mais aussi même
extrémité : a
Ces deux chemins ont donc une chance d’être homotopes et il suffit de constater que
H̄z est une homotopie de γ̄1z à γ̄2z
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En effet, H̄z est construite continue et on a :

— ∀t ∈ [0, 1], H̄(0, t) = γ̄1(t)
— ∀t ∈ [0, 1], H̄(1, t) = γ̄2(t)
— ∀s ∈ [0, 1], H̄(s, 0) = z
— ∀s ∈ [0, 1], H̄(s, 1) = a

(On oublie ici les |z pour simplifier la lecture)
Ainsi, on a bien le relèvement de deux lacets homotopes dans X comme étant deux
chemins homotopes dans E. Le résultat est montré.

•••
x0
•

z

a

γ1
γ2

E

X

p

H

H̄

γ̄2
γ̄1

FIGURE 4.6 – Relèvement de deux lacets homotopes

Sur la figure ci-dessus il faut donc imaginer que les lacetets noirs sont relevés en
bleu et que deux lacets homotopes se relèvent non pas en deux lacets (pas nécessai-
rement) mais en deux chemins. On a tout de même l’extrémité des deux chemins dans
p−1({x0}) tout comme leur origine z

Voyons désormais un théorème qui permettra d’établir un lien fort entre les notions de
revêtement et celles du groupe fondamental

Définition (situation galoisienne). Soient E, X deux espaces topologiques. Un sup-
pose E connexe par arcs. Soit p : E −→ X un revêtement. On sera dit en situation
galoisienne si Autp(E) agit librement et transitivement sur les fibres. C’est-à-dire, si :

∀x ∈ X, ∀a, b ∈ p−1({x}), ∃!ψ ∈ Autp(E), ψ(a) = b
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Dit autrement, pour tout élément de la base (ici x), quels que soient a, b dans l’image
réciproque du revêtement p par {x}, il existe un unique élément du groupe d’automor-
phisme de p noté ψ vérifiant ψ(a) = b

Théorème. Soient E, X deux espaces topologiques et p un revêtement de E dans X
avec E connexe par arcs. On se place en situation galoisienne.
Soit z0 ∈ E
En notant p⋆ l’application associée à p (voir fin du chapitre 2) on a :

π1(X)/p⋆(π1(E)) ≃ Autp(E)

Démonstration. Soient E, X deux espaces topologiques, soit p un revêtement de E
dans X

On suppose E connexe par arcs et l’on se place en situation galoisienne.
Il peut être judicieux pour commencer cette preuve de rappeler un résultat déjà montré :

Soit x ∈ X et soit γ un lacet de X en base x. Soit z ∈ p−1({x}). Il existe un unique
relèvement de γ qui est un chemin dans E ayant pour origine z noté γ̄z

On sait de plus que : γ̄z(1) ∈ p−1({x})
On a donc deux éléments dans p−1({x}) qui sont :

— z
— γ̄z(1)

On peut donc utiliser ici le fait que nous soyons en situation galoisienne pour assurer
l’existence d’un unique ψγ ∈ Autp(E) élément du groupe d’automorphisme tel que :

ψγ(z) = γ̄z(1)

On peut désormais poser l’application :

ρ :

{
π1(X,x) −→ Autp(E)

γ 7−→ ψγ

⋆ ρ bien définie

Commençons comme toujours par prouver que l’application est bien définie. Il nous
faut montrer que les images par ρ de deux lacets homotopes sont les mêmes.
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Soient donc γ1 et γ2 deux lacets dans X de base x et qui soient homotopes. On pose
H l’homotopie de γ1 à γ2.
On sait qu’on peut relever ces trois applications, quitte à transformer les lacets en che-
mins d’origine z ∈ E pour obtenir :

H̄ une homotopie de γ̄1 à γ̄2

Avec γ̄1(0) = γ̄2(0) = z
Avec γ̄1(1) = γ̄2(1) = a

Etant en situation galoisienne, il existe donc un unique homéomorphismeψγ1 ∈ Autp(E)
vérifiant :

ψγ1(z) = a

Mais on remarque alors que :
ψγ1(z) = γ̄2(1)

Autrement dit, l’unique morphisme ψγ2 vérifie la même condition que ψγ1
Par unicité, on a :

ψγ1 = ψγ2

Puis :
ρ(γ1) = ρ(γ2)

On a ainsi montré l’application ρ bien définie. Poursuivons. Notre but est de mon-
trer que ρ est un morphisme de groupe surjectif.
Commençons :

⋆ ρ morphisme

Soient γ1, γ2 ∈ π1(X,x).
Posons :

γ :


[0, 1] −→ X

t 7−→


γ1(2t) si t ∈ [0, 1/2]

γ2(2t− 1) sinon

La concaténation dans X des deux chemins

Soit z ∈ E
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On sait qu’on peut relever γ en γ̄ un chemin dans E d’origine z
Il nous suffit ensuite de poser ceci :

α :



[0, 1] −→ X

t 7−→


γ̄1z(2t) si t ∈ [0, 1/2]

γ̄2γ̄1z(1)
(2t− 1) sinon

On remarque que α est continue. Elle est continue par morceaux et l’est aussi en 1/2
car :

lim
t−→1/2+

α(t) = γ̄2γ̄1z(1)
(0) = γ̄1z(1)

lim
t−→1/2−

α(t) = γ̄1z(1)

D’où continuité. On a donc un chemin dans E d’origine z
On remarque de plus que :

∀t ∈ [0, 1/2], (p ◦ α)(t) = p(γ̄1z(2t)) = γ1(2t)

∀t ∈ [1/2, 1], (p ◦ α)(t) = p(γ̄2γ̄1z(1)
(2t− 1)) = γ2(2t− 1)

Ce qui nous assure :
p ◦ α = γ

Par unicité du relèvement pour l’origine z ∈ E, on a :

α = γ̄z

On a donc trouvé le relèvement de γ notre concaténation de γ1 et γ2

On peut également montrer :

γ̄2γ̄1z(1)
= ψγ1 ◦ γ̄2z

Effectivement, on a :
γ̄2γ̄1z(1)

(0) = γ̄1z(1) = ψγ1(z)

(ψγ1 ◦ γ̄2z)(0) = ψγ1(γ̄2z(0)) = ψγ1(z)
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Ces deux chemins ont donc même origine.

On a de plus :
p ◦ γ̄2γ̄1z(1)

= γ2

Et :
p ◦ (ψγ1 ◦ γ̄2z) = (p ◦ ψγ1) ◦ γ̄2z

Mais ψγ1 étant dans Autp(E), on a :

(p ◦ ψγ1) ◦ γ̄2z = p ◦ γ̄2z

Puis :
p ◦ (ψγ1 ◦ γ̄2z) = p ◦ γ̄2z = γ2

On a donc deux relèvements d’un même lacet égaux en leurs origines. On en conclut
qu’ils sont égaux.
D’où :

γ̄2γ̄1z(1)
= ψγ1 ◦ γ̄2z

On conclut sur la nature de ρ à l’aide de cette affirmation. En effet, ρ(γ1 ∗ γ2) qui n’est
rien d’autre que ψγ , est par définition l’unique automorphisme de Autp(E) tel que :

ψγ(z) = γ̄z(1)

On a donc :
ψγ(z) = γ̄z(1) = α(1) = γ̄2γ̄1z(1)

(1)

Or :
γ̄2γ̄1z(1)

(1) = (ψγ1 ◦ γ̄2z)(1)

Par ce qu’on a prouvé précédemment
Ce qui nous donne :

∀z ∈ p−1({x}), ψγ(z) = ψγ1(γ̄2z(1)) = ψγ1(ψγ2(z)) = (ψγ1 ◦ ψγ2)(z)

C’est-à-dire :
ρ(γ1 ∗ γ2) = ρ(γ1) ◦ ρ(γ2)
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Ce qui nous prouve que ρ est un morphisme de groupes.

⋆ Image de ρ

On montre ici que ρ est surjectif.
En effet si ψ ∈ Autp(E) on peut considérer z ∈ p−1({x}) et remarquer :

(z, ψ(z)) ∈ E2

Or on a supposé E connexe par arcs.
Il existe donc un chemin α tracé dans E tel que :

(α(0), α(1)) = (z, ψ(z))

Puisque α est continue, que p l’est aussi, on peut poser γ le chemin tracé dans X tel
que :

γ = p ◦ α

On observe que γ(0) = p(z) = x et γ(1) = (p ◦ ψ)(z) = p(z) = x

Voyons ce lacet γ comme élément de π1(X,x)

On constate aisément que ρ(γ) = ψγ vérifie :

ψγ(z) = γ̄z(1)

Or on remarque que γ̄z est l’unique relèvement de γ ayant pour origine z
On a donc par unicité :

γ̄z = α

Et de cette manière :
ψγ(z) = α(1) = ψ(z)

Autrement dit, on a par unicité :
ψγ = ψ

Et de cette manière on a bien exhibé un antécédent γ ∈ π1(X,x) à ψ pour l’application
ρ. Autrement dit, le morphisme est surjectif.

⋆ Noyau de ρ

On s’intéresse cette fois au noyau du morphisme de groupe ρ
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Soit donc γ ∈ π1(X,x)
On suppose :

ρ(γ) = Id

Ce qui est vrai si et seulement si :

γ̄z(1) = Id(z)

Ce qui équivaut exactement à :
γ̄z(1) = z

Autrement dit, γ fait partie du noyau de ρ si et seulement si son chemin relevé dans E
est un lacet.
C’est-à-dire :

γ ∈ Ker(ρ) ⇐⇒ γ̄z ∈ π1(E, z)

Mais rappelons que l’on a :
γ = p ◦ γ̄z

D’où, si γ ∈ Ker(ρ) alors on a γ ∈ p⋆(π1(E, z)) car en effet, γ = p ◦ γ̄z et on a vu
que γ̄z est un lacet en z
Ici, p⋆ est l’application associée à p (voir chapitre 2)

On a ainsi montré :
Ker(ρ) ⊂ p⋆(π1(E, z))

La réciproque est simple. Supposons que γ ∈ p⋆(π1(E, z))
On a :

γ = p ◦ α

Où α ∈ π1(E, z)
On a par la suite :

ψγ(z) = γ̄z(1)

Mais par unicité du relèvement en origine z, on a γ̄z = α
Ainsi :

ψγ(z) = α(1) = z

D’où ψγ est l’unique morphisme de Autp(E) tel que :

ψγ possède un point fixe : z
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On en déduit que ψγ est l’identité puis que :

p⋆(π1(E, z)) ⊂ Ker(ρ)

Autrement dit, on a montré :

Ker(ρ) = p⋆(π1(E, z))

Il nous reste à utiliser le premier théorème d’isomorphisme
On a :

π1(X,x)/Ker(ρ) ≃ ρ(π1(X,x))

Ce qui se traduit ainsi avec nos résultats précédents :

π1(X,x)/p⋆(π1(E, z)) ≃ Autp(E)

On remplace l’expression du noyau (qu’on a déterminé) et celle de l’espace d’arrivée
car l’application est surjective (elle atteint chaque élément de Autp(E))

Finalement, on sait que p est surjective (les revêtements sont par définitions surjec-
tifs) donc on a p(E) = X et on sait également que cette application est continue.
Rappelons queE est supposé connexe par arcs. La propriété de connexité par arcs étant
un invariant topologique, et ayant :

X = p(E)

On en déduit X connexe par arcs. (voir la sous partie sur la connexité à la page 6)
On a donc E et X deux espaces connexes par arcs.

Il devient donc inutile de spécifier leur point de base concernant leurs groupes fon-
damentaux

On obtient enfin le résultat souhaité :

π1(X)/p⋆(π1(E)) ≃ Autp(E)

Corollaire. On se place sous les mêmes hypothèses que dans le théorème qui précède.
Si l’on suppose de plus que E est simplement connexe, alors :

π1(X) ≃ Autp(E)
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Démonstration. La preuve de ce petit résultat n’est pas trop compliquée. Supposons E
simplement connexe. On a π1(E) = {0}

On sait de plus que p⋆ est un morphisme de groupes car c’est une application asso-
ciée.
On a alors

p⋆(π1(E)) = p⋆({0}) = {p⋆(0)} = {0}

Dans le sens où on trouve l’élément neutre de π1(X). La dernière égalité ici se justifie
avec le fait d’avoir p⋆ morphisme.

Ainsi :
π1(X)/p⋆(π1(E)) ≃ Autp(E)

Se transforme en :
π1(X)/{0} ≃ Autp(E)

Puis, quotienter par le sous-groupe trivial laissant identique, on arrive finalement à :

π1(X) ≃ Autp(E)

D’où le résultat.

Résumé :

On a donc découvert dans cette partie qu’il était possible de relever les lacets d’un
espace en chemins d’un autre tout en gardant le lien fort d’homotopie.
On a finalement réussi à - en situation galoisienne et avec E simplement connexe (ce
qui entraîne la connexité par arcs) - établir un lien entre l’espace total et la base X :

Le groupe fondamental de tout espace de base d’un revêtement dont l’espace total est
simplement connexe est isomorphe au groupe d’automorphisme de ce même

revêtement.
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Chapitre 5

Classification d’Espaces

On s’intéresse dans ce chapitre à d’autre méthode de calcul du groupe fondamental.
Autre que par les revêtements, on peut déterminer un groupe fondamental d’un espace
à partir d’un autre. Nous formaliserons tout cela.

5.1 Type d’Homotopie

Le but de cette partie est de regrouper les espaces ayant un point commun : le type
d’homotopie. Pour cela nous devons d’abord étendre notre définition des homotopies
sur les chemins, aux homotopies sur les applications continues.

5.1.1 Applications homotopes

Définition (applications homotopes). Soient X, Y deux espaces topologiques. Soient
f, g ∈ C(X, Y ). f et g seront dites homotopes s’il existe H : [0, 1] x X −→ Y une
application continue telle que :

— ∀x ∈ X, H(0, x) = f(x)
— ∀x ∈ X, H(1, x) = g(x)

En pratique, on utilisera surtout la définition suivante (plus restreinte mais plus utile) :

Définition (applications homotopes relativement à une partie). Soient X, Y deux es-
paces topologiques. SoitA ⊂ X . Soient f, g ∈ C(X, Y ). f et g seront dites homotopes
relativement à A s’il existe H : [0, 1] xX −→ Y une application continue qui vérifie :
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— ∀x ∈ X, H(0, x) = f(x)
— ∀x ∈ X, H(1, x) = g(x)
— ∀x ∈ A, ∀s ∈ [0, 1], g(x) = f(x) = H(s, x)

Exemple. X = Y = R
Si l’on considère les deux applications :

f :

{
R −→ R
x 7−→ exp(x)

g :

{
R −→ R
x 7−→ (e− 1)x+ 1

Alors on a f et g homotopes, on peut transformer une application linéaire en la fonc-
tion exp et elles le sont de plus relativement en deux points de R. Une figure (non à
l’échelle) illustrera cette idée :

x

y

O

FIGURE 5.1 – deux applications homotopes

Mais l’on peut construire d’autres exemples :

Exemple. Dans le même cadre (sur C(R,R)), la figure représente encore une fois deux
applications homotopes :
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x

y

O

FIGURE 5.2 – Encore deux applications homotopes

Remarquons que cette fois, les deux applications sont homotopes relativement à tout
un intervalle.

Remarque. Montrer que deux fonctions sont homotopes est bien plus fastidieux que
dans le cas des chemins (qui l’est déjà parfois !). Nous ne nous attarderons donc pas là
dessus et utiliserons surtout cette définition pour la théorie.

Notons d’ailleurs que l’on peut désormais assurer :

Deux chemins homotopes le sont relativement à {0, 1}

5.1.2 Type d’homotopie d’espaces topologiques

Définition (type d’homotopie). Soient X, Y deux espaces topologiques. On dit que
X et Y ont même type d’homotopie s’il existe f ∈ C(X, Y ) et g ∈ C(Y, X) telles que :

f ◦ g est homotope à IdY
g ◦ f est homotope à IdX

Proposition. X ≈ Y ⇐⇒X et Y ont même type d’homotopie est une relation d’équi-
valence.
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Démonstration. On connaît désormais les relations d’équivalence. Alors commençons :

⋆ réflexivité

Soit X un espace topologique. Posons f = g = IdX . On a bien les deux conditions :

f ◦ g est homotope à IdX
g ◦ f est homotope à IdX

vérifiées. Ainsi ≈ est réflexive

⋆ symétrie

Soient X, Y deux espaces topologiques. Supposons X ≈ Y . X et Y ont donc même
type d’homotopie. Donc Y et X ont même type d’homotopie. Donc Y ≈ X . Donc ≈
est symétrique (trivial)

⋆ transitivié

Soient X, Y, Z trois espaces topologiques. Supposons X ≈ Y et Y ≈ Z. On a
l’existence de :

f : X −→ Y
g : Y −→ X
h : Y −→ Z
i : Z −→ Y

continues qui vérifient :

f ◦ g est homotope à IdY
g ◦ f est homotope à IdX

h ◦ i est homotope à IdZ
i ◦ h est homotope à IdY

Posons :

a :

{
X −→ Z
x 7−→ (h ◦ f)(z)

b :

{
Z −→ X
z 7−→ (g ◦ i)(z)
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On a :

a ◦ b = h ◦ f ◦ g ◦ i qui est homotope à h ◦ i qui est homotope à IdX

De même :

b ◦ a = g ◦ i ◦ h ◦ f homotope à g ◦ f homotope à IdZ

De plus, a et b sont continues comme composées.
La relation ≈ est donc transitive.

C’est finalement une relation d’équivalence.

On en déduit ce corollaire intéressant :

Corollaire. Si X et Y sont deux espaces topologiques homéomorphes (il existe f de
X dans Y continue bijective à réciproque continue) alors, X et Y ont même type
d’homotopie.

Démonstration. Il suffit de considérer f−1 (qui est ainsi continue) à la place de g dans
la définition du type d’homotopie (trivial).

Théorème. SoientX, Y deux espaces topologiques connexes par arcs et qui ont même
type d’homotopie. On a :

π1(X) et π1(Y ) isomorphes

Démonstration. Soient doncX, Y deux espaces topologiques connexes par arcs, ayant
même type d’homotopie.

Il existe f : X −→ Y et g : Y −→ X continues telles que :

f ◦ g est homotope à IdY
g ◦ f est homotope à IdX

Fixons x ∈ X .
Nous allons utiliser dans cette preuve les fonctions associées à f et g :
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f⋆ :

{
π1(X,x) −→ π1(Y, f(x))

γ 7−→ f ◦ γ

g⋆ :

{
π1(Y, f(x)) −→ π1(X, (g ◦ f)(x))

γ 7−→ f ◦ γ

Rappelons que l’on a :
(f ◦ g)⋆ = f⋆ ◦ g⋆

Notons H l’homotopie de l’identité à f ◦ g, et notons que l’on a le résultat suivant :

(f ◦ g)⋆ = φc

où :

c est un chemin qui lie (f ◦ g)(x) à x

φc est :

φc :

{
π1(X,x) −→ π1(X, (f ◦ g)(x))

γ 7−→ c ∗ γ ∗ c−1

Montrons-le :

Soit γ ∈ π1(X,x). On a :

(f ◦ g)(γ) un lacet de base (f ◦ g)(x). Donc un élément de π1(X, (f ◦ g)(x)). Il
faut montrer que ce lacet est le même que φc(γ). C’est-à-dire, puisque nous sommes
dans π1(X, (f ◦ g)(x)), qu’il nous faut montrer que ces deux lacets sont homotopes.

Pour cela exhibons l’homotopie (de lacets donc) en question :

L :



[0, 1]2 −→ X

(s, t) 7−→


c(2t) si t ∈ [0, (1− s)/2]

H(γ((4t+ 2s− 2)/3s+ 1), s) si t ∈](1− s)/2, (s+ 3)/4[

c−1(4t− 3) si t ∈ [(s+ 3)/4, 1]

On a donc montré que pour tout γ dans π1(X,x), (f ◦ g)⋆(γ) = φc(γ). On a donc :

(f ◦ g)⋆ = φc
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On en déduit que (f ◦ g)⋆ c’est-à-dire f⋆ ◦ g⋆ est un isomorphisme (car égal à φc lui-
même isomorphisme). Puis que f⋆ surjective.
Par exactement la même preuve en considérant g ◦ f au lieu de f ◦ g, on a g⋆ ◦ f⋆
isomorphisme, d’où f⋆ est injective.
On sait déjà que f⋆ est un morphisme de groupe, et on a donc montré de plus qu’il était
bijectif.

Finalement, f⋆ est un isomorphisme de groupes de π1(X) dans π1(Y ). Les deux
groupes fondamentaux sont donc isomorphes.

Proposons un résumé des dernières preuves qui ne sont pas toutes simples :

Résumé :

On a montré que deux espaces homéomorphes ont même groupe fondamental.
Par la suite, on a vu que deux espaces homéomorphes ont même type d’homotopie,
puis que deux espaces ayant même type d’homotopie (et connexes par arcs) ont même
groupe fondamental.
Traduit mathématiquement, on a :

X homéomorphe à Y =⇒ X, Y ont même type d’homotopie =⇒ π1(X) isomorphe à π1(Y )

On a donc trouvé de réelles conditions pour que deux espaces aient le même groupe
fondamental.

5.2 Espaces Contractiles et Rétractes

5.2.1 Contractions

Définition (espace contractile). Soit X un espace topologique connexe. X sera dit
contractile s’il a le même type d’homotopie qu’un point {y}. (Y = {y} dans les
notations prises jusqu’ici.)

Remarque. Deux espaces contractiles ont donc le même type d’homotopie.

Corollaire. Si X est un espace contractile, alors il est simplement connexe.
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Démonstration. La preuve de ce corollaire est rndue simple grâce à tous nos théorème
établis précédemment :

Si X est contractile, il a le même type d’homotopie que {x} un point. Mais l’espace
{x} est clairement simplement connexe. Son groupe fondamental contient seulement
le chemin constant cx puisqu’il n’y a rien d’autre dans {x}. Mais rappelons-nous que :

X, Y même type d’homotopie =⇒ π1(X) ≃ π1(Y )

Où pour être plus exact, les groupes fondamentaux sont isomorphes. De plus, X étant
ouvert, on a X connexe par arcs (car X est connexe) et ainsi on a bien :

π1(X) ≃ π1({0}) = {0}

D’où X est simplement connexe.

Proposition (exemple d’application). Soit n ∈ N∗. On a Rn contractile.

Démonstration. Soit donc n ∈ N∗. On a Rn un espace topologique. Il nous suffit en-
suite de montrer que Rn a le même type d’homotopie que {0}.

Pour cela considérons f, g nos deux applications :

f :

{
Rn −→ {0}
x 7−→ 0

g :

{
{0} ↪→ Rn
0 7−→ 0Rn

On a :

f ◦ g :

{
{0} −→ {0}
0 7−→ 0

On a donc ici déjà l’identité, même pas besoin de l’homotoper. Puis :

g ◦ f :

{
Rn −→ Rn
x 7−→ 0Rn
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Ici il faut opérer un peu plus. Il suffit de considérer l’homotopie suivante :

H :

{
[0, 1] x Rn −→ Rn

(t, x) 7−→ tx

On a bien un homotopie puisque lorsque s = 0, H(s, x) = 0 pour tout x ∈ Rn et
lorsque s = 1, H(s, x) = x quel que soit le vecteur x.

Corollaire.
∀n ∈ N∗, Rn est simplement connexe

Remarque. Voici donc ce à quoi sert le type d’homotopie. On a montré que certains
espaces étaient simplement connexes sans jamais parler de chemins. Juste en remar-
quant qu’ils étaient contractiles. Les chemins sont donc bien cachés sous cette notion :
le type d’homotopie.

Remarque. La notion d’espaces contractiles est en fait elle aussi imagée. Un espace
est contractile s’il se déforme continûement en un point. On peut par exemple le com-
prendre pour R ou encore R2 :

•
0

R2

FIGURE 5.3 – R2 contractile

5.2.2 Rétractions

Définition (espace rétract). Soit X un espace topologique. Soit A ⊂ X . On dit que A
est rétract s’il existe une application continue :

r :

{
X −→ A
x 7−→ r(x)
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Telle que r restreinte à A soit l’identité.

Définition (espace rétract par déformation). Soit X un espace topologique. Soit A ⊂
X . On dit que A est rétract par déformation de X s’il existe une application continue :

r :

{
X −→ A
x 7−→ r(x)

telle que r soit homotope à IdX relativement à A.

Remarque. Conctrètement, rajouter "par déformation" signifie supposer en plus, que r
peut-être ramenée à l’identité continûement sur tout l’espace de départ.

Proposition. Soit X un espace topologique connexe par arcs. Soit A rétract par dé-
formation de X et connexe par arcs. On a :

π1(A) ≃ π1(X)

Dans le sens où ces deux groupes sont isomorphes.

Démonstration. Nous utiliserons pour cela - encore une fois - les applications asso-
ciées. Pour cela on considère la surjection canonique :

i :

{
A −→ X
a 7−→ a

et bien sûr son application associée (avec a0 ∈ A fixé) :

i⋆ :

{
π1(A, a0) −→ π1(X, a0)

a 7−→ a

On remarque dans un premier temps que :

r ◦ i :
{
A −→ A
a 7−→ a

Cette application est donc l’identité. Dans un second temps, on a :

i ◦ r :
{
X −→ X
x 7−→ (i ◦ r)(x)

On sait r homotope à l’identité. De plus, i restreinte à A (l’espace d’arrivée de r) est
égale à l’identité.
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On a donc i ◦ r homotope à Id On a donc exhibé f et g les fonctions qui permettent de

définir le type d’homotopie et qui permettent également d’affirmer ici que A et X ont
même type d’homotopie.

On en déduit finalement que π1(A) ≃ π1(X) puisque X et A sont connexes par arcs.

Exemple. Voyons ensemble pour bien comprendre cette définition et cette proposition
un exemple simple de rétract par déformation

x

y

−1 5

[ ]

FIGURE 5.4 – Exemple simple de rétract par déformation

On a ici X = R et A = [−1, 5]. A est bien rétract par déformation de X puisque sa
rétraction (tracée en rouge) est bien identique sur A et est homotope à l’identité sur X
(flèches noires). On en conclut avec notre dernière démonstration et nos connaissances
sur le groupe fondamental de R que π1([−1, 5]) = π1(R) = 0.

5.3 Espaces Produits

Dans cette courte section, nous nous intéressons au groupe fondamental de quelconque
espace produit. Nous avons pour cela une proposition intéressante.
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Proposition. Soient (X,x0), (Y, y0) deux espaces topologiques pointés. On a :

π1(X x Y, (x0, y0)) ≃ π1(X,x0) x π1(Y, y0)

C’est-à-dire que ces deux groupes sont isomorphes.

Démonstration. On considère pour cette preuve les deux applications :

pX :

{
X x Y −→ X
(x, y) 7−→ x

pY :

{
X x Y −→ Y
(x, y) 7−→ y

Respectivement la projection sur X et sur Y
On s’intéresse ensuite aux applications associées :

pX⋆ :

{
π1(X x Y, (x0, y0)) −→ π1(X,x0)

γ 7−→ pX ◦ γ

pY ⋆ :

{
π1(X x Y, (x0, y0)) −→ π1(Y, y0)

γ 7−→ pY ◦ γ

Pour finalement poser :

p :

{
π1(X x Y, (x0, y0)) −→ π1(X,x0) x π1(Y, y0)

7−→ (pX⋆((γ), pY ⋆(γ))

Il nous reste à montrer que p est un isomorphisme de groupe.

⋆ morphisme

p est l’application associée d’une fonction continue (projections). On a donc immé-
diatement p morphisme de groupes.

⋆ injectivité

Soit γ ∈ π1(X x Y, (x0, y0))
Supposons :

p(γ) = c(x0,y0)

On a alors une homotopie :

H :

{
[0, 1]2 −→ π1(X,x0) x π1(Y, y0)
(s, t) 7−→ H(s, t)
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Qui relie p(γ) avec c(x0,y0)

Mais l’espace d’arrivée de H étant π1(X,x0) x π1(Y, y0) on peut poser l’existence
de :

HX :

{
[0, 1]2 −→ π1(X,x0)
(s, t) 7−→ HX(s, t)

HY :

{
[0, 1]2 −→ π1(Y, y0)
(s, t) 7−→ HY (s, t)

Deux applications continues telles que :

H = HX x HY

Dans le sens où :

∀(s, t) ∈ [0.1]2, H(s, t) = (HX(s, t), HX(s, t))

Et, en utilisant le fait que H soit une homotopie, on remarque :

— ∀t ∈ [0, 1], HX(0, t) = (pX ◦ γ)(t)
— ∀t ∈ [0, 1], HX(1, t) = x0
— ∀s ∈ [0, 1], HX(s, 0) = x0
— ∀s ∈ [0, 1], HX(s, 1) = x0

On a alors bel et bien HX une homotopie que relie pX(γ) à cx0

De la même manière, on a HY une homotopie qui relie pY (γ) à cy0

On en déduit que :

γ = (pX(γ), pY (γ)) est homotope à (cx0 , cy0) lui-même égal à c(x0,y0)

C’est-à-dire γ homotope au lacet constant
On obtient donc :

p(γ) = 0 =⇒ γ = 0

C’est-à-dire que le morphisme de groupe est injectif.

⋆ surjectivité

Soient γ1, γ2 deux lacets respectivement dans π1(X,x0) et dans π1(Y, y0)
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On veut montrer qu’il existe un antécédent par p à :{
[0, 1] −→ π1(X,x0) x π1(Y, y0)

t 7−→ (γ1(t), γ2(t))

Pour cela il suffit simplement de prendre le même lacet, mais de le voir comme à
support dans X x Y plutôt que dans deux espaces différents (on concatène les deux
lacets). L’application : {

[0, 1] −→ π1(X x Y, (x0, y0))
t 7−→ (γ1(t), γ2(t))

Est bien un antécédent pour l’application précédente par p
On en déduit p surjective

On a donc trouvé un morphisme de groupes bijectif. Donc un isomorphisme de groupe
On en déduit la proposition.
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Chapitre 6

Applications aux Espaces
Classiques

Nous avons étudié tout le long de cet écrit, plusieurs méthodes et théorèmes permettant
de déterminer le groupe fondamental d’un espace. Dans ce chapitre, nous proposons
l’application de tous nos résultats sur certains exemples des plus simples aux plus ar-
dus. On remplacera aussi le symbole "≃" par "=" dans ce chapitre.

6.1 Groupe Fondamental de Rn

On a déjà vu dans le chapitre 5 que :

∀n ≥ 1, Rn est simplement connexe

Autrement dit :
∀n ≥ 1, π1(Rn) = {0}

On ne spécifie pas le point de base car Rn est convexe donc connexe par arcs.
Les détails de cette démonstration commencent à la page 101. L’idée est de montrer
que Rn possède le même type d’homotopie qu’un point (par exemple {0}), d’où :

π1(Rn) = π1({0}) = {0}

L’espace vectoriel réel le plus utilisé a donc un groupe fondamental trivial quel que soit
sa dimension (finie).

108



6.2 Groupe Fondamental des Convexes de Rn

Soit C ⊂ Rn un convexe non vide.
Soient γ1 et γ2 deux lacets tracés dans C basés en x0 ∈ C.
Posons :

H :

{
[0, 1]2 −→ C
(s, t) 7−→ sγ1(t) + (1− s)γ2(t)

H est continue, bien à arrivée dansC car celui-ci est convexe. On a donc une homotopie
de γ1 à γ2 (les axiomes de l’homotopie sont simples à montrer ici).
Ces deux lacets étant arbitraires, on a montré que tous les lacets dansC sont homotopes
entre eux. C étant convexe, il est connexe par arcs et on a donc :

π1(C) = {0}

C’est-à-dire que tout convexe réel est simplement connexe. En particulier, le disque
(ou les boules en général, qu’elles soient ouvertes ou fermées), le carré ou encore les
hypercubes sont tous simplement connexes.

6.3 Groupe Fondamental du Cercle S1

Nous avons déjà beaucoup étudié S1 notamment avec le revêtement de l’exponentielle
complexe définie sur les réels.
En effet on a remarqué :

exp :

{
R −→ S1
t 7−→ eit

Un revêtement (voir à la page 36) avec ici :

X = S1

L’espace de base, et :
E = R

L’espace total du revêtement. Bien sûr avec p = exp

Il nous faut donc nous intéresser au groupe d’automorphisme de exp sur R
Soit ψ : R −→ R un homéomorphisme.
On a :

ψ ∈ Autexp(R) ⇐⇒ exp ◦ ψ = exp

Ce qui est vrai si et seulement si :

∀t ∈ R, eiψ(t) = eit
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Si et seulement si :
∀t ∈ R, ψ(t)− t ∈ 2πZ

Posons désormais :

f :

{
R −→ R
t 7−→ ψ(t)− t

On sait que f est continue comme différence d’applications continues et qu’elle atteint
seulement les multiples de 2π (dans le cas où ψ ∈ Autexp(R) ce qu’on suppose désor-
mais)

Par continuité, on en déduit f constante.
En effet, pour passer de 2πk1 à 2πk2 avec k1 ̸= k2 il nous faut - par le théorème des
valeurs intermédiaires - atteindre des valeurs non comprises dans 2πZ ce qui implique
que ψ /∈ Autexp(R)

Ainsi :
ψ ∈ Autexp(R) ⇐⇒ ∃k ∈ Z, f = 2πk

C’est-à-dire :

Autexp(R) = {ψk ∈ C(R,R) | ∀t ∈ R, ψk(t) = t+ 2πk}

On peut donc établir un isomorphisme de groupes :{
Z −→ Autexp(R)
k 7−→ ψk

Ce qui nous assure :
Autexp(R) = Z

Bien. Vérifions si ce revêtement nous place en situation galoisienne ou non.
Soit x ∈ S1.
Soient a, b ∈ exp−1({x})

On peut déjà assurer :
b− a ∈ 2πZ

Posons alors k ∈ Z tel que :
b− a = 2πk

On a l’existence d’un unique élément de ψ ∈ Autexp(R) tel que :

ψ(a) = b
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En effet, il s’agit de ψk
On a effectivement :

ψk(a) = a+ 2πk = b

Et puisqu’aucun autre élément de Autexp(R) ne vérifie cette condition, on est bien en
situation galoisienne.

On a de plus constaté précédemment que R était simplement connexe (pour n = 1)

On peut donc appliquer le dernier corollaire vu à la fin du chapitre 4. On a :

π1(X) = Autp(E)

C’est-à-dire ici :
π1(S1) = Autexp(R)

On a donc :
π1(S1) = Autexp(R) = Z

Par transitivité, on obtient finalement :

π1(S1) = Z

Le groupe fondamental du cercle est donc isomorphe à l’ensemble des entiers relatifs.
Voici donc le pouvoir du dernier théorème montré dans cet écrit. Il permet - en passant
par les revêtements - de déterminer le groupe fondamental d’espaces non triviaux.

Remarque. Voici comment comprendre intuitivement comment le groupe fondamental
du cercle est isomorphe à Z :
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Im

O
•
x0

FIGURE 6.1 – π1(S1)

Pour avoir un lacet en x0, il nous faut partir de x0 et y revenir d’une manière ou d’une
autre. L’isomorphisme avec Z vient juste du fait que l’on "compte" le nombre de tours
faits sur le cercle pour revenir à x0. On peut en faire 3, -1500, ou 0 par exemple.

6.4 Groupe Fondamental de la Sphère Sn

Nous avons déterminé le groupe fondamental de S1 mais on s’attaque ici à plus gros.
La sphère en dimension n ∈ N∗.
Rappelons encore une fois que :

Sn = {x ∈ Rn+1 | ∥ x ∥ = 1}

Avec ∥ . ∥ la norme euclidienne en dimension n+ 1
On a déjà traité le cas de S1. On supposera donc ici n ≥ 2

La preuve qui suit utilise un raisonnement subtil. On suppose une certaine condition
vérifiée tout d’abord, montrons le résultat voulu, et remarquons que même si cette
condition n’est pas vérifiée, on peut se ramener au cas où elle l’est.
Eclaircissons cela

Soit donc γ un lacet de base x0 ∈ Sn à support dans Sn

⋆ On suppose que :
∀t ∈ [0, 1], γ(t) ̸= −x0 (∗)
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C’est-à-dire que γ ne croise jamais l’opposé de sa base.

0•

x0•

−x0
•

γ(t)

FIGURE 6.2 – γ ne croisant pas −x0 en dimension deux

Sur la figure ci-dessus, on a γ un chemin tracé (l’ellipse en haut de la sphère) qui vérifie
qu’aucun segment rouge ne coïncide avec le segment bleu. Cette figure est représenta-
tive de la véracité de la condition (∗)

Remarquons que de cette manière, on a toujours le segment [γ(t), x0] qui ne croise
pas 0Rn+1

C’est-à-dire que l’on a :

∀s ∈ [0, 1], sγ(t) + (1− s)x0 ̸= 0

De cette manière on peut poser l’homotopie H telle que :

H :

{
[0, 1]2 −→ Sn

(s, t) 7−→ sx0+(1−s)γ(t)
∥sx0+(1−s)γ(t)∥

On a bien H qui arrive dans Sn car :

∀(s, t) ∈ [0, 1]2, H(s, t) est un vecteur de Rn+1

∀(s, t) ∈ [0, 1]2, ∥ H(s, t) ∥ = 1

H est continue car le dénominateur ne s’annule jamais (on l’a jusitifié au-dessus). Elle
est donc composée d’applications continues d’où continuité.
H est bien une homotopie de γ à cx0
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En effet :

— ∀t ∈ [0, 1], H(0, t) = γ(t)
∥γ(t)∥ = γ(t)

1 = γ(t)

— ∀t ∈ [0, 1], H(1, t) = x0

∥x0∥ = x0

1 = x0
— ∀s ∈ [0, 1], H(s, 0) = x0

∥x0∥ = x0
— ∀s ∈ [0, 1], H(s, 1) = x0

∥x0∥ = x0

On a donc bien γ homotope au lacet trivial. Autrement dit, dans π1(Sn), on a γ = 0
quel que soit γ vérifiant la condition (∗).

⋆ Supposons désormais que :

∃t ∈ [0, 1], γ(t) = −x0

C’est-à-dire que γ ne vérifie pas la condition (∗)
Notre but sera d’homotoper γ à un lacet γ′ en x0 vérifiant la condition (∗). Cest-à-dire
d’avoir :

H une homotopie de γ à γ′

γ′ un lacet de Sn tel que ∀t ∈ [0, 1], γ′(t) ̸= −x0

De cette manière on aura homotopé γ à un lacet qu’on sait homotope au lacet trivial,
c’est-à-dire qu’on aura assuré :

γ = 0

Quel que soit le cas dans lequel on se trouve (que (∗) soit vraie ou non).

Commençons dès maintenant.
Soit donc γ un lacet de Sn, basé en x0 ∈ Sn ne vérifiant pas la condition (∗).

Soit r > 0 un réel strictement positif arbitrairement choisi.
Posons BSn(−x0, r) la boule ouverte en −x0 dans Sn. C’est-à-dire :

BSn(−x0, r) = BRn+1(−x0, r) ∩ Sn

Notons désormais cette boule Br pour nous simplifier l’écriture.
On sait que pour r suffisamment petit (plus petit que 1/2 par exemple), on a :

x0 /∈ Br

C’est-à-dire que si la boule Br centrée en x0 est "petite", on ne peut pas y croiser x0.
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On en déduit :
Br ⊂ γ(]0, 1[)

Puis :
γ−1(Br) ⊂]0, 1[

Or on sait que γ est une application continue car c’est un chemin. De plus, Br est une
boule ouverte. C’est donc un ouvert de Sn.

On en déduit que γ−1(Br) est un ouvert contenu dans ]0, 1[
Il est possible de décrire cet ouvert. En effet la figure suivante nous aide à le com-
prendre :

0•

x0•

−x0
•

Br

FIGURE 6.3 – Br centrée en −x0

Et voici désormais le lacet qui peut s’y trouver :
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•−x0

Br

Sn

FIGURE 6.4 – L’ouvert γ−1(Br)

Sur la figure précédente, on a centré notre sphère de manière à avoir −x0 au centre.
De cette manière on peut tracer le lacet γ qui passe (au moins une fois) par −x0. On
constate que certains "bouts" de chemin rentrent et sortent dans Br sans passer par
−x0. On peut finalement assurer :

γ−1(Br) =
⊔
i∈I

]ai, bi[

Où - à chaque fois - ai est l’instant pour lequel γ commençe à rentrer dans Br, et bi
représente l’instant où le chemin sort de cette même boule. Que ce "bout" de chemin
croise −x0 ou non. C’est-à-dire que pour tout i ∈ I, ai < bi

Poursuivons. On s’intéresse désormais à γ−1({−x0}) car on veut homotoper γ à un
chemin qui ne le rencontre pas.

On sait déjà :
{−x0} ⊂ Br

D’où :
γ−1({−x0}) ⊂ γ−1(Br)

Puis :
γ−1({−x0}) ⊂

⊔
i∈I

]ai, bi[

Ce qui nous donne le résultat :

γ−1({−x0}) =
⊔
i∈I

]ai, bi[ ∩ γ−1({−x0})
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Puis :
γ−1({−x0}) =

⊔
i∈I

(
]ai, bi[ ∩ γ−1({−x0})

)
(1)

On sait que ]ai, bi[ ∩ γ−1({−x0}) est un ouvert de l’espace γ−1({−x0})
On obtient donc ici un recouvrement ouvert de γ−1({−x0})

Or on sait que {−x0} est fermé. On obtient par continuité de γ que γ−1({−x0}) est
un fermé de [0, 1].
[0, 1] étant lui-même un compact, on en déduit que :

γ−1({−x0}) est un fermé borné de R

C’est-à-dire puisque R est de dimension finie (égale à un) qu’on a :

γ−1({−x0}) compact

On en déduit que l’équation (1) nous exhibe le recouvrement ouvert d’un espace quel-
conque.

On peut utiliser la définition de la compacité pour extraire de ce recouvrement un re-
couvrement fini.
Autrement dit, on a l’existence d’un m ∈ N∗ tel que :

γ−1({−x0}) =
m⊔
i=1

(
]ai, bi[ ∩ γ−1({−x0})

)
Ce qui signifie sur le dessin que γ ne passe qu’un nombre fini de fois sur −x0. Ceci
nous permet de travailler sur tous les intervalles (finis) ]ai, bi[ et d’homotoper γ|]ai, bi[
à un chemin γ̃|]ai, bi[ qui lui ne passe pas par −x0.

De cette manière on aura homotopé γ à un lacet qui vérifie (∗) et nous aurons γ = 0
comme souhaité.

Soit donc i ∈ [[1, m]]
Cherchons à homotoper γ|]ai, bi[ à un chemin ne croisant pas −x0

Comme expliqué précédemment, on peut représenter γ|]ai, bi[ ainsi :
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•−x0

Br

Sn

γ(ai)

γ(bi)

FIGURE 6.5 – L’ouvert γ|]ai, bi[

Sur la figure ci-dessus, on fixe un bout du lacet γ qui passe par −x0 en rentrant dans la
boule Br.

Posons γ̃|]ai, bi[ le bout de chemin qui va de γ(ai) à γ(bi) en restant sur le bord de
la boule Br. On peut le représenter :

•−x0

Br

Sn

γ(ai)

γ(bi)
γ̃|]ai, bi[

FIGURE 6.6 – γ̃|]ai, bi[

On sait qu’on peut homotoper le chemin bleu vers le chemin vert. Ce faisant, le bout
de chemin γ|]ai, bi[ se transforme en γ̃|]ai, bi[.
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Ainsi, on a homotopé γ|]ai, bi[ à un chemin qui ne croise plus −x0. En effectuant le
même raisonnement pour tout i ∈ [[1,m]], on a bien γ homotope à γ̃ mais ce dernier ne
croise jamais l’opposé de la base du lacet.
On peut même assurer que ces deux lacets sont homotopes relativement à :

[0, 1] \
m⊔
i=1

]ai, bi[

Car en dehors de la boule, les chemins coïncident. Illustrons cela à l’aide de la figure
6.4
En effet si l’on retrace cette figure :

•−x0

Br

Sn

FIGURE 6.7 – Le lacet γ qui passe par −x0

•−x0

Br

Sn

FIGURE 6.8 – Le lacet γ̃ qui ne passe pas par −x0
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On sait que γ̃ et γ sont homotopes car le sont par morceaux et les points d’éventuelle
discontinuité (tels que les ai, bi) n’en rencontrent en fait pas.
Mais on a montré avec la première partie que sous l’hypothèse (∗), tout lacet est trivial.
Or γ̃ respecte la condition (∗)
Donc on a :

γ = γ̃ = 0

Par transitivité, tout lacet γ, qu’il vérifie ou non la condition (∗), est homotope au lacet
constant.
On en déduit que π1(Sn) est trivial (on omet le point de base, la sphère est connexe par
arcs).

Autrement dit :
∀n ≥ 2, Sn est simplement connexe

6.5 Groupe Fondamental de l’Espace Epointé Rn∗

On s’intéresse ici au groupe fondamental de l’espace véctoriel réel de dimension n
dont on a omis le point 0.
Soit donc n ≥ 1
Posons les deux applications :

f :

{
Rn∗ −→ Sn−1

x 7−→ x/ ∥ x ∥

Qui ramène tout élément vers son vecteur directeur unitaire, et :

g :

{
Sn−1 −→ Rn∗

x 7−→ x

L’injection canonique. On a :

f ◦ g :

{
Sn−1 −→ Sn−1

x 7−→ x

Qui est égale à l’identité et :

g ◦ f :

{
Rn∗ −→ Rn∗
x 7−→ x/ ∥ x ∥

Qu’on peut homotoper vers l’identité avec cette homotopie :

H :

{
[0, 1] x Rn∗ −→ Rn∗

(s, x) 7−→ sx(∥x∥−1)+x
∥x∥
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On a donc Rn∗ et Sn−1 deux espaces qui ont même type d’homotopie.
On en déduit que leurs groupes fondamentaux sont isomorphes.
Ainsi :

∀n ≥ 3, π1(Rn∗) = {0}

Et :
π1(R2∗) = π1(S1) = Z

R∗ n’est pas connexe par arcs. On a en revanche :

∀x0 ∈ R∗, π1(R∗, x0) = {0}

Ce qui est vrai mais pas très intéressant. Un autre espace qui l’est plus nous attend.

6.6 Groupe Fondamental du Tore T

Le Tore est un espace topologique. On note cet espace Tn (où n ∈ N∗) et celui-ci est
construit comme le produit direct de n cercles S1.
On peut représenter cet espace avec n = 2 car il s’agit d’une surface plongée dans R3 :

FIGURE 6.9 – Le Tore en dimension deux T2

Le Tore Tn étant construit comme produit de n cercles, on a :

π1(Tn) = π1(S1 x ... x S1)
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On utilise le théorème sur le groupe fondamental d’espaces produits (vu à la fin du
chapitre 5), et l’on a :

π1(Tn) = π1(S1) x ... x π1(S1) = Z x ... x Z

Puis finalement :
π1(Tn) = Zn

En particulier, π1(T2) est égal à Z2

Si l’on regarde la figure ci-dessus, cela ne paraît plus si abstrait.

Il y a en effet les lacets triviaux, il y a ceux qui "attrappent" le Tore en se plaçant
sur la tranche de cercle de ce dernier, ce qui nous donne un premier groupe de lacets,
ainsi que ceux qui sont "posés" sur le Tore.

On a donc deux groupes de lacets et si le groupe fondamental du cercle compte le
nombre de tours faits, celui du Tore compte le nombre de tours executés selon la tranche
du cercle mais aussi selon le haut du Tore. Cela simultanément d’où le groupe fonda-
mental isomorphe à Z2

Voici une illustration de ces dires :

FIGURE 6.10 – Les deux tours possibles sur le Tore T2

La "tranche de cercle" désigne le lacet rouge et "posés sur le Tore" fait référence au
lacet bleu.

6.7 Groupe Fondamental de l’Espace Projectif Réel Pn(R)

Soit n ≥ 2. L’espace projectif Pn(R) représente l’ensemble des droites vectorielles de
Rn+1

Il nous est possible de le définir ainsi :
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L’espace projectif réel Pn(R) est l’ensemble des vecteurs de norme égale à un, à
multiplication par −1 près.

Détaillons ceci. On cherche l’ensemble des droites de Rn+1.
Pour cela les vecteurs de norme 1 suffisent. Autrement dit, l’ensemble des points de
Sn suffisent pour avoir toutes les droites possibles. On en a malheureusement deux fois
trop dans cette configuration.

En effet, à x0 un point donné de Sn, on décrit une seule direction mais deux droites.
Celle portée par le vecteur x0 comme prévu, mais aussi celle portée par −x0.

Autrement dit, on a :
Pn(R) = Sn/U2

Où U2 = {−1, 1}. On quotiente l’ensemble des directions par les deux destinations
possibles. Ceci nous permet d’obtenir l’ensemble des droites (et non plus des direc-
tions).

Considérons désormais l’action :{
U2 x Sn −→ Sn

(ϵ, x) 7−→ ϵx

On affirme que cette action est discrète et continue. Développons-le :

⋆ l’action est continue

Soit ϵ ∈ {−1, 1} fixé.
L’application : {

Sn −→ Sn
(ϵ, x) 7−→ ϵx

est clairement continue. Notre action l’est donc tout autant (par définition).

⋆ l’action est discrète

Soit x ∈ Sn fixé. Soit ϵ un élément de U2 différent de l’élément neutre. On a donc
ici ϵ = −1
Soit r > 0 un nombre positif.

Posons :
V = B(x, r) ∩ Sn
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Un voisinage ouvert de x.
Pour r suffisamment petit, (par exemple plus petit que 1/3) le voisinage V couvrira
moins de la moitié de la surface de la sphère. De cette manière, le voisinage n’atteint
aucun de ses points opposés.

Nous aurons ici :

ϕϵ(V ) = {ϵ · z, z ∈ V } = {−1 · z, z ∈ V } = {−z, z ∈ V } = −V

Un autre ensemble totalement disjoint de V

Autrement dit, on a montré le prédicat :

∀x ∈ Sn, ∀ϵ ∈ U2 \ {1}, ∃V ∈ V(x), ϕϵ(V ) ∩ V = ∅

C’est-à-dire que notre action est discrète.

Notre action est donc libre et discrète. On a de plus Sn un espace connexe.
On en déduit par le théorème de caractérisation des revêtements (voir page 58), que
l’application :

p :

{
Sn −→ Pn(R)
x −→ Dx

qui à chaque élément de Sn associe son orbite pour l’action considérée - ce qui repré-
sente la droite portée par l’élément de Sn - est un revêtement.

On sait de plus que :
Autp(Sn) = U2

On a désormais notre revêtement à deux fibres, dont l’espace total est Sn, et la base
est Pn(R)
La question que nous sommes désormais en droit de nous poser est celle-ci : sommes-
nous ou non en situation galoisienne?
Essayons de le montrer :

On a clairement Sn l’espace total, connexe par arcs.

Soit Dx une droite de Pn(R). Soient a, b ∈ p−1({Dx}).
Autrement dit, on a a, b deux vecteurs de Rn+1, unitaires, tels que Dx peut être portée
par chacun de ces deux vecteurs.

On a donc :
a ∈ {x,−x}
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b ∈ {x,−x}

Dans tous les cas possibles, on a l’existence d’un unique élément ϕϵ de {Id,−Id} tel
que :

b = ψ(a)

Autrement dit, nous sommes dans le cadre galoisien.
Puisque nous avons montré que la sphère en dimension n ≥ 2 est simplement connexe,
on peut assurer :

π1(X) = Autp(E)

Ce qui signifie dans notre cas :

π1(Pn(R)) = U2

C’est-à-dire que le groupe fondamental de l’ensemble des droites dans Rn+1 contient
deux éléments. Il existe seulement deux types de lacets sur cet espace qui sont non-
homotopes.

6.8 Groupe Fondamental du Ruban de Möbius

Le Ruban de Möbius est un espace topologique non-orientable. On peut l’imaginer et
même le construire.
Il suffit de prendre une feuille, d’en découper une bande ce qui nous donne un rectangle
plein en dimension deux.
On recolle ensuite les deux largeurs opposées mais en recollant le point gauche du bas
avec le point droit du haut et le point droit du bas avec le point gauche du haut.
La figure ci-dessous l’illustre : les deux flèches rouges sont les mêmes.

•

•

•

•

a b

b a

FIGURE 6.11 – Construction d’un ruban de Möbius
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Une fois cette figure construite, on replie le ruban sur lui-même selon l’axe pointillé
pour obtenir une surface à deux faces. On a construit notre ruban de Möbius.

FIGURE 6.12 – Ruban de Möbius constuit

On s’intéresse donc au groupe fondamental de cet espace. Commençons par remarquer
qu’il est clairement connexe par arcs, donc connexe.
Il nous sera aussi utile de le paramétrer. Commençons une description plus détaillée de
cet espace.

On peut commencer par poser la bande dans R2 :

B = R x [−1, 1]

Dont voici la représentation :

O x

y

FIGURE 6.13 – Notre bande B

126



Si cette bande devait représenter notre ruban de Möbius, il nous faudrait la quotienter
par la relation d’équivalence sur R2 :

(x1, y1)R (x2, y2) ⇐⇒ ∃k ∈ Z, (x1, y1) = (x2 + k, (−1)ky2)

De telle manière à ce que si (x, y) ∈ B :

∀k ∈ Z, (x, y) = (x+ k, (−1)ky)

Effectivement, ce faisant, on a bien "recollé" les deux bords présents sur la figure 6.9.
Lorsque l’ordonnée croît suffisamment, on revient au point de départ mais dans l’autre
sens. Progressons encore d’une unité et on revient au point de départ.
Voici une illustration :

•
(x, y)

FIGURE 6.14 – Déplacement sur le ruban de Möbius

De cette manière, tous ces points-là sont les mêmes. En effet être d’un côté ou de l’autre
de la surface, s’il s’agit du même point, ne change rien.
On a donc construit notre Ruban de Möbius.

On peut ainsi considérer l’action sur la bande B = R x [−1, 1] :{
Z x B −→ B

(k, (x, y)) 7−→ (x+ k, (−1)ky)

Dont l’ensemble des orbites B/Z, décrit l’espace M du ruban de Möbius.
Comme annoncé précédemment, M est connexe par arcs. M est donc connexe.
Z agit clairement de manière continue sur B.
En effet, à k ∈ Z fixé, cette application :

ϕk :

{
B −→ B

(x, y) 7−→ (x+ k, (−1)ky)

est clairement continue.
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L’action est de plus discrète. Effectivement, si (x, y) ∈ B est fixé, alors quel que soit
k ∈ Z∗, il existe un voisinage ouvert de (x, y) de telle manière à avoir :

ϕk(V ) ∩ V = ∅

Par exemple :
V = B((x, y), r)

Où r est un réel positif suffisamment petit (1/2 fait l’affaire).
En effet, k étant non nul, tout point dans V ayant pour première coordonnée a se verra
ajouter k dans ϕk(V ).
Et pour r > 0 inférieur à un demi, on a une intersection vide.

O
x

y

V

ϕ1(V )

ϕ2(V )

...

...

FIGURE 6.15 – V n’intersectant aucun ϕk(V )

De cette manière, aucun ϕk(V ) n’entre en contact avec V . On a montré ici que notre
action était discrète.

On a donc une action discrète et continue. On en déduit par le théorème de caracté-
risation des revêtements que l’application :

p :

{
B −→ M

(x, y) 7−→ O(x,y)

Qui a tout élément de la bande associe son orbite pour l’action considérée, est un revê-
tement et nous avons de plus que :

Autp(B) = Z

128



Il nous reste à observer si nous sommes ou non en situation galoisienne avec ce revête-
ment.
Soit (x, y) ∈M
Soient (a1, a2), (b1, b2) ∈ p−1({x, y})

Existe-il un unique ϕk ∈ Autp(E) tel que ϕk(a) = b?
Puisque a et b sont dans la même orbite, on a :

∃k ∈ Z, (b1, b2) = (a1 + k, (−1)ka2)

Il nous suffit de poser ensuite :

ϕk :

{
B −→ B

(x, y) 7−→ (x+ k, (−1)ky)

De cette manière, on a bien ϕk(a) = b de plus, puisque tous les ϕk sont de cette forme,
on a unicité d’un tel élément du groupe d’automorphisme de p.

On est donc placé - avec ce revêtement - en situation galoisienne.

Il nous reste à voir si B est simplement connexe ou non.
Pour cela, on peut poser :

f :

{
B −→ {0}
x 7−→ 0

g :

{
{0} −→ B
x 7−→ x

g est l’injection canonique ici.
On a :

f ◦ g :

{
{0} −→ {0}
0 7−→ 0

Qui est donc égale à l’indentité. Puis :

g ◦ f :

{
B −→ B
x 7−→ 0

g ◦ f est donc l’application nulle. Voici son homotopie à l’identité :

H :

{
[0, 1] x B −→ B

(s, x) 7−→ sx

On a donc montré ici que B avait le même type d’homotopie que {0}. B est donc
contractile et on en déduit :

π1(B) = {0}
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On a donc B simplement connexe. Il nous suffit d’appliquer notre théorème pour
conclure :
On a :

π1(X) = Autp(E)

C’est-à-dire ici :
π1(M) = Autp(B) = Z

Ce qui signifie :
π1(M) = Z

Le groupe fondamental du Ruban de Möbius est donc l’ensemble des entiers relatifs.
On remarque que le ruban de Möbius possède le même groupe fondamental que le
cercle.
On le voit sur la figure 6.10, sur laquelle d’ailleurs est tracé un cercle noir au centre. Si
l’on veut partir d’un point et y revenir, on doit effectuer un nombre entier de tours de
Ruban et retrouver la base du lacet ensuite.

On a montré que le groupe fondamental du Ruban de Möbius était le groupe Z.

6.9 Groupe Fondamental de la Bouteille de Klein

Après le Ruban de Möbius, on s’intéresse à la Bouteille de Klein qui est une surface
topologique qui ne possède ni intérieur ni extérieur. Voici une première figure de cet
espace :

−1 0 1
0

2

4

−0.5

0

0.5

x

y
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FIGURE 6.16 – Surface de la Bouteille de Klein dans R3

Commençons par une première remarque, cette illustration n’est qu’un objet qui nous
permet d’imaginer la Bouteille de Klein, mais celle-ci vit en dimension 4. En effet, on
ne peut normalement pas intersecter une surface avec elle-même. On fait exception ici
pour pouvoir imaginer la bouteille comme un objet de dimension 2, plongé dans l’es-
pace de dimension 3.
Normalement, la bouteille "trouve la place" pour revenir sur elle-même sans s’intersec-
ter (elle la trouve dans la quatrième dimension).

Commençons par construire et paramétrer un tel objet.
Voici comment on opère :
On commence par se donner un petit carré dont les bords sont orientés. Une fois recol-
lés, cela nous donnera bien une surface dans R3

FIGURE 6.17 – Construction de la Bouteille de Klein, première étape

On commence par recoller les côtés rouges ce qui nous donne un cylindre :
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FIGURE 6.18 – Construction de la Bouteille de Klein, seconde étape

On aimerait ensuite recoller les côtés bleus mais malheureusement nos flèches sont mal
orientées (et on obtiendrait un Tore en les recollant si elles étaient dans le même sens)...

Notre but est donc de tirer le cylindre du bas, pour le faire passer à l’intérieur du tube
lui-même. Ceci nous permettra d’avoir nos flèches bleus dans le même sens (avec le
cercle bleu du bas emboîté dans celui du haut).
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FIGURE 6.19 – Construction de la Bouteille de Klein, dernière étape

Après passage à l’intérieur et recollement, comme illustré précédemment, on obtient
notre Bouteille de Klein :
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FIGURE 6.20 – Bouteille de Klein

Interrogeons-nous désormais sur son groupe fondamental. Pour cela, reconsidérons la
Bouteille de Klein sous forme d’un patron (comme sur la figure 6.17).
On peut essayer de le paramétrer notamment en rajoutant des axes sur cette figure :

O

1

1

−1

−1

x

y

FIGURE 6.21 – Paramétrisation de la Bouteille de Klein
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On remarque avec cette paramétrisation que lorsque y0 l’ordonnée est fixée, les points
(x, y0) et (x + k, y0) où k est un entier relatif, sont confondus. En effet les flèches
rouges sont orientées dans le même sens :

•
(x+ k, y0)

FIGURE 6.22 – Déplacement selon l’axe des abscisses sur la Bouteille de Klein

A l’inverse, lorsque - à abscisse fixée - on se déplace selon l’axe des ordonnées, on
constate la même construction que pour le Ruban de Möbius :
Fixons donc l’abscisse x0 on constate que l’on a quelle que soit l’ordonnée y :

∀k ∈ Z, (x0, y) = ((−1)kx0, y + k)

Cela s’observe sur le dessin :

•(x+ k, y0)

FIGURE 6.23 – Déplacement selon l’axe des ordonnées sur la Bouteille de Klein

Avec ces résultats et notre paramétrisation, on peut assurer que la Bouteille de Klein
nous est donnée par le quotient du plan R2 par les deux relations :
∀ (x1, y1), (x2, y2) ∈ R2 :

(x1, y1)R1 (x2, y2) ⇐⇒ ∃k,∈ Z, (x1, y1) = (x2 + k, y2)

(x1, y1)R2 (x2, y2) ⇐⇒ ∃k,∈ Z, (x1, y1) = ((−1)kx2, y2 + k)
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On peut donc considérer les deux applications :

α :

{
R2 −→ R2

(x, y) 7−→ (x+ 1, y)

β :

{
R2 −→ R2

(x, y) 7−→ (−x, y + 1)

Posons G le -sous-groupe de Isom(R2) (ensemble des isométries de R2 dans lui-
même) engendré par ces deux applications.

On remarque un premier résultat intéressant :

∀ (x1, y1), (x2, y2) ∈ R2 :

(x1, y1)R1 (x2, y2) ⇐⇒ ∃k,∈ Z, (x1, y1) = αk((x2, y2))

(x1, y1)R2 (x2, y2) ⇐⇒ ∃k,∈ Z, (x1, y1) = βk(x2, y2)

On note que l’on a de plus :
β−1αβ = α−1

En effet, soit (x, y) ∈ R2

On a :

β−1αβ(x, y) = β−1α(−x, y + 1) = β−1(1− x, y + 1) = (x− 1, y)

Or :
α−1(x, y) = (x− 1, y)

D’où le résultat annoncé précédemment (on passe β−1 de l’autre côté) :

αβ = βα−1

A l’aide de cette égalité, on a un objet qui nous permet de permuter les α et les β. On
en déduit ce résultat :

∀φ ∈ G, ∃!(m,n) ∈ Z, φ = αnβm

On peut désormais poser un isomorphisme de groupes :{
Z ⋊ Z −→ G
(n,m) 7−→ αnβm
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Si certains se demandent d’où vient ce nouveau groupe Z⋊Z, il désigne seulement Z2

muni d’une loi de composition interne qui n’est pas usuelle.
En effet, après un bref calcul à la main, on remarque que l’on a pas :

(αn1βm1)(αn2βm2) = αn1+n2βm1+m2

Mais plutôt que l’on a :

(αn1βm1)(αn2βm2) = αn1+(−1)n2m1βm1+m2

Ainsi, dans Z ⋊ Z muni de sa loi ∗, on a :

(n1, n2) ∗ (m1,m2) = (n1 + ν(n2)(m1), m1 +m2)

Où l’on a :

ν :

{
Z −→ Aut(Z)
k 7−→ νk

Et, quel que soit k dans Z :

νk :

{
Z −→ Z
l 7−→ (−1)kl

De cette manière, on a bien isomorphie entre Z ⋊ Z et G car les lois de compositions
internes concordent.

Remarque. On appelle ce "changement de loi" dans un espace produit de deux groupes
A et B (ici on a deux fois Z) le produit semi-direct de A et B noté A⋊B, ou alors de
manière moins implicite :

A⋊ν B

Où l’on a donc :

∀(a1, b1), (a2, b2) ∈ A⋊ν B, (a1, b1) ∗ (a2, b2) = (a1 · ν(b1)(a2), b1 · b2)

Avec ν : B −→ Aut(A) un morphisme (Aut(A) est l’ensemble des isomorphismes de
A dans lui-même, sans rapport avec Autp(A) le groupe d’automorphisme).

On peut laisser le plaisir au lecteur de vérifier que nous avons bien un telle loi de
composition interne dans notre exemple.
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Porsuivons. On a donc G isomorphe à Z ⋊ Z
On peut finalement considérer l’action de groupe :{

G x R2 −→ R2

(αnβm, (x, y)) 7−→ αnβm(x, y)

Dont l’ensemble des orbites R2/G décrit K l’espace topologique de la Bouteille de
Klein. En effet, K est quotient des deux relations d’équivalences engendrées par α et
β ce qui nous donne le groupe G
On peut réécrire de manière plus concrète cette action :{

(Z ⋊ Z ) x R2 −→ R2

((n,m), (x, y)) 7−→ ((−1)mx+ n, y +m)

Cette action est continue, puisqu’à (n,m) dans Z2 fixé, l’application :{
R2 −→ R2

(x, y) 7−→ ((−1)mx+ n, y +m)

Est clairement continue.
L’action est discrète. Motrons-le :

Soit (x, y) ∈ R2. Soit g ∈ G \ {e}
Peut-on trouver un voisinage de (x, y) tel que son image par ϕg lui soit totalement dis-
jointe?

On peut identifier g à un couple (n,m) et puisque ϕg ̸= Id, on a :

(n,m) ̸= (0, 0)

Si m ̸= 0, le voisinage V = B((x, y), r) pour r suffisamment petit convient. En effet
les ordonnées de ϕg((x, y)) et de (x, y) diffèrent de m qui est non nul. Illustrons-le :

O

V(x,y)

ϕg(V )

FIGURE 6.24 – ϕg(V ) disjoint de V . Action discrète
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On a par exemple ici r = 1/2, ce qui nous assure que les différentes images du voisi-
nage, sont disjointes de ce dernier.

Dans le second cas où m = 0, on a n ̸= 0 et on se retrouve avec l’action :{
R2 −→ R2

(x, y) 7−→ (x+ n, y)

Ce qui fonctionne exactement de la même façon. On passe juste de l’axe des ordonnées
à celui des abscisses.
Le voisinage B((x, y), r) où r ≤ 1/2 convient de la même manière que dans le cas
m ̸= 0.

L’action est donc discrète. Par le théorème de caractérisation des revêtements, l’ap-
plication :

p :

{
R2 −→ K

(x, y) 7−→ O(x,y)

Qui à chaque élément de R2 lui associe son orbite dans R2/G identifié à K, pour
l’action considérée, est un revêtement.
On sait de plus que :

Autp(R2) = G = Z ⋊ Z

Il nous reste à vérifier que nous sommes - avec ce revêtement - en situation galoisienne.
Soit donc k ∈ K un point sur la Bouteille de Klein.
Soient a, b ∈ p−1({k}) deux éléments envoyés sur la même orbite (celle de k).

On sait que les éléments de Autp(R2) sont de la forme :

αnβm

De plus, puisque les deux éléments a et b sont envoyées dans la même orbite, on a :

∃g ∈ G, g · a = b

C’est-à-dire qu’il existe (n,m) ∈ Z2 vérifiant :

(b1, b2) = ((−1)ma1 + n, a2 +m)

(On a posé ici b = (b1, b2) et a = (a1, a2))
On constate qu’il existe un unique élément ψ de Autp(R2) qui vérifie :

ψ(a) = b
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Qui nous est donné par :
ψ = αnβm

On est donc bel et bien en situation galoisienne.
On a déjà montré précédemment que R2 était simplement connexe.

On a donc en appliquant notre théorème vu au chapitre 4 :

π1(K) = Autp(R2) = G = Z ⋊ν Z

Ainsi, le groupe fondamental de la Bouteille de Klein n’est rien d’autre que le produit
semi-direct de Z sur lui-même noté Z ⋊ν Z avec ν le morphisme :

ν :

{
Z −→ Aut(Z)
k 7−→ {l 7−→ (−1)kl}

On a calculé le groupe fondamental de la Bouteille de Klein. Celle-ci étant connexe par
arcs, on a :

π1(K) = Z ⋊ν Z

C’est notre premier espace qui présente un groupe fondamental non abélien.

6.10 Groupe Fondamental du Huit

Dans cet exemple, notre espace est décrit ci-dessous :

FIGURE 6.25 – Lemniscate de Gerono ou Espace topologique du Huit

Il s’agit du lemniscate de Gerono, déjà vu dans le chapitre 2. On peut le définir comme
union de deux cercles par une relation d’équivalence, mais nous choisierons notre an-
cienne paramétrisation donnée par :

X = {(sin(2πt), cos(2πt) sin(2πt)), t ∈ [0, 1]}
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Ainsi sera défini l’espace du Huit ou bien du lemniscate. On se propose de calculer son
groupe fondamental.

Pour cela, nous devons d’abord construire un nouvel espace et oublier notre Huit pour
le moment.
Cet espace que nous appellerons Arbre et que nous désignerons par la notation A
contenu dans R2 est défini par récurrence sur N. On appellera alors A0, A1, etc... les
espaces successifs et A en sera la réunion.

⋆ à n = 0, on pose A0 = {0}
⋆ à n = 1, on pose A1 = ([−1, 1] x {0}) ∪ ({0} x [−1, 1])

Lorsque l’on a construit An où n ∈ N∗, on construit An+1 ainsi :

A toute arrête qui possède une extrémité libre, on trace - à 1/3n de cette extrémité - un
segment de longueur 2/3n dont l’arrête considérée est la médiatrice.

Pour comprendre cette construction, construisons et dessinons les premiers Ai.

FIGURE 6.26 – A1

Pour construire A2 à partir de A1, on commence par remarquer qu’on a quatre arrêtes
à extrémités libres. On peut donc tracer A2 comme évoqué dans la récurrence :
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FIGURE 6.27 – A1 ∪A2

On peut en déduire son expression formelle :

A2 = {2/3}x[−1/3, 1/3]∪ {−2/3}x[−1/3, 1/3]∪ [−1/3, 1/3]x{2/3} ∪ [−1/3, 1/3]x{−2/3}

Poursuivons, pour n = 3 on peut encore une fois tracer sur chaque extrémité libre une
nouvelle médiatrice :

FIGURE 6.28 – A1 ∪A2 ∪A3

142



Dont on peut encore une fois déduire l’expression formelle :

A3 = {8/9}x[−1/9, 1/9]∪ {−8/9}x[−1/9, 1/9]∪ [−1/9, 1/9]x{8/9} ∪ [−1/9, 1/9]x{−8/9}
∪ {−2/9}x[5/9, 7/9]∪ {2/9}x[5/9, 7/9]∪ {2/9}x[−7/9,−5/9]∪ {−2/9}x[−7/9,−5/9]

∪ [5/9, 7/9]x{−2/9} ∪ [5/9, 7/9]x{2/9} ∪ [−7/9,−5/9]x{2/9} ∪ [−7/9,−5/9]x{−2/9}

On remarque que le résultat peut très vite se complexifier. En espérant que le lecteur
ait saisi la manière dont on construit l’Arbre, on le représentera ainsi :

FIGURE 6.29 – A =
⋃
n∈N

An

A défaut de pouvoir l’illustrer totalement.
On munit cet arbre A d’une distance d définie ainsi :

∀(x, y) ∈ A, d(x, y) = n

Où n−1 est le nombre d’arrêtes qui séparent x et y (par convention, (−1) est le nombre
d’arrêtes séparant un point de lui-même). Voici quelques exemples pour illustrer cette
distance :
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•
x1

•
x4

•x3

•
x2

FIGURE 6.30 – La distance d

Sur cette figure :

— x1 et x2 sont sur la même arrête, non confondus, donc d(x1, x2) = 1
— x1 et x3 sont séparés par une arrête. On a donc d(x1, x3) = 2
— x1 et x4 sont séparés par deux arrêtes. Tout comme x3 et x4. On a donc d(x1, x4) =

d(x3, x4) = d(x2, x4) = 3
— x1 et x1 sont confondus sur la même arrête, on a donc d(x1, x1) = 0

Commençons par montrer quelques propriétés sur cet espace métrique (A, d).

⋆ A est connexe

Montrons que A est connexe. Pour cela on opère par récurrence :

Pn : ”

n⋃
i=0

Ai est connexe”

⋆ Initialisation

On a clairement A0 connexe car ne contient qu’un seul point. On a de même A1

connexe comme réunion de deux segments qui s’intersectent (bien que nous consi-
dérons la nouvelle topologie métrique engendrée par d).
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⋆ Hérédité

Soit n ∈ N∗. Supposons Pn. Montrons Pn+1

Commençons par énoncer cette propriété (dont la preuve est facilement trouvable) :

X est un espace connexe ⇐⇒ ∀f ∈ C(X, {0, 1}), f est constante

Il nous faut donc montrer que toutes les applications continues à arrivée dans {0, 1} :

f :

n+1⋃
i=0

Ai −→ {0, 1}

Sont constante.

Soit donc f une telle fonction.

On sait que
n⋃
i=0

Ai est connexe. f restreinte à cet espace est donc constante.

On peut donc poser a ∈ {0, 1} tel que :

∀x ∈
n⋃
i=0

Ai, f(x) = a

Posons désormais :
An+1 =

⊔
j∈J

Cj,n+1

Où chaque Cj,n+1 est une composante connexe par arcs de An+1 avec ainsi J de car-
dinal fini dans cet exemple (on ne trace qu’un nombre fini de composantes à chaque
génération).

Par construction de A, on a :

∀j ∈ J, Cj,n+1 ∩
n⋃
i=0

Ai ̸= ∅

On a donc deux espaces connexes dont l’intersection est non vide.
Ainsi :

∃x0 ∈ Cj,n+1, f(x0) = a

Car en effet, on peut prendre x0 ∈ Cj,n+1 ∩
n⋃
i=0

Ai et on a donc f constante égale à a

sur cet ensemble. D’où f(x0) = a
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Or on sait que Cj,n+1 est connexe.
On a donc f constante sur Cj,n+1 tout en sachant qu’elle prend la valeur a en un point
de cet espace.

Ainsi :
f |Cj,n+1 = a

j ∈ J étant arbitraire et J étant de caridnal fini, on a donc :

∀j ∈ J, ∀x ∈ Cj,n+1, f(x) = a

D’où :
∀x ∈

⋃
j∈J

Cj,n+1, f(x) = a

C’est-à-dire :
∀x ∈ An+1, f(x) = a

Puis :

∀x ∈
n+1⋃
i=0

Ai, f(x) = a

C’est-à-dire que f est constante sur
n+1⋃
i=0

Ai. La propriété étant vraie quelle que soit

f ∈ C
(
n+1⋃
i=0

Ai, {0, 1}
)

, on a finalement :

n+1⋃
i=0

Ai connexe.

L’hérédité est donc montrée.

On en déduit que Pn est vraie pour tout n ∈ N, puis que :

A est connexe.

A étant l’espace total, il est donc fermé et surtout ouvert. On en déduit qu’il est égale-
ment connexe par arcs (car connexe et ouvert). On peut alors toujours relier continûe-
ment deux points qui appartiennent à A.

On montre ensuite que A est simplement connexe.
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Pour ce faire, on se propose de montrer A contractile.

Posons alors nos deux applications continues :

f :

{
A −→ {0}
x 7−→ 0

g :

{
{0} ↪→ A
0 7−→ 0A

Où ici 0A désigne le centre de notre Arbre.
On obtient :

f ◦ g :

{
{0} −→ {0}
0 7−→ 0

Egale donc, à l’identité, et :

g ◦ f :

{
A −→ A
x 7−→ 0A

Que l’on peut homotoper à l’identité par l’application :

H :

{
[0, 1] x A −→ A

(s, x) 7−→ γx(s)

Où γx est un chemin qui relie x à 0A dans A. On a bien H continue et donc A possède
le même type d’homotopie qu’un point. Notre Arbre est contractile.
On en déduit par notre corollaire sur ces espaces contractiles, que notre Arbre A est
simplement connexe.

Ces résultats préliminaires étant vus, on peut faire désormais le lien entre A et notre
espace du Huit X .

Pour cela on commence par orienter nos deux espaces :
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FIGURE 6.31 – l’Arbre A orienté

On n’a pas vraiment la place de le faire sur chaque arrête donc on le trace sur les plus
grandes mais il faut bien imaginer que chaque arrête verticale est orientée du bas vers
le haut, et que chaque arrête horizontale est orientée de gauche à droite.

FIGURE 6.32 – Le Huit X orienté

Le but est désormais d’envoyer chaque arrête orientée sur l’une des deux boucles du
Huit.
On opère ainsi :

Soit x ∈ A un point dans l’arbre. Il appartient nécessairement à une arrête de lon-
gueur strictement positive.
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On peut donc poser x ∈ [a, b] où [a, b] est une arrête verticale ou horizontale (for-
mellement, x ∈ {c} x [a, b] ou x ∈ [a, b] x {c}) avec a < b et a, b deux points qui
intersectent d’autres arrêtes.

On peut poser ensuite :

tx =
x− a

b− a

De telle sorte à avoir tx ∈ [0, 1] et :

x = (1− tx)a+ txb

On peut finalement considérer l’application :

p :

 A −→ X

x 7−→
{

(sin(2πtx), cos(2πtx) sin(2πtx)) si [a, b] est vertical
(− sin(2πtx),− cos(2πtx) sin(2πtx)) si [a, b] est horizontal

De telle sorte à envoyer toute arrête verticale sur la boucle de droite et toute arrête ho-
rizontale sur la boucle de gauche.
Si x se situe au début (resp. à la fin) d’une arrête, alors nous aurons tx petit (resp.
grand) et donc p(x) proche du centre du lemniscate.

Il faut imaginer que lorsque l’on se déplace sur le lemniscate et que nous arrivons au
centre de ce dernier, nous avons quatre choix, faire demi-tour, aller tout droit, à droite
ou à gauche.
On a correspondance avec l’arbre grâce à l’orientation (les flèches) et l’identification
(les couleurs). En arrivant à une intersection d’arrêtes, on se retrouve face au même
dilemme.

On se doute que p est un revêtement. Il nous faut pour le montrer considérer l’ac-
tion qui, à un point donné sur l’arbre x, est capable de le déplacer sur n’importe quelle
autre arrête de l’arbre avec le même tx

Il nous faut pour ce faire introduire un nouveau groupe. Le groupe libre L2

Voici comment on le défini :
On se donne deux générateurs : a qui, à un point donné x ∈ A lui associe le point qui
possède le même tx sur l’arrête horizontale la plus proche en suivant l’orientation des
flèches ; et b qui, à un même point x, lui associe le point qui possède le même tx sur
l’arrête verticale la plus proche dans le sens des flèches.

On donne ci-dessous un exemple pour aider à la compréhension :
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x1•

x2

•x3

•x4

FIGURE 6.33 – Les applications a et b

Sur la figure précédente, on a avec la définition de a et b :

— a(x3) = x1, et a(x2) = x1
— b(x3) = x4, et b(x2) = x4

On pose L2 le groupe libre sur Z engendré par ces deux éléments :

L2 =

{
n

Π
i=1

aαibβi , n ∈ N∗, ∀i ∈ [[1, n]], (αi, βi) ∈ Z2

}

Dit de manière plus explicite, les éléments de L2 sont exactement les suites finies :

aα1bβ1aα2bβ2 ... aαnbβn

On peut également commencer par b ou finir par a en autorisant α1 ou βn nul.
On interdit simplement les simplifications triviales (par exemple, avoir αi = k, βi = 0
et αi+1 = −k). Cela correspond sur l’arbre qu’il n’existe aucun élément de L2 qui
revient sur ses pas.

Ce groupe est appelé également produit libre et noté Z ⋆ Z. Nous garderons la notation
L2 ici.

Remarquons qu’on autorise dans ce groupe les éléments a−1 et b−1 qui nous per-
mettent d’aller dans toutes les directions et pas seulement à droite et en haut (le cas de
a et b).
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On peut enfin considérer l’action : L2 x A −→ A(
n

Π
i=1

aαibβi , x

)
7−→

n

Π
i=1

aαibβi(x)

Cette action est continue car est une isométrie (elle préserve la distance d), est-elle dis-
crète?
Pour le montrer, fixons x ∈ X un point dans l’espace du Huit, et g ∈ L2 un élément
du groupe différent de l’identité : g ̸= Id
Pouvons-nous trouver un voisinage de x qui est "totalement déplacé" par ϕg ?

Le pire des cas serait que g ne soit composé que d’un seul de ces quatre éléments :
a, b, a−1, b−1 (si g est différente de l’identité, ces quatre éléments sont ceux qui "em-
mènent" le moins loin, pour la distance d, une image de son antécédent).

On sait que x appartient à une arrête que l’on peut noter I . Si x est un point inté-
rieur à cet arrête, il nous suffit de considérer un voisinage de x totalement compris
dans I (ce qui est possible si x est un point intérieur). Si x appartient à l’adhérence de
notre arrête I , alors il nous suffit de considérer un voisinage qui ne comprend aucune
autre intersection que celle sur laquelle x est placée.

•x
V

ϕg(V )

FIGURE 6.34 – Zoom sur un x ∈ A et sur V son voisinage

De cette manière, ϕg mouvra tous les points du voisinage. En effet, on peut poser :

[c, d] ⊂ [a, b]
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Où [c, d] = V
On obtiendra ainsi :

ϕg(V ) = [c′, d′]

Où [c′, d′] ⊂ [a′, b′] est inclus dans une autre arrête que [a, b] (car g ̸= Id) et puisque
l’on a [a, b] ∩ [a′, b′] = ∅, on aura :

[c, d] ∩ [c′, d′] = ∅

Ce qui signifie exactement :
V ∩ ϕg(V ) = ∅

Et nous retrouvons bien une action discrète.
On a également remarqué l’action continue, et on se rappelle qu’on a montréA connexe.
On peut alors utiliser le théorème de caractérisation des revêtements et :

p′ :

{
A −→ A/L2

x 7−→ Ox

Est un revêtement. On remarque de plus que l’application :

p :

 A −→ X

x 7−→
{

(sin(2πtx), cos(2πtx) sin(2πtx)) si [a, b] est vertical
(− sin(2πtx),− cos(2πtx) sin(2πtx)) si [a, b] est horizontal

Associe, elle aussi, à chaque élément de A, son orbite dans A/L2, lui-même identifié
à X . On a donc :

p′ = p

Et on sait de plus que :
Autp(A) = L2

On peut alors poursuivre. Montrons que ce revêtement p nous place en situation galoi-
sienne.

Soit donc x ∈ X un point sur l’espace du huit.
Soient z1 et z2 deux éléments de p−1({x}). On sait qu’on a :

tz1 = tz2

On se questionne donc sur l’existence d’un unique élément de ψ de Autp(A) (c’est-à-
dire de L2) tel que :

ψ(z1) = z2
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z1 et z2 sont dans la même orbite. Par définition, il existe donc g ∈ L2 vérifiant :

g · z1 = z2

C’est-à-dire :
ϕg(z1) = z2

Mais puisque L2 s’identifie à Autp(A), on a l’existence d’un élément ψ ∈ Autp(A)
tel que :

ψ(z1) = z2

Pour l’unicité, cela se complique. Commençons par prendre g, g′ ∈ L2 tels que :

g · z1 = z2

g′ · z1 = z2

C’est-à-dire qu’on a deux "chemins" (ce ne sont pas des chemins au sens vu dans le
chapitre 2) guidés par une succession de aαi et de bβi qui envoient tous les deux z1 sur
z2. On essaye de montrer que ces deux chemins sont les mêmes.

Cela vient du fait qu’on travaille sur un arbre. C’est-à-dire que si l’on munit A de
la relation symétrique :

zRz′ ⇐⇒ d(z, z′) = 1

Alors quel que soit le couple de points (x, y) ∈ A, on peut les relier par un unique
chemin (z0, z1, ... zn) avec :

(z0, zn) = (x, y)

Et surtout :
∀i ∈ [[0, n− 1]], ziRzi+1

On l’illustre ci-dessous :

153



•x •z1

•z2 •y

FIGURE 6.35 – A muni de R

Ici on a bien x et y reliés par z1 et z2. On se rend également compte que ce chemin est
unique. Prendre une mauvaise arrête nous obligera, tôt ou tard, à faire demi-tour.

On se sert de ce fait pour montrer que g = g′. Si les deux "chemins" étaient diffé-
rents mais amenaient au même point z2, alors au moins l’un des deux contiendrait un
demi-tour ; ce qu’on a expliqué impossible dans L2 un peu plus tôt (on dit qu’on inter-
dit les opérations élémentaires dans le groupe libre).

On a donc g = g′ et unicitié de l’élément ψ ∈ Autp(A) (identifié à L2) qui vérifie :

ψ(z1) = z2

Notre revêtement p nous place donc en situation galoisienne.
On a de plus déjà montré queA était simplement connexe car contractile, on se retrouve
donc avec le résultat suivant :

π1(X) = Autp(A) = L2

Ou de la même manière :
π1(X) = Z ⋆ Z

Le groupe fondamental de l’espace du Huit est donc le groupe libre engendré par deux
éléments, basé sur Z.
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Références

On présente dans cet ultime chapitre quelques références qui ont à la fois inspiré et
aidé à l’écriture de cet écrit, mais qui peuvent également servir d’ouverture au lecteur
sur des sujets plus vastes. Je recommande vivement la lecture et la découvertes de ces
nouveaux point de vues sur l’objet mathématique du groupe fondamental.

On retrouve les mêmes propositions qui vont un peu plus loin avec le théorème de Van
Kampen dans [Aud04] qui présente également une panoplie d’exercices qui peuvent
intéresser le lecteur. Une approche plus reliée à la définition du groupe fondamental
qu’aux revêtement est présentée par [Lab08]. L’écrit [Lec13] nous introduit le même
dernier exemple de l’espace du Huit, ainsi qu’à la définition du groupe libre. Finale-
ment, un site bien construit sur ce thème du Groupe Fondamental nous est introduit ici :
[dSG14]. On peut également citer [eJD17] qui permet et apprend à tracer des figures
sur de tels écrits.

En espérant que le lecteur s’intéresse à ces écrits, je le remercie d’avoir lu jusqu’ici
et espère sincèrement que le texte lui aura plu.
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FIGURES

Figure 6.9 :

https:
//latexdraw.com/how-to-draw-a-torus-in-latex-using-tikz/

Figure 6.12 :

https://tex.stackexchange.com/questions/118563/
moebius-strip-using-tikz

Figure 6.16 :

https://pgfplots.net/klein-bottle/

Figure 6.20 :

https://tex.stackexchange.com/questions/77606/
making-a-labeled-klein-bottle-using-tikz-or-pgfplots
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