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A Few Notions from Geometric Measure Theory

Preface
I have spent half a year reading about Geometric Measure Theory. Here, I have laid down my most
interesting observations and few foundational theorems, ordered to make each new step as natural as
possible. Geometric MeasureTheory is indeed a geometric theory, because it is driven by geometric ideas.
A primary interest of this domain is to study howmeasures can be used to investigate geometric properties
of objects. With measures, we can describe shape convergence and many local geometric properties of
objects without any restrictions on smoothness.

1 Conventions, acknowledged results and definition from analy-
sis and measure theory

Convention: To any product, we associate morphisms denoted by 𝜋𝑖, where 𝑖 is an index of the product
component we are projecting to, or is the component itself. For example, for𝐴×𝐵we have 𝜋𝐴 ∶ 𝐴×𝐵 → 𝐴,
for 𝐴𝑛 we have 𝜋𝑖 ∶ 𝐴𝑛 → 𝐴 with 𝑖 ∈ J1, 𝑛K, for ∏𝑖∈𝐼 𝐴𝑖 we have 𝜋𝑖0 ∶ ∏𝑖∈𝐼 𝐴𝑖 → 𝐴𝑖0 for 𝑖0 ∈ 𝐼. Similarly,
we introduce a notion 𝑖 for morphisms associated to coproducts. A projection on the tangent space is
always associated to 𝑇𝑥𝑀 × (𝑇𝑥𝑀)

⊥.

Convention: Let {𝑤𝑖}𝑖 be a family of some kind of objects.We write a row of those objects as (𝑤𝑖) and
column as (𝑤𝑖). We will use matrix multiplication notion to shorten equations, even when dealing with
things that might not be scalars. For example, a basis change formula from basis (𝑤𝑖) to a basis (𝑢𝑖) with
a matrix 𝑃 is denoted by (𝑢𝑖) = (𝑤𝑖)𝑃. If we have two function 𝑓, 𝑔 defined on 𝑋 and we have 𝑎, 𝑏 ∈ 𝑋

then we may write

�
𝑓

𝑔
� (𝑎 𝑏) = �

𝑓(𝑎) 𝑓(𝑏)

𝑔(𝑎) 𝑔(𝑏)
� 𝑓 �

𝑎

𝑏
� = �

𝑓(𝑎)

𝑓(𝑏)
�

Often this way of writing equations compactifies not only notions but also proofs, as youwill see in Section
7, by using substitutions. Although, I switch later in that section to Einstein’s convention, because it eases
permutations of sums and regrouping of coordinates.

1.1 Measure theory
Geometric Measure Theory is based upon Radon measure theory, where the notion of outer measure is
obligatory. We consider that any set can be measured.

Definition: An outer measure on 𝑋 is a set function on 𝑋 with values in [0,∞] with

• 𝜇(∅) = 0

• 𝐸 ⊆ ⋃ℎ∈ℕ 𝐸ℎ ⇒ 𝜇(𝐸) ≤ ∑
ℎ∈ℕ 𝜇(𝐸ℎ)

Carathéodory’s theorem: If 𝜇 is an outer measure on 𝑋 andℳ(𝜇) is the family of those 𝐸 ⊆ 𝑋 such that

𝜇(𝐹) = 𝜇(𝐸 ∩ 𝐹) + 𝜇(𝐹 ∖ 𝐸), ∀𝐹 ⊆ 𝑋

thenℳ(𝜇) is a 𝜎-algebra and 𝜇 is a measure onℳ(𝜇).

A proof can be found on pages 8-9 of [Maggi, 2012].

Definition: 𝜇 is a Borel measure on a topological space 𝑋 if it is an outer measure on 𝑋 such that ℬ(𝑋) ⊆
ℳ(𝜇).

Definition: A measure 𝜇 is said to be absolutely continuous with respect to measure 𝜆 if for any set 𝐴,
𝜆(𝐴) = 0 implies 𝜇(𝐴) = 0 and we write it 𝜇 << 𝜆.
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Definition: We say that a Borel measure 𝜇 is regular if for every 𝐹 ⊆ 𝑋 there exists a Borel set 𝐸 ∈ ℬ(𝑋)

such that
𝐹 ⊆ 𝐸, 𝜇(𝐹) = 𝜇(𝐸)

Definition: An outer measure 𝜇 on 𝑋 is locally finite if 𝜇(𝐾) < ∞ for every compact set 𝐾 ⊆ 𝑋.

Definition: An outer measure 𝜇 is a Radon measure on a topological space if it is locally finite, Borel
regular measure on 𝑋.

Property of Radon measures on ℝ𝑛: If 𝜇 is a Radon measure on ℝ𝑛, then

𝜇(𝐸) = inf{𝜇(𝐴) | 𝐸 ⊆ 𝐴, 𝐴 is open} = sup{𝜇(𝐾) | 𝐾 ⊆ 𝐸, 𝐾 is compact}

Those are only top-level results. While this theory incorporates many more profound statements, I’ve
avoided them here to maintain the holistic picture I aim to present and not to have just another copy
of an already existing book. This necessarily means sacrificing some depth, as I have not included few
necessary proofs and results.

1.2 Analysis
Geometric measure theory relies on several profound and not-trivial results established within metric
spaces or ℝ𝑛. This foundational properties, which I adapted with minor modifications or gave direct
generalisations, are primarily sourced from ”Measure theory and fine properties of functions”.

For a ball 𝐵 = 𝐵(𝑥, 𝑟) of center 𝑥 and radius 𝑟 we shall note 𝜖𝐵 = 𝐵(𝑥, (1+ 𝜖)𝑟) for every 𝜖 > 0. I chose
the prefix notation to avoid confusion with set power and Minkowski product.

Vitali’s covering lemma: Let ℱ be any collection of non-degenerated closed balls in a metric space 𝑋 with

sup{diam𝐵 |𝐵 ∈ ℱ} < ∞

Then for every 𝜖 > 1 there exists a countable family 𝒢 of disjoint balls in ℱ such that

�

𝐵∈ℱ

𝐵 ⊆�

𝐵∈𝒢

2𝜖𝐵

Proof: Set 𝐷 = sup{diam𝐵 |𝐵 ∈ ℱ}. Set

ℱ𝑗 = �𝐵 ∈ ℱ |
𝐷

𝜖𝑗
< diam𝐵 ≤

𝐷

𝜖𝑗−1
� , 𝑗 = 1, 2, …

We define 𝒢𝑗 ⊆ ℱ𝑗 as follows

• Let 𝒢1 be any maximal disjoint collection of balls in ℱ1.

• Assuming 𝒢1, … , 𝒢𝑘−1 have been selected, we chose 𝒢𝑘 to be any maximal disjoint subcollection of

{𝐵 ∈ ℱ𝑘 | 𝐵 ∩ 𝐵
′ = ∅ for all 𝐵′ ∈

𝑘−1

�

𝑗=1

𝒢𝑗}

They exist by Zorn’s Lemma. Finally, define 𝒢 = ⋃𝑗∈ℕ∗ 𝒢𝑗 a collection of disjoint balls and 𝒢 ⊆ ℱ.

Proving that for each ball 𝐵 ∈ ℱ, there exists a ball 𝐵′ ∈ 𝒢 such that 𝐵 ∩𝐵′ ≠ ∅ and 𝐵 ⊆ 𝜖𝐵′. Fix 𝐵 ∈ ℱ,
there exists and index 𝑗 such that 𝐵 ∈ ℱ𝑗 and by maximality of 𝒢𝑘 there exists a ball 𝐵′ ∈ ⋃

𝑗
𝑘=1 𝒢𝑘 with

𝐵 ∩ 𝐵′ ≠ ∅. But diam𝐵′ >
𝐷

𝜖𝑗
and diam𝐵 ≤

𝐷

𝜖𝑗−1
; so that

diam𝐵 ≤
𝐷

𝜖𝑗−1
< 𝜖diam𝐵′

Thus 𝐵 ⊆ 2𝜖𝐵′.
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Remark: This is a generalised version of the proof from the book ”Measure theory and fine properties of
functions” where it is done for the smallest integral case 𝜖 = 2. The generalised proof shows the reason
why the final dilatation is 5 = 1 + 2𝜖, but actually it is true for dilatation > 3 and the smallest such
integer is 4. An interesting question is whether there is continuity and can we take a limit and get this
result also for 3.

There are also more substantial covering results, crucial for extension theorems, measure differentiation
and characterisation of rectifiable sets. Their proofs usually occupies a dozen of pages and are deeply
analytic, primarily involving the extensive rewrite of inequalities and introduction of different constants.
I initially intended to revise them for greater clarity, but after several failed attempts, when I had to modify
constants and propagate the change back over multiple pages, I decided it was best to simply reference
them here. Full proofs are available in [Lawrence C. Evans, 2015] and in [Alberti, 2017].

Besicovitch’s CoveringTheorem: There exists a constant𝑁𝑛, depending only on the dimension 𝑛 with the
following property:

If ℱ is any collection of non-degenerated closed balls in ℝ𝑛 with

sup{diam𝐵 |𝐵 ∈ ℱ} < ∞

and 𝐴 is the set of centers of balls in ℱ, then there 𝑁𝑛 countable collections 𝒢1, … , 𝒢𝑁𝑛 of disjoint balls in ℱ
such that

𝐴 ⊆

𝑁𝑛

�

𝑖=1

�

𝐵∈𝒢𝒾

𝐵

Definition: A cover of 𝐴 by a family 𝐵 is called fine if for any 𝑥 ∈ 𝐴 we can find a covering set from 𝐵 of
arbitrary small diameter.

Filling open sets with balls theorem: Let 𝜇 be a Borel measure on ℝ𝑛, and ℱ any collection of non-
degenerated closed balls. Let 𝐴 denote the set of centers of the balls in ℱ. Assume

𝜇(𝐴) < ∞

and ℱ is a fine cover of 𝐴. Then for each open set 𝑈 ⊆ ℝ𝑛, there exists a countable collection 𝒢 of disjoint
balls in ℱ such that

�

𝐵∈𝒢

𝐵 ⊆ 𝑈

and

𝜇�(𝐴 ∩ 𝑈) ∖�

𝐵∈𝒢

𝐵� = 0.

Whitney’s extension theorem: Let 𝐶 ⊆ ℝ𝑛 be a closed set and 𝑓 ∶ 𝐶 → ℝ, 𝑑 ∶ 𝐶 → ℝ𝑛∗ be continuous
functions. We shall use notions

𝑅(𝑦, 𝑥) =
𝑓(𝑦) − 𝑓(𝑥) − 𝑑(𝑥)(𝑦 − 𝑥)

|𝑥 − 𝑦|
, ∀𝑥, 𝑦 ∈ 𝐶, 𝑥 ≠ 𝑦

𝜌𝑘(𝛿) = sup{|𝑅(𝑥, 𝑦)| | 0 < |𝑥 − 𝑦| ≤ 𝛿, 𝑥, 𝑦 ∈ 𝐾}

if we suppose that for every compact 𝐾 ⊆ 𝐶

𝜌𝐾(𝛿) → 0 as 𝛿 → 0

Then there exists a function 𝑓 ∈ 𝒞1(ℝ𝑛, ℝ) and 𝐷𝑓|𝐶 = 𝑑.

Definition: For a function 𝑓 ∶ 𝑋 → 𝑌 between metric spaces we can define its Lipschitz constant Lip(𝑓) =
inf{𝐿 ∈ ℝ | 𝑑(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝐿𝑑(𝑥, 𝑦)∀𝑥, 𝑦 ∈ 𝑋}

Lipschitz function extension theorem: Let 𝑋 be a metric space, 𝐴 ⊆ 𝑋 and 𝑓 ∶ 𝐴 → ℝ. Then there exists
a Lipschitz function 𝑓 ∶ 𝑋 ↦ ℝ such that Lip(𝑓) = Lip(𝑓) and 𝑓|𝐴 = 𝑓.

Let’s set 𝐿 = Lip(𝑓). Then we define

𝑓(𝑥) = inf𝑦∈𝐴(𝑓(𝑦) + 𝐿𝑑(𝑥, 𝑦)
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By the definition, for all 𝑥 ∈ 𝐴, 𝑓(𝑥) ≤ 𝑓(𝑥) as in particular we can chose 𝑦 = 𝑥. Furthermore, for
all 𝑎, 𝑏 ∈ 𝐴 and 𝑥 ∈ 𝑋, we have an inequality for a Lipschitz function 𝑓(𝑏) − 𝑓(𝑎) ≤ 𝐿𝑑(𝑏, 𝑎) ≤

𝐿𝑑(𝑏, 𝑥) + 𝐿𝑑(𝑎, 𝑥) and thus we have

𝑓(𝑎) + 𝐿𝑑(𝑎, 𝑥) ≥ 𝑓(𝑏) − 𝐿𝑑(𝑏, 𝑥)

and if we apply an infinum over a, we have 𝑓(𝑥) ≥ 𝑓(𝑏) − 𝐿(𝑏, 𝑥) and if 𝑥 ∈ 𝐴 we can chose 𝑏 = 𝑥 and
we have an inequality in the other direction and thus the equality 𝑓(𝑥) = 𝑓(𝑥).

Now we check the Lipschitz constant

Consequence: Let 𝑋 be a metric space, 𝐴 ⊆ 𝑋 and 𝑓 ∶ 𝐴 → ℝ𝑛. Then there exists a Lipschitz function
𝑓 ∶ 𝑋 ↦ ℝ𝕟 such that 𝑓|𝐴 = 𝑓

Let’s set 𝑓 = (𝑓
𝑖
)𝑖 extension by coordinate functions.

Remark: I considered extending the theorem to vector-valued functions, but I could only prove it for the
maximum norm.

1.3 Differentiation of Radon measure and Radon-NikodymTheorem

Definition: Let 𝜇 and 𝜈 be Radon measures on ℝ𝑛. Then we can define upper and lower derivatives of 𝜈 by
𝜇 by

𝐷𝜇𝜈(𝑥) = �
lim sup

𝑟→0

𝜈(𝐵(𝑥,𝑟))

𝜇(𝐵(𝑥,𝑟))
if 𝜇(𝐵(𝑥, 𝑟)) > 0 for all 𝑟 > 0

+∞ if 𝜇(𝐵(𝑥, 𝑟)) = 0 for some 𝑟 > 0

𝐷
𝜇
𝜈(𝑥) = �

lim inf𝑟→0
𝜈(𝐵(𝑥,𝑟))

𝜇(𝐵(𝑥,𝑟))
if 𝜇(𝐵(𝑥, 𝑟)) > 0 for all 𝑟 > 0

+∞ if 𝜇(𝐵(𝑥, 𝑟)) = 0 for some 𝑟 > 0

If 𝐷𝜇𝜈(𝑥) = 𝐷
𝜇
𝜈(𝑥) < +∞ then we say that 𝜈 is differentiable with respect to 𝜇 at x and we write

𝐷𝜇𝜈(𝑥) = 𝐷𝜇𝜈(𝑥) = 𝐷
𝜇
𝜈(𝑥)

Definition: Let 𝜇 be Radon measure and 𝜈 be a vector measure on ℝ𝑛. Then we define a derivatives as

𝐷𝜇𝜈(𝑥) = �
lim𝑟→0

𝜈(𝐵(𝑥,𝑟))

𝜇(𝐵(𝑥,𝑟))
if 𝜇(𝐵(𝑥, 𝑟)) > 0 for all 𝑟 > 0

+∞ if 𝜇(𝐵(𝑥, 𝑟)) = 0 for some 𝑟 > 0

While vector-valued measures are defined later, it suffices to know that they are set functions with values
in vector spaces that satisfy a particular version of sigma-additivity.

Differentiating measures theorem: Let 𝜇 and 𝜈 be Radon measures on ℝ𝑛. Then

• 𝐷𝜇𝜈 exists and is finite 𝜇-a.e.

• 𝐷𝜇𝜈 is 𝜇-measurable

Remark: This is a brilliant version of the proof of Radon-Nikodym Theorem by von Neumann, that will
suffice for representing vector measures.

Radon-Nikodym Theorem: Let 𝜇 and 𝜈 be finite measures on (Ω, ℱ) then there exists a non-negative
measurable function 𝑓 and a 𝜇-null set 𝐵 such that

𝜈(𝐴) = �
𝐴

𝑓𝑑𝜇 + 𝜈(𝐴 ∩ 𝐵)

for each 𝐴 ∈ ℱ.

Proof: Let 𝜋 = 𝜇 + 𝜈 and consider 𝑇(𝑓) = ∫𝑓𝑑𝜈. Then for every 𝑓 ∈ 𝐿2(𝜋) we have 𝑓 ∈ 𝐿1(𝜈) and
since measures are finite 𝑓 ∈ 𝐿1(𝜋) and thus in 𝐿1(𝜈), then

|𝑇(𝑓)| = |�𝑓𝑑𝜈| ≤ ‖𝑓‖𝐿2(𝜈)‖1‖𝐿2(𝜈) ≤ 𝐶‖𝑓‖𝐿2(𝜋)
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where 𝐶 is a constant. Thus 𝑇 is a continuous operator on 𝐿2(𝜋) and by Reisz representation theorem for
Hilbert spaces we find a function ℎ ∈ 𝐿2(𝜋) such that

𝑇(𝑓) = �𝑓𝑑𝜈 = �𝑓ℎ𝑑𝜋

Now consider the following sets

𝑁 = {ℎ < 0}, 𝑀 = {0 ≤ ℎ < 1}, 𝐵 = {ℎ ≥ 1}

Then
0 ≥ �

𝑁

ℎ𝑑𝜋 = �𝜒𝑁ℎ𝑑𝜋 = 𝜈(𝑁) ≥ 0

Thus we have 𝜈(𝑁) = 0 and since ℎ < 0 on 𝑁 and ∫ℎ𝑑𝜇 = 0 we have 𝜇(𝑁) = 0 also.

Now let’s study 𝐵. We have

𝜈(𝐵) = 𝑇(𝜒𝐵) = �
𝐵

ℎ𝑑𝜇 + �
𝐵

ℎ𝑑𝜈 ≥ 𝜈(𝐵) + 𝜇(𝐵)

thus 𝜇(𝐵) = 0.
For the last let we set 𝑀𝑛 = {0 ≤ ℎ ≤ 1 − 1/𝑛} and from representation of 𝑇 with ℎ we have ∫(1 −
ℎ)𝑓𝑑𝜈 = ∫ℎ𝑓𝑑𝜇 and why apply it to

𝜈(𝑀𝑛) = �
𝜒𝑀𝑛

1 − ℎ
(1 − ℎ) 𝑑𝜈 = �ℎ

𝜒𝑀𝑛

1 − ℎ
𝑑𝜇

Let 𝑓 = ℎ

1−ℎ
then by applying monotone convergence and recalling that 𝜇(𝐵) = 𝜇(𝑁) = 0 we have

𝜈(𝑀 ∩ 𝐴) = �
𝐴

𝑓𝑑𝜇

Finally for all 𝐴 ∈ ℱ we have

𝜈(𝐴) = 𝜈(𝐴 ∩ 𝑁) + 𝜈(𝐴 ∩ 𝑀) + 𝜈(𝐴 ∩ 𝐵) = �
𝐴

𝑓𝑑𝜇 + 𝜈(𝐴 ∩ 𝐵)

Corollary: If 𝜇 >> 𝜈, then 𝜈(𝐴) = ∫
𝐴
𝑓𝑑𝜇

It’s evident since 𝜇(𝐵) = 0 ⇒ 𝜈(𝐵) = 0 then.

Remark: If 𝜇 and 𝜈 are Radon measures, then 𝑓 = 𝐷𝜇𝜈.

Corollary: This gives us a representation of a vector valued measure 𝜇 as 𝜇 = 𝑓 |𝜇|. And we can define
the integration with respect to such measure as

�𝑔𝑑𝜇 = �𝑔 ⋅ 𝑓 𝑑|𝜇|

Beyond representation of measure (or continuous linear forms), we can view this process from another
angle. If we associate to a linear continuous form to a shape, then function 𝑓 describes certain geometric
properties of that shape. We will explore one such example in the last section.

2 Hausdorff measure
The Hausdorff measure generalizes the notion of measure for lower-dimensional objects in a higher-
dimensional space or even in an arbitrary metric space. The idea is essentially similar to the construction
of Lebesgue measure, and the general case is called the Carathéodory construction. The difference is that
we measure sets by their diameter, attributing to each an s-dimensional ”volume” based on its diameter
raised to the power of s. For this construction, we define a cover of E by sets of diameter less than δ as a
δ-cover of E. And we consider only countable covers. We note that

ℋ𝑠
𝛿(𝐸) = inf

𝐶
�

𝐼∈𝐶

𝜔𝑠 �
diam(𝐼)

2
�

𝑠
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where 𝑠 ∈ ℝ≥0 is a dimension, 𝜔𝑠 ∈ ℝ is a coefficient, preferably continuous or smooth as a function of
𝑠, and 𝐶 is a 𝛿-cover of 𝐸. We may assume that

𝜔𝑠 =
𝜋𝑠/2

Γ(1 + 𝑠/2)

We define the Hausdorff measure as a limit of the previous value. It exists becauseℋ𝑠
𝛿(𝐸) is an increasing

function of 𝛿. We note
ℋ𝑠(𝐸) = lim

𝛿→0+
ℋ𝑠
𝛿(𝐸)

I shall introduce the notion of 𝑠-variation of a cover 𝑆 as

Var𝑠(𝑆) =�

𝐼∈𝑆

𝜔𝑠 �
diam(𝐼)

2
�

𝑠

Proposition: For a natural 𝑛 ≥ 0, 𝜔𝑛 is a volume of a unit 𝑛-dimensional ball.

2.1 Properties of Hausdorff measure
Proposition: Hausdorff measure is a Borel measure.

Proposition: ℋ0 is the counting measure.

Proposition: In the definition of Hausdorff measure we can consider only closed or open sets.

Proposition: Hausdorff measure of dimension𝑚 ∈ 𝑁 coincide on𝑚-dimensional affine subspaces with their
Lebesgue measure.

Proposition: The 𝑛-dimetional Hausdorff measure traced to a 𝑛-dimentional 𝒞1-submanifold of 𝑅𝑚 induces
the area measure on this submanifold and coincides with the integral measure via parametrisation on it.

Proposition: A restriction ofℋ𝑠 on a locallyℋ𝑠-finite set is a Radon measure.

Remark: Proofs to those proposition can be found in the book [Maggi, 2012].

Definition: Let 𝐸 be a Borel subset of a metric space 𝑋. The upper 𝑑-dimensional density (with respect
toℋ𝑑) of 𝐸 at the point 𝑥 is defined by setting

Θ∗𝑑(𝐸, 𝑥) = lim sup
𝑟→0

ℋ𝑑(𝐸 ∩ 𝐵𝑐(𝑥, 𝑟))

𝜔𝑑𝑟
𝑑

Theorem: Let 𝐸 be a Borel subset of a metric space 𝑋, and assume that 𝐸 is locally ℋ𝑑-finite. Then the
following properties hold true:

1. The upper density of external points is almost everywhere zero, Θ∗𝑑(𝐸, 𝑥) = 0 for ℋ𝑑-almost every
𝑥 ∈ 𝐸𝑐.

2. The upper density is bounded from below, 1

2𝑑
≤ Θ∗𝑑(𝐸, 𝑥) forℋ

𝑑-almost every 𝑥 ∈ 𝐸𝑐.

3. If 𝑋 ≅ ℝ𝑛, then the upper density is bounded from above by 1, Θ∗𝑑(𝐸, 𝑥) ≤ 1 for ℋ𝑑-almost every
𝑥 ∈ 𝐸.

4. If 𝑋 is a generic metric space, then the upper density is bounded from above by a slightly different
constant, Θ∗𝑑(𝐸, 𝑥) ≤ 3𝑑 forℋ𝑑-almost every 𝑥 ∈ 𝐸.

Proof: Proofs of propositions 2-3 can be found in [Alberti, 2017] on page 48.

1. The core of this proof relies on the regularity of 𝜇 ∶= ℋ𝑑 ⌞𝐸 and Vitali’s Covering Lemma. We de-
fine 𝐸𝑡 ∶= {𝑥 ∈ 𝐸𝑐 | Θ∗𝑑(𝐸, 𝑥) > 𝑡} and aim to prove that it isℋ𝑑-null for 𝑡 > 0. From the definition
of 𝐸𝑡 we know that 𝐸 is highly concentrated around the points of 𝐸𝑡. This effectively allows us to
reduce the study of 𝐸𝑡 to the study of appropriate covers. Let 𝐴 ⊇ 𝐸𝑡 be an open neighborhood of
𝐸𝑡. We then consider the family of closed balls ℱ ∶= {𝐵(𝑥, 𝑟) ⊂ 𝐴 | 𝑥 ∈ 𝐸𝑚 & ℋ𝑑(𝐵(𝑥, 𝑟) ∩ 𝐸) >

𝑡𝜔𝑑𝑟
𝑑}. Within this family, we can consider balls of diameter < 1. Then for Vitali’s Covering

Lemma we can choose a dilation coefficient 𝑘 ∈ (3,+∞) and we fix ball dilatation procedure with
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coefficient 𝑘 by 𝐵 ↦ �𝐵. Lemma provides a disjoint subfamily 𝒢 such that the delated by ⋅̂ balls cover
𝐸𝑡. We then have the following inequality

𝜇(𝐴) ≥ �

𝐵∈𝒢

𝜇(𝐵) ≥ 𝑡𝜔𝑑�

𝐵∈𝒢

𝑟(𝐵)𝑑 =
𝑡

𝑘𝑑
𝜔𝑑�

𝐵∈𝒢

𝑟(�𝐵)𝑑 ≥
𝑡

𝑘𝑑
ℋ𝑑
1 (𝐸𝑛)

Since 𝜇(𝐴) can be chosen arbitrary small, it follows thatℋ𝑑
1 (𝐸𝑡) = 0 and consequentlyℋ𝑑(𝐸𝑡) =

0.

2. [Alberti, 2017]

3. [Alberti, 2017]

4. If we follow a similar construction to the proof of the first proposition for a set 𝐸𝑡 ∶= {𝑥 ∈

𝐸 | Θ∗𝑑(𝐸, 𝑥) > 𝑡}, then we arrive at

ℋ𝑑(𝐸𝑚) ≥
𝑡

𝑘𝑑
ℋ𝑑(𝐸𝑚)

and if 𝑡 > 𝑘𝑑 we get ℋ𝑑(𝐸𝑚) = 0, and as it is true for all 𝑘 > 3, we have Θ∗𝑑(𝐸, 𝑥) ≤ 3𝑑. It’s
worth noticing that usually there are no generalisation in Vitali’s lemma and one usually proves for
5 instead of 3.

2.2 Hausdorff dimension
To a set 𝑆 we can associate a number 𝑠 = inf{𝑎 ≥ 0 |ℋ𝑎(𝑆) = 0}. It’s called its Hausdorff dimension.

Proposition: If 𝐸 ⊆ ℝ then dim(𝐸) ∈ [0, 𝑛]. Moreoverℋ𝑠(𝐸) = ∞ for every 𝑠 < dim(𝐸) andℋ𝑆(𝐸) ∈

(0,∞) implies 𝑠 = dim(𝐸).

Proposition: If 𝐴 is an open set in ℝ𝑛, then dim(𝐴) = 𝑛.

Proposition: For a Lipschitz function 𝑓 ∶ ℝ𝑛 → ℝ𝑚 we have the following inequality

ℋ𝑠(𝑓[𝐸]) ≤ Lip(𝑓)𝑠ℋ𝑠(𝐸)

for every 𝑠 > 0 and 𝐸 ⊆ ℝ𝑛 and dim(𝐸) < dim(𝑓[𝐸]).

2.3 Dimension of Cantor sets
Here we compute the dimension of generalized set. Let 𝑛 ∈ ℕ and𝑚 ∈ ℕ∗ so that 2𝑚 < 𝑛. Then we can
define 𝐶𝑘 (𝑘 ∈ ℕ) define recursively by agreeing that 𝐶0 = {[0, 1]} and we obtain 𝐶𝑘+1 from 𝐶𝑘 by cutting
out the open middle part from each segment of 𝐶𝑘 and living side parts of length𝑚/𝑛 of original interval.
We will note 𝐶 = lim𝐶𝑘 = ⋂𝐶𝑘.

Obviously 𝐶𝑘 is a (𝑚/𝑛)𝑘-cover of 𝐶, so

ℋ𝑠
(𝑚/𝑛)𝑘

≤ �

𝐼∈𝐶𝑘

𝜔𝑠(
diam(𝐼)

2
)𝑠 = 𝜔𝑠2

𝑘((𝑚/𝑛)𝑘)/2)𝑠 = 𝜔𝑠/2
𝑠(2(𝑚/𝑛)𝑠)𝑘

And if 𝑠 > log
𝑛/𝑚

(2) we have right side approaching 0 as 𝑘 tends to infinity. That means that dim(𝐶) ≤
log

𝑛/𝑚
(2).

Now we need to prove the inequality in the other direction. Let 𝑠 = log
𝑛/𝑚

(2). And let 𝑆 be a (𝑚/𝑛)𝑘-
cover of 𝐶. In fact by the construction 𝐶 is an intersection of compacts on a real line, so is compact. And
by one of the previous propositions we can conceder only open covers. Then by compactness we can leave
only a finite number of sets in 𝑆 and this way we reduce its Hausdorff variance and we can extend the
resting elements to closed intervals of the same diameter. This does not change the variance. The new
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cover is noted by 𝑆′. Now in every interval of 𝑆′ we can find 2 maximal intervals from some 𝐶𝑖 and 𝐶𝑗, so
the they are disjoint. If we can’t do that, then there are no points of 𝐶 in this interval and we can throw
away that set also. So now we have 2 maximal intervals 𝐽 and 𝐽′ in 𝐼. They are ordered. Between them
we have an interval 𝐾 and as they are maximal 𝐼 ∖ 𝐽 ∖ 𝐾 ∖ 𝐽′ does not contain any points from 𝐶 and we
can through those parts away from the covering. By the construction

|𝐽|, |𝐽′| ≤
𝑚

𝑛
⋅

𝑛

𝑛 − 2𝑚
|𝐾| =

𝑚

𝑛 − 2𝑚
|𝐾|

Now we have 1/2(|𝐽| + |𝐽′|) ≤
𝑚

𝑛−2𝑚
|𝐾|

|𝐼|𝑠 = (|𝐽|+|𝐽′|+|𝐾|)𝑠 ≥ ((1+
𝑛 − 2𝑚

2𝑚
))(|𝐽|+|𝐽′|))𝑠 = (

𝑛

𝑚
1/2(|𝐽|+|𝐽′|))𝑠 = 2(1/2(|𝐽|+|𝐽′|))𝑠 ≥ |𝐽|𝑠+|𝐽′|𝑠

Where the last step is done by concavity of function 𝑥 ↦ 𝑥𝑠. That means that we can reduce this any
cover to a 𝐶𝑘 cover which has a smaller 𝑠-variation. That means that for dimension 𝑠 = log

𝑛/𝑚
(2) the

ℋ𝑠(𝐶) is finite as the 𝑠-variation of 𝐶𝑘 is always 𝜔𝑠/2𝑠.

Remark: This is a variation on the proof given in the book ”The geometry of fractal sets” by K. J. Flaconer,
generelised to the case of arbitrary𝑚 and 𝑛. In this book the proof is done for the case𝑚 = 1, 𝑛 = 3.

Proposition: There is a subset of [0, 1] with а Hausdorff dimension 1, but Lebesgue measure 0.

To show that we shall use Cantor’s sets. Let 𝐶𝑚/𝑛 be a set discussed in a previous paragraph. Then
𝑆 = ⋂𝐶𝑚/(2𝑚+1) is a set of dimension 1. As for every 0 ≤ 𝑠 < 1 there is such 𝑚, that log

𝑛/𝑚
(2) =

log
(2𝑚+1)/𝑚

(2) > 𝑠, as log
(2𝑚+1)/𝑚

(2) → 1. And thusℋ𝑠(𝑆) > ℋ𝑠(𝐶𝑚/(2𝑚+1)) = ∞.

2.4 Integration
Let 𝑓 ∶ 𝑈 ⊆ ℝ𝑛 → ℝ𝑘 be an injective 𝒞1 mapping. Then its jacobian can be written as

𝐽(𝑓) = �det(𝑑𝑓𝑇 ∘ 𝑑𝑓)

and we have the following integration formula:

�
im(𝑓)

𝑔𝑑ℋ𝑛 = �
𝑈

𝑔(𝑓(𝑥))𝐽(𝑓)𝑑𝑥

3 Convergence of measures
Measures not only allow us to compute integrals, but they can also be used to model geometric figures
and to test different properties of these figures. One of the fundamental ideas at the heart of geometric
measure theory is that one can replace figures with the measures induced on these figures.

𝐸 ⇝ 𝜇⌞𝐸

Now, we need to compare two figures. To do this, we can compare the values of integrals of functions with
respect to associated measures; in other words, we will treat measures as linear functionals. Furthermore,
if two figures are close to one another, then we want their associated measures to yield sufficiently close
values. This implies that we want the function values to remain bounded in small neighborhoods and not
vary toomuch. Therefore, we only consider continuous functions. Lastly, since wewant to be able to work
with possibly unbounded figures, we would like the integration of measures with respect to functions to
be well-defined and finite. Thus, we only use continuous functions with compact support, 𝒞𝑐(𝑋).

This allows us to establish a notion of convergence of shapes, equivalent to a convergence of measures.
We’ll see examples of this later, but for now, I’d like to specify the type of convergence we’ll be using.
We are treating measures as linear functionals on the space 𝒞𝑐(𝑋). In this context, convergence is de-
fined by the behavior of these functionals on each test function; specifically, we are considering that the
integral values converge for every function in 𝒞𝑐. Such convergence is called weak-* convergence. Be-
fore discussing this convergence further, I shall first demonstrate that there is a space of measures which
serves as the dual space to 𝒞𝑐.

3.1 Topologies on spaces 𝐸 and 𝐸∗

For topological spaces 𝑌𝑖 and a set of functions 𝑓𝑖 ∶ 𝑋 → 𝑌𝑖, we can define the smallest, coarsest topology on
𝑋 that makes these functions continuous. By definition such topology is 𝜏({𝑓𝑖}) = ⋂{𝜏 | 𝜏 is a topology on
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𝑋 and 𝑓𝑖 are continuous}. As an example, the product topology is exactly 𝜏({𝜋𝑖}), where 𝜋𝑖 are canonical
projections.

Proposition: Let 𝜏 be a topology on 𝑋. Then 𝜏 = 𝜏({𝑓𝑖}) if and only if every function 𝑔 ∶ 𝑊 → 𝑋 such that
𝑓𝑖 ∘ 𝑔 are continuous is continuous.

Remark: This is a well-known property of caorsest topology, but I checked that it is also an alternative
characterisation of such topology.
If 𝜏 = 𝜏({𝑓𝑖}) and 𝑔 ∶ 𝑊 → 𝑋 is such function that 𝑓𝑖 ∘𝑔 are continuous. It’s sufficient to check that for all
elements of prebase of 𝜏({𝑓𝑖}) the inverse image is open, but the prebase consists of elements of the form
𝑓−1𝑖 [𝑈] and its inverse image is (𝑓𝑖 ∘ 𝑔)−1[𝑈] which is open by hypotheses.

If 𝜏 is a such topology, that for every function𝑔 ∶ 𝑊 → 𝑋 it is continuous if and only if 𝑓𝑖∘𝑔 are continuous,
then in particular we have id ∶ (𝑋, 𝜏) → (𝑋, 𝜏) continuous and that means that 𝑓𝑖 = 𝑓𝑖 ∘ id are continuous
and we have 𝜏({𝑓𝑖}) ⊆ 𝜏. On the other hand we have id′ ∶ (𝑋, 𝜏({𝑓𝑖})) → (𝑋, 𝜏) continuous because
𝑓𝑖 = 𝑓𝑖 ∘ id

′
∶ (𝑋, 𝜏({𝑓𝑖})) → 𝑌𝑖 are continuous by the definition of coarsest topology. Thus we have id′

continuous and that means that 𝜏 ⊆ 𝜏({𝑓𝑖}). And finally 𝜏 = 𝜏({𝑓𝑖}).

Tichonoff’s Theorem: Product of compact spaces is compact.

General structure: Let 𝐼 be a set of indices and 𝐸𝑖 for 𝑖 ∈ 𝐼 be a topological space with a topology 𝜏𝑖. The
prebase of the product topology on∏𝑖∈𝐼 𝐸𝑖 is {𝜋

−1
𝑖 [𝑈] | 𝑖 ∈ 𝐼, 𝑈 ∈ 𝜏𝑖}. a set of products of open subspaces

of one spaces on others. All the finite intersections form a base of product topology. Its elements are
products of open sets where almost all factors are 𝐸𝑖.

Maximal covers: Let’s note that a set of covers that does not contain finite sub-covers for a partially
ordered set with the relation of inclusion. For every chain we have its union which does not contain a
finite sub-cover, which otherwise would have been in some element of chain. Thus each chain has an
upper bound. By the Zorn’s lemma we find a maximal element𝑀.

Let 𝑋 be a topological space and𝑀 ⊆ 𝜏 a maximal cover that does not contain a finite sub-cover. Then if
𝑉 ∈ 𝑀𝑐, we have𝑈1, … , 𝑈𝑛 ∈ 𝑀 such that𝑉∪𝑈1∪…∪𝑈𝑛 = 𝑋. Because otherwisewe could have added𝑉
to𝑀 and Mwould not be maximum. If𝑈, 𝑉 ∈ 𝑀𝑐 then𝑈∩𝑉 ∈ 𝑀𝑐. In other words𝑀𝑐 is a multiplicative
system, which is similar to the statement that 𝔭𝑐 is multiplicative for a prime ideal 𝔭. This is true due to
the fact that we have 𝑈1, … , 𝑈𝑘 ∈ 𝑀 and 𝑉1, … , 𝑉𝑙 ∈ 𝑀 such that 𝑈 ∪ 𝑈1 ∪…∪ 𝑈𝑛 = 𝑋 = 𝑉 ∪ 𝑉1 ∪…∪ 𝑉𝑙
and thus (𝑈 ∩ 𝑉) ∪ 𝑈1 ∪ … ∪ 𝑈𝑘 ∪ 𝑉1 ∪ … ∪ 𝑉𝑙 = 𝑋, which implies that 𝑈 ∩ 𝑉 ∈ 𝑀𝑐.

Alexander’s lemma about prebase: Let 𝐵 be a prebase of a topological space 𝑋. Then if in every
cover of 𝑋 by elements of 𝐵 there exists a finite subcover, then the space 𝑋 is compact. If 𝑋 is
not compact, then we have a 𝑀 maximal cover that does not contain a finite sub-cover. Then to every
𝑥 ∈ 𝑋 we can associate its neighborhood 𝑉𝑥 ∈ 𝑀. Then we find some element of a basis 𝑈𝑥 = 𝑈1,𝑥 ∪

… ∪ 𝑈𝑛𝑥,𝑥 ⊆ 𝑉𝑥 where 𝑈𝑖,𝑥 ∈ 𝐵 are elements of prebase. Thus by maximality 𝑈𝑥 ∈ 𝑀 as 𝑈𝑥 ⊆ 𝑉𝑥. But
as 𝑈𝑥 = 𝑈1,𝑥 ∪ … ∪ 𝑈𝑛𝑥,𝑥 and as 𝑀𝑐 is a multiplicative system, for some 𝑖 we have 𝑈𝑖,𝑥 ∈ 𝑀. It means
that in𝑀 we have a sub-cover of 𝑋 by elements of a prebase 𝐵. And by hypotheses we can chose a finite
sub-cover which gives a contradiction.

Tichonoff theorem’s proof: Let 𝒮 = (𝑈𝑖)𝑖∈𝐼 be a cover of a product 𝐸 = ∏
𝑗∈𝐽 𝐸𝑗 of compact space by

elements of canonical prebase. Let’s suppose that it does not contain a finite sub-cover. For every 𝑗 ∈ 𝐽we
shall pose 𝑆𝑗 = {𝜋−1𝑗 [𝑉𝑖,𝑗] = 𝑈𝑖 | 𝑉𝑖,𝑗 ∈ 𝜏𝑗, 𝑖 ∈ 𝐼𝑗}. Then (𝑉𝑖,𝑗)𝑖∈𝐼 cannot be a cover of 𝐸𝑗, because otherwise
we can extract a finite sub-cover of 𝐸𝑗 and hence of 𝐸. So we can chose 𝑥𝑗 ∈ 𝐸𝑗 such that 𝑥𝑗 ∉ ⋃𝑖∈𝐼𝑗

𝑉𝑖,𝑗.
Let 𝑥 = (𝑥𝑗)𝑗∈𝐽 and it does not lie in every set of 𝒮, thus it is not a cover and we get a contradiction.

Remark: This is the most non-trivial part of the proof of Banach-Alaoglu theorem and as I had this proof
noted I have decided to also put it here.

In this section, 𝐸 is a normed vector space and 𝐸∗ is its dual space of continuous 1-forms on 𝐸. On the
space 𝐸, apart from its metric topology, we have the weak topology 𝜎(𝐸, 𝐸∗) = 𝜏({𝑓}𝑓∈𝐸∗). As 𝑓 ∈ 𝐸∗

is continuous with respect to the regular topology, the topology 𝜎(𝐸, 𝐸∗) is coarser then the regular
topology, which we call strong.

On the space 𝐸∗, we also have strong topology with the operator norm. Additionally, we have the weak-∗
topology 𝜎(𝐸∗, 𝐸) = 𝜏({𝑣}𝑣∈𝐸).

Proposition: The weak-∗ topology is a trace topology from the space ℝ𝐸 with the product topology.

Proof: Let 𝜏({𝜋𝑣}𝑣∈𝐸) be the trace topology. Then it is easy to see that 𝜋𝑣 = 𝑣 as both function are
evaluations at 𝑣 and thus 𝜏({𝜋𝑣}𝑣∈𝐸) = 𝜏({𝑣}𝑣∈𝐸) = 𝜎(𝐸∗, 𝐸) is a weak-∗ topology.

Remark: In the book ”Functional Analysis” by Haim Brezis, the part above is done by establishing an
homeomorpism and a verification of its bicontinuity. As you have seen, there is actually nothing sub-
stantial to prove since these are just two notions of the same concept – projection and evaluation in the
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dual-space.

Theorem (Banach-Alaoglu): The closed unit ball 𝐵 = {𝑓 ∈ 𝐸∗ | |𝑓| ≤ 1} is compact in the weak-∗
topology 𝜎(𝐸∗, 𝐸).

Proof:

𝐵 = �𝑓 ∈ ℝ𝐸 | �

|𝑓(𝑥)| < |𝑥|, ∀𝑥 ∈ 𝐸

𝑓(𝜆𝑥) = 𝜆𝑓(𝑥), ∀𝜆 ∈ ℝ, 𝑥 ∈ 𝐸

𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) ∀𝑥, 𝑦 ∈ 𝐸

�

Hence it is intersection of the following sets 𝐵 = 𝐾 ∩ ⋂𝑥,𝑦∈𝐸 𝐴𝑥,𝑦 ∩ ⋂𝑥∈𝐸,𝜆∈ℝ 𝐵𝜆,𝑥, where 𝐾 = {𝑓 ∈

ℝ𝐸 | |𝑓(𝑥)| ≤ |𝑥|} = ∏
𝑥∈𝐸[−|𝑥|, |𝑥|] is compact by Tichonoff theorem, where for 𝑥, 𝑦 ∈ 𝐸, we define

𝐴𝑥,𝑦 = {𝑓 ∈ ℝ𝐸 | 𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − 𝑓(𝑦) = 0}, which is closed since evaluations and addition are
continuous, and thus 𝑓 ↦ 𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − 𝑓(𝑦) is continuous and 𝐴𝑥,𝑦. For similar reasons 𝐵𝜆,𝑥 =
{𝑓 ∈ ℝ𝐸 | 𝑓(𝜆𝑥) − 𝜆𝑓(𝑥) = 0} is closed. This proves that 𝐵 is compact.

3.2 Vector valued measure
Let 𝑋 be a topological space and 𝑉 a Banach space, then 𝜇 ∶ ℬ(𝑋) → 𝑉 is a 𝑉-valued Borel measure if

�

𝑛

𝜇(𝐸𝑛) = 𝜇(�

𝑛

𝐸𝑛)

for any disjoint countable family {𝐸𝑛} of Borel sets. From that definition we have 𝜇(𝐴) + 𝜇(∅) = 𝜇(𝐴 ∪

∅) = 𝜇(𝐴) and thus 𝜇(∅) = 0. This is a quite a strong property as the convergence of the sum does not
depend on the order, which in finite dimensions is equivalent to the absolute convergence of that series.

Let 𝜇 be a vector valued measure. Then the total variation |𝜇| of a Borel set 𝐴 by measure 𝜇 is defined by:

|𝜇|(𝐴) = sup{�
𝑛

|𝜇(𝐴𝑛)| | {𝐴𝑛} countable partition of 𝐴}

Proposition: Total variation is a positive bounded measure.

It is easy to see that |𝜇|(∅) = 0 since all partitions of an empty set consist of empty sets which measure
is zero. The image of |𝜇| by the definition consists of positive numbers. Lastly we verify 𝜎-additivity. Let
{𝑆𝑛} be a disjoint countable collection of Borel sets. Then

�

𝑛

|𝜇|(𝑆𝑛) =�

𝑛

sup{�
𝑚

|𝜇(𝑆𝑛,𝑚)| | (𝑆𝑛,𝑚)𝑚 is a countable Borel partition of 𝑆𝑛}

Then we remark that for each choice of {𝑆𝑛,𝑚}, it is a countable Borel partition of 𝑆 = ⋃𝑛 𝑆𝑛, and thus
|𝜇|(𝑆) ≥ ∑

𝑛 |𝜇|(𝑆𝑛). On the other hand if {𝐴𝑘} is a countable Borel partition of 𝑆 then we have partitions
of 𝑆𝑛 defined as {𝑆𝑛,𝑘 = 𝐴𝑘 ∩ 𝑆𝑛}𝑘 and we have the following inequality:

�

𝑘

|𝜇(𝐴𝑘)| =�

𝑘

|�

𝑛

𝜇(𝑆𝑛,𝑘)| ≤�

𝑛

�

𝑘

|𝜇(𝑆𝑛,𝑘)|

which implies |𝜇|(𝑆) ≤ ∑
𝑛 |𝜇|(𝑆𝑛) and we conclude that |𝜇| is a positive measure.

Let’s verify that total variation is bounded. That is a tricker question and we shall follow the proof from
”…”. Themeasure can be partitioned into projection measures 𝜇 = (𝜇𝑖)

𝑛
𝑖=1. As all the norms are equivalent

we can consider | ⋅ | = ‖ ⋅ ‖1. Then as we have the following inequality:

sup{�
𝑖

|𝜇(𝑋𝑖)| | 𝑋𝑖 is a borel partition of 𝑋} ≤�

𝑗

sup{�
𝑖

|𝜇𝑗(𝑋𝑖)| | 𝑋𝑖 is a borel partition of 𝑋}

It is sufficient to prove that for real valued measures its total variation is bound. If we suppose it is not,
then we have a real valued measure 𝜇, countable Borel partition of 𝑋 {𝑋𝑚}𝑚 and 𝑛 ∈ ℕ such that

𝑛

�

𝑚=0

|𝜇(𝑋𝑚)| > 2(|𝜇(𝑋)| + 1)

Let 𝑃 = {𝑋𝑖|𝜇(𝑋𝑖) > 0} and 𝑁 = {𝑋𝑖|𝜇(𝑋𝑖) < 0}. Then we have |𝜇(⋃𝑃)| > |𝜇(𝑋)| + 1 or |𝜇(⋃𝑁)| >

|𝜇(𝑋)|+1, thus we have a set 𝐸 such that |𝜇(𝐸)| > |𝜇(𝑋)|+1. Then we have |𝜇(𝐸𝑐)| = |𝜇(𝑋)−𝜇(𝐸)| ≥

|𝜇(𝐸)| − |𝜇(𝑋)| > 1. Then by additivity of |𝜇| we have |𝜇|(𝐸) = ∞ or |𝜇|(𝐸𝑐) = ∞; supposing the latter
we pose 𝐸1 = 𝐸 (or = 𝐹) we always have 𝜇(𝐸1) > 1 and if we continue the same procedure for 𝑋 = 𝐸𝑐
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we construct by the choice axiom the following sequence of disjoint sets (𝐸𝑖)𝑖 and |𝜇|(𝐸𝑖) > 1 and thus
∑𝜇(𝐸𝑖) does not converge and we have a contradiction to the definition of vector valued measure. Thus
𝜇 is bound.

By setting

𝜇+ =
|𝜇| + 𝜇

2
𝜇− =

|𝜇| − 𝜇

2

we have 𝜇+ and 𝜇− positive bounded measures and 𝜇 = 𝜇+ − 𝜇− which ports a name a Jordan decompo-
sition.

The mass of 𝜇 is set to be ‖𝜇‖ = |𝜇|(𝑋).

Proposition: The set of vector norms with the mass form a normed vector space.

Proof: Let 𝜇 ∶ ℬ(𝑋) → 𝑉 for 𝑉 an ℝ-vector space be a vector norm. Then evidently ‖𝑘𝜇‖ = |𝑘|‖𝜇‖. Let
𝜈 be another vector measure then

‖𝜇 + 𝜈‖ = sup �
+∞

�

𝑛=0

|(𝜇 + 𝜈)(𝐸𝑛)| | {𝐸𝑛}𝑛 countable paritition of 𝑋�

≤ sup �
+∞

�

𝑛=0

|𝜇(𝐸𝑛)| + |𝜈(𝐸𝑛)| | {𝐸𝑛}𝑛 countable paritition of 𝑋�

≤ sup �
+∞

�

𝑛=0

|𝜇(𝐸𝑛)| | {𝐸𝑛}𝑛 countable paritition of 𝑋�

+ sup �
+∞

�

𝑛=0

|𝜈(𝐸𝑛)| | {𝐸𝑛}𝑛 countable paritition of 𝑋�

= ‖𝜇‖ + ‖𝜈‖

3.3 Riesz representation theorems for vector valued measure
For an ℝ𝑛-valued measure 𝜇 on 𝑋 we define an associated functional

Λ𝜇 ∶ 𝒞0(𝑋, ℝ
𝑛) → ℝ

𝑓 ↦ �𝑓𝑑𝜇

Riesz representation theorem: The map

Λ ∶ ℳ(𝑋,ℝ𝑛) → 𝒞0(𝑋, ℝ
𝑛)∗

𝜇 ↦ Λ𝜇

is an isometry

Proof: The injectivity of Λ is quit obvious. For surjectivity we make an inverse construction, for a given
functional 𝐿 we take its total variation defined by

|𝐿|(𝐴) = sup{⟨𝐿 | 𝜙⟩ | 𝜙 ∈ 𝒞𝑐(𝐴, ℝ
𝑛), |𝜙| < 1}

for open set 𝐴. And for other sets we set

|𝐿|(𝐸) = inf{|𝐿|(𝐴) | 𝐸 ⊆ 𝐴}

Thus |𝐿| is locally finite, because it’s continuous and thus bounded. Whats more the second property
yields us the regularity of the total variation as we can take a countable intersection of {𝐴𝑛} of open sets
such that |𝐿|(𝐴𝑛) → |𝐿|(𝐸), thus the total variation is a radon measure. Then the proof of existence of
function 𝑓 such that 𝐿 is equal to integration with respect to 𝑓|𝐿| and |𝑓| = 1 |𝐿|-a.e. can be found on
pages 34-41 [Maggi, 2012]. Let’s check that it’s an isometry. Let measure 𝜇 be represented by a functional
𝐿. Then

‖𝐿‖ = sup{𝐿(𝑓) | ‖𝑓‖ ≤ 1}

‖𝜇‖ = sup{�|𝜇(𝐵𝑖)| | {𝐵𝑖} a partition of 𝑋}
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For 𝑓 ∈ 𝐶0(𝑋, ℝ
𝑛) we find a series of step functions 𝑓𝑛 = ∑𝑎𝑖𝜒𝐵𝑖 such that 𝑓𝑛 → 𝑓 and 𝑎𝑖 ≤ 1. Thus by

dominant convergence ∫𝑓𝑛 𝑑𝜇 → 𝐿(𝑓). On the other hand we have

|�𝑓𝑛 𝑑𝜇 = |�𝑎𝑖 ⋅ 𝜇(𝐵𝑖)| ≤�|𝑎𝑖||𝜇(𝐵𝑖)| ≤�|𝜇(𝐵𝑖)| ≤ ‖𝜇‖

and thus we have | ∫ 𝑓 𝑑𝜇| ≤ ‖𝜇‖ and thus ‖𝐿‖ ≤ ‖𝜇‖.
In the other direction it obviously follows form the fact the 𝐶0𝑐 is dense in 𝐿1.

Corollary: Continuous positive functionals are represented by Radon measures

Because 𝑓 = 1.

3.4 Interpretation of Banach-Alaoglu theorem for vector valued measures
Theweak-∗ convergence can be interpreted as convergence of evaluation of measure on every continuous
function on compact sets.

The original statement of Banch-Alaoglu theorem is the closed unit ball 𝐵 = {𝑓 ∈ 𝐸∗ | |𝑓| ≤ 1} is
compact in the weak-∗ topology. If we replace the termes in this proof by measure terms we have the
following theorem

Banach-Alaoglu Theorem forℳ(𝑋,ℝ𝑛): The set 𝐵 = {𝜇 ∈ ℳ(𝑋,ℝ𝑛) | ‖𝜇‖ ≤ 𝐶} is compact for every
𝐶 ∈ ℝ>0. That’s said every bounded sequence of vector measures has a weakly-∗ converging subsequence.

Consequence: If (𝜇𝑛) is a bounded sequence of vector measures, then it has a converging subsequence.

3.5 Weak-* convergence of measures
Proposition: Let (𝜇𝑛)𝑛 be a sequence of positives measures converging to 𝜇, then we have

1. For any open subset 𝐴 ⊆ 𝑋, lim inf 𝜇𝑛(𝐴) ≥ 𝜇(𝐴)

2. For any compact subset 𝐾 ⊆ 𝑋, lim sup 𝜇𝑛(𝐾) ≤ 𝜇(𝐾)

3. For any relatively compact 𝐸 ⊆ 𝑋 such that (𝜕𝐸) = 0

Proof: We will simultaneously demonstrate propositions 1 and 2. Let 𝐾 ⊂ 𝐴, where 𝐾 is compact and 𝐴
is open. Consider a function 𝑓 ∈ 𝒞𝑐(𝑋) such that 𝜒𝐾 ≤ 𝑓 ≤ 𝜒𝐴. For a Radon measure 𝜈, we then have:

𝜈(𝐾) ≤ �𝑓𝑑𝜈 ≤ 𝜈(𝐴)

And by considering the limits, we obtain:

lim sup 𝜇𝑖(𝐾) ≤ lim sup�𝑓𝑑𝜇𝑖 = �𝑓𝑑𝜇 ≤ 𝜇(𝐴)

𝜇(𝐾) ≤ �𝑓𝑑𝜇 = lim inf�𝑓𝑑𝜇𝑖 ≤ lim inf 𝜇𝑖(𝐴)

Since we are dealing with Radon measures and these inequalities hold for every compact 𝐾 and every
open 𝐴, we can pass to the limit. The lines then transform into:

lim sup 𝜇𝑖(𝐾) ≤ 𝜇(𝐾)

𝜇(𝐴) ≤ lim inf 𝜇𝑖(𝐴)

Point three is a consequence of the two preceding points. Indeed, we have:

lim sup 𝜇𝑖(𝐸) ≤ 𝜇(𝐸) = 𝜇(int(𝐸)) ≤ lim inf 𝜇𝑖(int(𝐸))

Remark: The third proposition gives us the property that the measures of a sequence of figures converge
to the other figure; thus, locally in the ball, the area also converges.

The following sections draw highly from the lecture notes of [Alberti, 2017]. Most propositions are
adopted from this source, however remarks or most proofs are not.
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4 Tangents
Similarly to projective spaces ℝ𝑃𝑛 one can generalise this notion to smaller subspaces than hyperplanes.
The set of 𝑚 dimensional subspaces of a vector space ℝ𝑛 is called Grassmannian and noted by 𝐺(𝑚, 𝑛).
It is endowed with structures identified from orthogonal projections on𝑚-dimensional subspaces.

In this section, we will finally apply measure theory to the study of smooth geometric properties.

4.1 Approximate Tangent
Definition: Let 𝛼 be a fixed angle, let 𝑥 ∈ ℝ𝑛 be a point and let 𝑉 be a 𝑛-dimensional plane in ℝ𝑛+𝑚. The
cone of angle 𝛼 around 𝑉 centered at 𝑥 is defined by setting

𝒞(𝑥, 𝑉, 𝛼) = {𝑥′ ∈ ℝ𝑛+𝑚 | |𝑥′ − 𝑥| sin(𝛼) ≥ 𝑑(𝑥 − 𝑥′, 𝑉)}

Definition: Let 𝑉 ∈ 𝐺(𝑛+𝑚, 𝑛) be a 𝑑-dimensional plane. If 𝐸 is a Borel set and 𝑥 ∈ 𝐸 a point, then 𝑉 is a
strong tangent plane to 𝐸 at 𝑥 if and only if for every 𝛼 > 0 there exists a positive radius 𝑟0 > 0 such that

𝐸 ∩ 𝐵(𝑥, 𝑟0) ⊆ 𝐶(𝑥, 𝑉, 𝛼)

Definition: Let 𝑉 ∈ 𝐺(𝑛 + 𝑚, 𝑛) be a 𝑑-dimensional plane. If 𝐸 is a Borel set and 𝑥 ∈ 𝐸 a point, then 𝑉 is
an approximate tangent plane to 𝐸 at 𝑥 if and only if for every 𝛼 > 0 it turns out that

ℋ𝑑((𝐸 ∩ 𝐵(𝑥, 𝑟)) ∖ 𝒞(𝑥, 𝑉, 𝛼)) = 𝑜(𝑟𝑑)

and
ℋ𝑑((𝐸 ∩ 𝐵(𝑥, 𝑟)) ∩ 𝒞(𝑥, 𝑉, 𝛼)) ∼ 𝜔𝑑𝑟

𝑑

Finally, one can define a tangent space using weak-* convergence. Spaces satisfying this definition are
generally also called approximate, but to reduce confusion, here I will call them limit spaces.

Definition: Let 𝜓𝑥,𝑟 ∶ ℝ𝑛+𝑚 → ℝ𝑛+𝑚 = 𝑥′ ↦
𝑥′−𝑥

𝑟
be the dilation map. And let 𝐸𝑥,𝑟 be the image of 𝐸

under 𝜓𝑥,𝑟. An 𝑛-dimensional plane 𝑉 is a limit plane to the set 𝐸 at point 𝑥 if and only if

ℋ𝑛 ⌞𝐸𝑥,𝑟 ⇀ ℋ𝑛 ⌞𝑉

Proposition: A limit plane is an approximate tangent plane.

Proof: Let 𝑉 be a limit plane of 𝐸 at 𝑥. Let 𝜇 ∶= ℋ𝑛 ⌞𝑉 and 𝜇𝑟 ∶= ℋ𝑛 ⌞𝐸𝑥,𝑟. Since 𝜇 and 𝜇𝑟 are
Radonmeasures and𝐵(0, 1) is relatively compact and its boundary is 𝜇-negligible, then 𝜇𝑟(𝐵(0, 1)) →𝑟→0

𝜇(𝐵(0, 1)) = 𝜔𝑛. Furthermore, we have

𝜇𝑥,𝑟(𝐵(0, 1)) = ℋ𝑛(𝜓𝑥,𝑟[𝐸 ∩ 𝐵(𝑥, 𝑟)]) =
1

𝑟𝑛
ℋ𝑛(𝐸 ∩ 𝐵(𝑥, 𝑟))

and thus
ℋ𝑛(𝐸 ∩ 𝐵(𝑥, 𝑟)) ∼ 𝜔𝑛𝑟

𝑛

If, in the preceding constructions, we replace 𝐵(0, 1) by 𝐵(0, 1) ∩ 𝒞(0, 𝑉, 𝛼), we find

ℋ𝑛(𝐸 ∩ 𝐵(𝑥, 𝑟) ∩ 𝒞(𝑥, 𝑉, 𝛼)) ∼ 𝜔𝑛𝑟
𝑛

And if we take the difference of these two equalities by dividing them by 𝑟𝑛, we find that

ℋ𝑛(𝐸 ∩ 𝐵(𝑥, 𝑟)) −ℋ𝑛(𝐸 ∩ 𝐵(𝑥, 𝑟) ∩ 𝒞(𝑥, 𝑉, 𝛼))

𝑟𝑛
=
ℋ𝑛(𝐸 ∩ 𝐵(𝑥, 𝑟) ∖ 𝒞(𝑥, 𝑉, 𝛼))

𝑟𝑛
∼ 0

And therefore the plane is approximate.

Actually we can completely eliminate sets and talk about tangent spaces to measures.

Definition: We are saying that 𝜇 has a tangent 𝑇 ∈ 𝐺(𝑛,𝑚) at 𝑥 if for measures 𝜇𝑟,𝑥(𝐴) ∶= 𝑟−𝑚𝜇(𝑥+𝑟𝐴)

we find a constant 𝑘 ∈ (0,+∞) such that 𝜇𝑟,𝑥 ⇀ ℋ𝑚|𝑇 as 𝑟 → 0+.
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4.2 Tangent Bundle
Proposition: Let Σ, Σ′ ⊆ 𝑅𝑛+𝑚 be 𝑛-dimensional surfaces of class 𝐶1. Then tangent planes are equal at
ℋ𝑛-almost every point in the intersection 𝑥 ∈ Σ ∩ Σ′.

To prove it, we take a point 𝑥 ∈ Σ ∩ Σ′ such that 𝑇𝑥Σ ≠ 𝑇𝑥Σ
′. Then, locally at x surfaces are represented

by submersions 𝐹, 𝐺 ∶ ℝ𝑚+𝑛 → ℝ𝑚 i.e, Σ ∩ 𝐴 = 𝐹−1(0) ∩ 𝐴 and Σ′ ∩ 𝐵 = 𝐺−1(0) ∩ 𝐵, where 𝐴 and 𝐵
are open neighborhoods of 𝑥.

Let’s introduce a new function (𝐹, 𝐺) ∶ ℝ𝑚+𝑛 → ℝ2𝑚 = 𝑥 ↦ (𝐹(𝑥), 𝐺(𝑥)). The differential of (𝐹, 𝐺)
is a matrix of 2 blocks, one above the other. They are placed vertically because, actually, the pair (𝐹, 𝐺)
is a column and we have 𝐷(𝐹, 𝐺) = (𝐷𝐹, 𝐷𝐺)𝑡. Then 𝐴 ∩ 𝐵 ∩ Σ ∩ Σ′ = (𝐹, 𝐺)−1(0) and we have a
representation of an intersection. Remark that (𝐹, 𝐺) is not necessarily a submersion. Let’s take in the
differential of (𝐹, 𝐺) indices (𝑖𝑛)𝑛∈J1,𝑀K of a maximally linear independent set of rows. Its cardinal is at
least 𝑛 because the rows in the differential of 𝐹 are independent, and it is strictly bigger, because otherwise
the tangent spaces at 𝑥 would coincide.

𝐷�
𝐹

𝐺
� =

⎛
⎜

⎝

⋮

𝐷𝐹𝑖
⋮

𝐷𝐺𝑘
⋮

⎞
⎟

⎠

where 𝐹𝑖 = 𝜋𝑖 ∘ 𝐹 and 𝐺𝑘 = 𝜋𝑘 ∘ 𝐺 are coordinate functions. Then, if we retain only those rows in (𝐹, 𝐺)
we will have a submersion H

𝐻 = ��
𝐹

𝐺
�

𝑗

�

𝑗∈(𝑖𝑛)

Thus, we have 𝐻 ∶ ℝ𝑛+𝑚 → ℝ𝑀, where 𝑚 < 𝑀 < 𝑛 + 𝑚 is the rank of 𝐻 at 𝑥. Hence, we obtain
𝑛+𝑚−𝑀 < 𝑛 dimensional surface 𝐻−1(0)∩𝐴∩𝐵 = Σ″ and Σ∩Σ′ ∩𝐴∩𝐵 ⊂ Σ″, because (𝐹, 𝐺)(𝑧) =
0 ⇒ 𝐻(𝑧) = 0. Thus Σ ∩ Σ′ ∩ 𝐴 ∩ 𝐵 has nullℋ𝑛 measure.

Finally, we have showed that the target set 𝑆 = {𝑥 ∈ Σ ∩ Σ′ | 𝑇𝑥Σ ≠ 𝑇𝑥Σ
′} around each point has an open

ball where its measure is null. Since from every open cover we can extract a countable subcover (because
our space is separable), we have proven that the entire set isℋ𝑛-null.

Lemma: Let 𝑓, 𝑔 ∈ 𝒞1(ℝ𝑛, ℝ), then ∇𝑓 = ∇𝑔 ℒ𝑛-a.e. on {𝑓 = 𝑔}.

For dimensions 𝑛 > 1 it’s sufficient to see that points where gradients are not equal form a 1 dimensional
surface and its Lebesgue’s measure is 0.
For a 1 dimensional case we set ℎ = 𝑓 − 𝑔 ∈ 𝒞1. Then we consider a closed set 𝑆 = {ℎ = 0}. Let 𝑥 ∈ 𝑆

be such that ∇ℎ(𝑥) ≠ 0, then by mean value theorem we find a neighborhood of x that contains only one
such 𝑥 (∇ℎ(𝑥) = 0). Thus the set of such 𝑥 is countable and its measure is 0.

Definition: Let 𝐸 be a Borel set. A map 𝑇 from 𝐸 to the Grassmannian manifold 𝐺(𝑛, 𝑑) that sends 𝑥 to
𝑇(𝑥) is a weak tangent bundle for the set E if and only if for every Σ 𝑑-dimensional surface of class 𝒞1 it
turns out that 𝑇𝑥Σ = 𝑇(𝑥) forℋ𝑑-almost every 𝑥 ∈ Σ ∩ 𝐸.

5 Countably n-rectifiable sets
Let𝑀 ⊆ 𝑋 be a subset of a metric space. Then𝑀 is called 𝑛-rectifiable if

𝑀 ⊆ 𝑀0 ∪�𝑓𝑖[ℝ
𝑛]

whereℋ𝑛(𝑀0) = 0 and 𝑓𝑖 are Lipschitz functions.

Remarque: Hausdorff dimension of 𝑑-rectifiable set is less or equal to 𝑑

This is true due to the fact that Lipschitz maps does not increase the dimension.

Criteria of Rectifiability: Let 𝑋 = ℝ𝑛+𝑚, and let𝑀 ⊆ 𝑋 be a Borel set.
The following assertions are equivalent:

1. The set𝑀 is 𝑛-rectifiable

2. There exist open sets 𝐴𝑖,𝑀0 ℋ
𝑛-null set and differentiable functions 𝑓𝑖 ∶ 𝐴𝑖 → 𝑋 such that

𝑀 ⊆ 𝑀0 ∪�𝑓𝑖[𝐴𝑖]
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3. There exist open sets 𝐴𝑖,𝑀0 ℋ
𝑛-null set and diffeomorphisms 𝑓𝑖 ∶ 𝐴𝑖 → 𝑋 such that

𝑀 ⊆ 𝑀0 ∪�𝑓𝑖[𝐴𝑖]

4. There exist 𝑛-dimensional surfaces Σ𝑖 ⊆ 𝑋 and𝑀0 ℋ
𝑛-null set such that

𝑀 ⊆ 𝑀0 ∪�Σ𝑖

Proposition: A 𝑑-rectifiable Borel set 𝐸 ⊆ ℝ𝑛 admits a unique up toℋ𝑑-null sets a weak tangent bundle.

Proof: We have 𝐸 ⊆ 𝑀0 ∪ ⋃Σ𝑖, hence we can define a bundle as following. For 𝑥 ∈ 𝑀0 we can take
what ever we want, for 𝑥 ∈ Σ1 we take 𝑇𝑥Σ1 and for 𝑥 ∈ Σ𝑠 ∖ ⋃

𝑠−1
𝑖=1 Σ𝑖 we take 𝑇𝑥Σ𝑠. This is a necessary

condition as planes should be a.e. equal to the planes tangent to those surfaces. The condition for a weak
tangent bundle is satisfied due to the previous preposition.

Theorem: If 𝐸 is a Borel, 𝑛-rectifiable,ℋ𝑛- locally finite set, then the weak tangent bundle 𝑇(𝑥) is the limit
plane to 𝐸 at 𝑥 forℋ𝑑-almost every 𝑥 ∈ 𝐸.

Proof: Wewill show that 𝑇𝑥Σ𝑖 is a limit plane to 𝐸 at 𝑥 forℋ𝑛-almost every 𝑥 ∈ 𝐸∩Σ𝑖. Associated with
this plane, we consider four measures: 𝜇𝑥,𝑟 ∶= ℋ𝑛 ⌞𝐸𝑥,𝑟, 𝜈𝑥,𝑟 ∶= ℋ𝑛 ⌞Σ𝑖,𝑥,𝑟, 𝜂𝑥,𝑟 ∶= ℋ𝑛 ⌞(Σ𝑖 ∖𝐸)𝑥,𝑟 and
𝜎𝑥,𝑟 ∶= ℋ𝑛 ⌞(𝐸 ∖ Σ𝑖)𝑥,𝑟. We then observe that 𝜇𝑥,𝑟 = 𝜈𝑥,𝑟 − 𝜂𝑥,𝑟 + 𝜎𝑥,𝑟.

At 𝑥, the surface Σ𝑖 is locally represented by an immersion 𝜙 ∶ 𝑇𝑥Σ𝑖 ∩ 𝑈 → Σ𝑖 ∩ 𝑉. We can assume
that 𝐷𝜙(0) = Id and that 𝐵(0, 1) ⊆ 𝑈, 𝑉. Let 𝑓 ∈ 𝒞𝑐, without loss of generality, we can assume that
spt(𝑓) ⊆ 𝐵(0, 1). Thus, 𝜓𝑥,𝑟 ∘ 𝜙(ℎ) = (ℎ + 𝑜(ℎ))/𝑟. If we only take ℎ < 𝑟, we find that 𝜙𝑥,𝑟 =

𝜓𝑥,𝑟 ∘ 𝜙|𝐵(0,𝑟) ∘ 𝜓0,1/𝑟 ∶ 𝐵(0, 1) → Σ𝑖,𝑥,𝑟 is given by ℎ ↦ (𝑟ℎ + |𝑟ℎ|𝜖(𝑟ℎ))/𝑟 = ℎ + |ℎ|𝜖(𝑟ℎ). Moreover,
the differential 𝐷𝜙𝑥,𝑟 converges to the identity:

𝐷𝜙𝑥,𝑟 = 𝑟𝐷𝜙|𝐵(0,𝑟)1/𝑟 = 𝐷𝜙|𝐵(0,𝑟) → Id

Consequently, the integral converges:

�𝑓𝑑𝜈𝑥,𝑟 = �
Σ𝑖∩𝐵(𝑥,𝑟)

𝑓(𝑠)𝑑ℋ𝑛(𝑠) = �
𝐵(0,1)

𝑓(𝜙𝑥,𝑟(𝑠))𝐽𝜙𝑥,𝑟(𝑠)𝑑𝑠 →𝑟→0 �
𝑇𝑥Σ𝑖

𝑓(𝑠)𝑑𝑠

Thus, we have the weak convergence of measures:

𝜈𝑥,𝑟 ⇀ ℋ𝑛 ⌞𝑇𝑥Σ𝑖

Next, we observe that 𝜆𝑟 ⇀ 0 ⇔ 𝜆𝑟(𝐵𝑅) → 0 for all radii 𝑅.

For the measures 𝜂𝑥,𝑟 and 𝜎𝑥,𝑟, it suffices to consider the case 𝐵(0, 1), because we are blowing up figures
anyway. For 𝜂𝑥,𝑟, we have:

𝜂𝑥,𝑟(𝐵(0, 1)) = ℋ𝑛(𝐵(0, 1) ∩ (Σ𝑖,𝑥,𝑟 ∖ 𝐸𝑥,𝑟)) =
1

𝑟𝑛
ℋ𝑛(𝐵(𝑥, 𝑟) ∩ (Σ𝑖 ∖ 𝐸)) → 0

This holds for almost all 𝑥, by the first property of the upper Hausdorffmeasure density, because 𝑥 ∉ Σ𝑖∖𝐸.

Finally, for 𝜎𝑥,𝑟, we observe that:

𝜇𝑥,𝑟(𝐵(0, 1)) = 𝜈𝑥,𝑟(𝐵(0, 1)) − 𝜂𝑥,𝑟(𝐵(0, 1)) + 𝜎𝑥,𝑟(𝐵(0, 1))

By passing to the limit, we obtain:

lim
𝑟→0

𝜇𝑥,𝑟(𝐵(0, 1)) = 𝜔𝑛 − 0 + lim
𝑟→0

𝜎𝑥,𝑟(𝐵(0, 1))

And since, by the second density property, lim sup
𝑟→0

𝜇𝑥,𝑟(𝐵(0, 1)) ≤ 𝜔𝑛 almost everywhere, we find
that lim𝑟→0 𝜎𝑥,𝑟(𝐵(0, 1)) = 0.
Thus, we have the weak convergence:

𝜇𝑥,𝑟 = 𝜈𝑥,𝑟 − 𝜂𝑥,𝑟 + 𝜎𝑥,𝑟 ⇀ ℋ𝑛 ⌞𝑇(𝑥)

for almost all 𝑥.

Proposition: Let 𝑀 ⊆ 𝑋 be a Borel set with finite 𝑛-Hausdorff measure. Then 𝑀 = 𝑀𝑟 ∪ 𝑀𝑢, where 𝑀𝑟 is
rectifiable and𝑀𝑢 is unrectifiable.

Theorem: Let 𝐸 ⊆ ℝ𝑛+𝑚 be a Borel set. If 𝐸 is a 𝑑-rectifiableℋ𝑑-locally finite set, then the weak tangent
bundle 𝑇(𝑥) is the approximate tangent plane to 𝐸 at 𝑥 forℋ𝑑-almost every 𝑥 ∈ 𝐸.

15



6 Differential calculus results
In this section, we re-examine 𝒞1 𝑛-dimensional submanifold𝑀 of ℝ𝑛+𝑚 to observe several properties of
standard constructions. This will then motivate the definition for analogous constructions for measures.

We can define a gradient ∇ through its representation

⟨∇𝑓, ⋅⟩ = 𝐷𝑓

Then we define a gradient ∇𝑀 associated with𝑀 by

∇𝑀𝑓(𝑥) ∶= 𝜋𝑇𝑥𝑀(∇𝑓(𝑥))

and if we have an orthogonal basis (w𝑖) of 𝑇𝑥𝑀

∇𝑀𝑓(𝑥) = (w1, … ,w𝑛) �

𝐷𝑥𝑓(w1)

⋮

𝐷𝑥𝑓(w1)

� = (w𝑖)(𝐷𝑥𝑓(w𝑖))

for an orthogonal basis (w𝑖) of 𝑇𝑀. If we take that for a definitions, then using matrix notation, it’s
also easy to show that this notion is independent of the chosen basis, which is already evident from
coordinate-free definition. If we have another orthogonal basis (w𝑖) = (u𝑖)𝑃, where 𝑃 is orthogonal,
then (w𝑖) = 𝑃𝑡(u𝑖) and thus (w𝑖)(𝐷𝑓(w𝑖)) = (u𝑖)𝑃(𝐷𝑓𝑃𝑡(u𝑖)) = (u𝑖)𝑃𝑃𝑡𝐷𝑓(u𝑖) = (𝑢𝑖)𝐷𝑓(𝑢

𝑖)

If for two vectors 𝑎, 𝑏 by 𝑎𝑏 we right their scalar product, then we can introduce divergence of 𝑋 ∶ 𝑀 →

ℝ𝑛+𝑚 on𝑀 by choosing a basis (w1, … ,w𝑛) of 𝑇𝑥𝑀 and setting

div𝑀𝑋(𝑥) = (w𝑖)(∇
𝑀𝑋𝑖(𝑥))

where 𝑋 = (𝑋𝑖)𝑖∈J1,𝑛+𝑚K are coordinates in orthogonal extension of (𝑤𝑖). We will need a following
theorem

Theorem: Let 𝑀 ⊂ ℝ𝑛+𝑚 be a 𝑛-dimensional 𝒞1 bounded submanifold-with-boundary. Then we have a
following result

�
𝑀

div𝑀𝑋𝑑ℋ𝑛 = �
𝜕𝑀

𝑋𝜈𝑑ℋ𝑛−1 for every 𝑋 ∈ 𝒞1(𝑀, 𝑇𝑀)

where 𝜈 is an orthogonal unitary vector to the boundary pointing outwards.
This theorem, proposed in [Simon, 1983], is crucial for further development of geometric measure theory
notions.

Wewill now present a proof for the 𝒞2 case, as this regularity allows us to utilize coordinates and integrate
by parts. For this section, we assume that 𝑋(𝑥) ∈ 𝑇𝑥𝑀. Let us the consider an orthonormal basis (w𝑖)

of 𝑇𝑥𝑀 which is extended by vectors (w′
𝑖) to an orthonormal basis of ℝ𝑚+𝑛. Furthermore, consider

curvilinear coordinates (𝑐𝑖) ∶ 𝑀∩𝑈 → ℝ𝑛∩𝑉 (𝒞2-diffeomorphism), to which we can associate a standard
basis

c𝑖 = w𝑗

𝜕𝑤𝑗

𝜕𝑐𝑖
+w′

𝑗

𝜕𝑤′𝑗

𝜕𝑐𝑖

which consists of tangents to the coordinate curves. Thus, (c𝑖) form a basis, whose vectors vary with
position and are associatedwith coordinates. In coordinate-free language this basis is an image of standard
basis e𝑖 of ℝ𝑛 by (𝐷𝑥(𝑐𝑖))−1. By (𝑤𝑖) here, we denote the standard coordinates associated with basis
(w𝑖). In the following discussion all expressions are evaluated at a point x; moving to a different point
necessitates selecting a new tangent basis. Given that (c𝑖) varies smoothly (C1), we can differentiate them
and naturally define the following coefficients, called Christoffel symbol:

c𝑘Γ𝑘𝑗𝑖 = 𝜋𝑇𝑥𝑀(
𝜕c𝑖
𝜕𝑐𝑗

)

16



Indeed, we observe symmetry in lower indices since

𝜋𝑇𝑥𝑀(
𝜕c𝑖
𝜕𝑐𝑗

) =
𝜕

𝜕𝑐𝑗
(w𝑙

𝜕𝑤𝑙

𝜕𝑐𝑖
) = w𝑙

𝜕2𝑤𝑙

𝜕𝑐𝑗𝜕𝑐𝑖
= w𝑙

𝜕2𝑤𝑙

𝜕𝑐𝑖𝜕𝑐𝑗
= Γ𝑘𝑖𝑗

Also in a new basis (c𝑘) we have scalar product, which is usually denoted by

⟨c𝑙, c𝑘⟩ = 𝑔𝑙𝑘 =
𝜕𝑤𝑖

𝜕𝑐𝑙
𝜕𝑤𝑖

𝜕𝑐𝑘

which is also symmetric. If we then rewrite the equality for Γ, we get

w𝑗

𝜕2𝑤𝑗

𝜕𝑐𝑗𝜕𝑐𝑖
= c𝑘Γ𝑘𝑗𝑖 = w𝑗

𝜕𝑤𝑗

𝜕𝑐𝑘
Γ𝑘𝑗𝑖

The metric defines an isomorphism 𝜙 from our space 𝑇𝑥𝑀 to its dual space 𝑇𝑥𝑀∗ by

𝜙(c𝑖) ∶= ⟨c𝑖, ⋅⟩ = 𝑔𝑙𝑚c∗𝑙⊗ c∗𝑚c𝑖 = 𝑔𝑙𝑖c∗𝑙

The components 𝑔𝑖𝑗 form a matrix representation of 𝜙 in local coordinates. Consequently, the matrix of
𝜙−1 is (𝑔𝑖𝑗)−1. Associated with this ismorphism, we can then construct a dual product by

⟨⋅, ⋅⟩∗ ∶ = 𝜙−1(⟨⋅, ⋅⟩) = 𝜙−1(𝑔𝑙𝑚c∗𝑙⊗ c∗𝑚) = 𝑔𝑙𝑚𝜙
−1(c∗𝑙) ⊗ 𝜙−1(c∗𝑚)

= 𝑔𝑙𝑚(𝑔
−1
𝑙𝑟 c𝑟) ⊗ (𝑔−1𝑚𝑘c𝑘) = 𝛿𝑟𝑚c𝑟⊗𝑔−1𝑚𝑘c𝑘 = 𝑔−1𝑟𝑘 c𝑟⊗ c𝑘

Usually we write ⟨⋅, ⋅⟩∗ = 𝑔𝑚𝑘w𝑚⊗w𝑘. Let 𝑋′ denote 𝑋 rewritten in new coordinates, i.e.

X(𝑤1, ..., 𝑤𝑛) = X′(...𝑐𝑖(𝑤1, ..., 𝑤𝑛)...)

Now we take a partial derivative of both sides. In this step, it is crucial that 𝑋 has values tangent space,
as this allows to write 𝑋 in the curvilinear basis

𝜕

𝜕𝑤𝑗
w𝑖𝑋

𝑖 = 𝜋𝑇𝑥𝑀(
𝜕

𝜕𝑤𝑗
c𝑝𝑋′𝑝) = 𝜋𝑇𝑥𝑀(

𝜕

𝜕𝑐𝑘
c𝑝𝑋′𝑝)

𝜕𝑐𝑘

𝜕𝑤𝑗
) = (c𝑝

𝜕𝑋′𝑝

𝜕𝑐𝑘
+ 𝜋𝑇𝑥𝑀(

𝜕c𝑝
𝜕𝑐𝑘

)𝑋′𝑝)
𝜕𝑐𝑘

𝜕𝑤𝑗

= (c𝑝
𝜕𝑋′𝑝

𝜕𝑐𝑘
+ c𝑙Γ𝑙𝑝𝑘𝑋′𝑝)

𝜕𝑐𝑘

𝜕𝑤𝑗
= (c𝑝

𝜕𝑋′𝑝

𝜕𝑐𝑘
+ c𝑝Γ

𝑝
𝑙𝑘𝑋

′𝑙)
𝜕𝑐𝑘

𝜕𝑤𝑗
= c𝑝(

𝜕𝑋′𝑝

𝜕𝑐𝑘
+ Γ

𝑝
𝑙𝑘𝑋

′𝑙)
𝜕𝑐𝑘

𝜕𝑤𝑗

Then we can calculate divergence formula at 𝑥 by

divX = wj ⋅
𝜕

𝜕𝑤𝑗
w𝑖𝑋

𝑖 = w𝑗 ⋅ c𝑝(
𝜕𝑋′𝑝

𝜕𝑐𝑘
+ Γ

𝑝
𝑙,𝑘𝑋

′𝑙)
𝜕𝑐𝑘

𝜕𝑤𝑗
= w𝑗 ⋅w𝑖

𝜕𝑤𝑖

𝜕𝑐𝑝
(
𝜕𝑋′𝑝

𝜕𝑐𝑘
+ Γ

𝑝
𝑙,𝑘𝑋

′𝑙)
𝜕𝑐𝑘

𝜕𝑤𝑗

=
𝜕𝑐𝑘

𝜕𝑤𝑗

𝜕𝑤𝑗

𝜕𝑐𝑝
(
𝜕𝑋′𝑝

𝜕𝑐𝑘
+ Γ

𝑝
𝑙,𝑘𝑋

′𝑙) =
𝜕𝑐𝑘

𝜕𝑐𝑝
(
𝜕𝑋′𝑝

𝜕𝑐𝑘
+ Γ

𝑝
𝑙,𝑘𝑋

′𝑙) =
𝜕𝑋′𝑝

𝜕𝑐𝑝
+ Γ

𝑝
𝑙,𝑝𝑋

′𝑙

For the next part we are differentiating 𝑔𝑙𝑚

𝜕

𝜕𝑐𝑘
𝑔𝑙𝑚 = (

𝜕

𝜕𝑐𝑘
𝜕𝑤𝑖

𝜕𝑐𝑙
)
𝜕𝑤𝑖

𝜕𝑐𝑚
+
𝜕𝑤𝑖

𝜕𝑐𝑙
(
𝜕

𝜕𝑐𝑘
𝜕𝑤𝑖

𝜕𝑐𝑚
) =

𝜕𝑤𝑖

𝜕𝑐𝑟
Γ𝑟𝑘𝑙

𝜕𝑤𝑖

𝜕𝑐𝑚
+
𝜕𝑤𝑖

𝜕𝑐𝑙
𝜕𝑤𝑖

𝜕𝑐𝑟
Γ𝑟𝑘𝑚 = 𝑔𝑚𝑟Γ

𝑟
𝑘𝑙 + 𝑔𝑙𝑟Γ

𝑟
𝑘𝑚

Now lets consider a following quantity

𝜕𝑔𝑘𝑙

𝜕𝑐𝑚
+
𝜕𝑔𝑘𝑚

𝜕𝑐𝑙
−
𝜕𝑔𝑚𝑙

𝜕𝑐𝑘
= 𝑔𝑘𝑟Γ

𝑟
𝑚𝑙 + 𝑔𝑙𝑟Γ

𝑟
𝑚𝑘 + 𝑔𝑘𝑟Γ

𝑟
𝑙𝑚 + 𝑔𝑚𝑟Γ

𝑟
𝑙𝑘 − 𝑔𝑚𝑟Γ

𝑟
𝑘𝑙 − 𝑔𝑙𝑟Γ

𝑟
𝑘𝑚 = 2𝑔𝑘𝑟Γ

𝑟
𝑚𝑙

And if we multiply both sides by 1/2𝑔𝑎𝑘 we get

𝑔𝑎𝑘𝑔𝑘𝑟Γ
𝑟
𝑚𝑙 = 𝛿𝑎𝑟 Γ

𝑟
𝑚𝑙 = Γ𝑎𝑚𝑙 =

1

2
𝑔𝑎𝑘(

𝜕𝑔𝑘𝑙

𝜕𝑐𝑚
+
𝜕𝑔𝑘𝑚

𝜕𝑐𝑙
−
𝜕𝑔𝑚𝑙

𝜕𝑐𝑘
)

Now lets take Cristoffel symbol from divergence formula and develop it

Γ
𝑝
𝑝𝑙 =

1

2
𝑔𝑝𝑘(

𝜕𝑔𝑘𝑙

𝜕𝑐𝑝
+
𝜕𝑔𝑘𝑝

𝜕𝑐𝑙
−
𝜕𝑔𝑝𝑙

𝜕𝑐𝑘
) =

1

2
𝑔𝑝𝑘

𝜕𝑔𝑘𝑝

𝜕𝑐𝑙

Now knowing that 𝜕𝑘(det𝐴) = det(𝐴)tr(𝐴−1𝜕𝑘𝐴) and writing 𝑔 = det(𝑔𝑖𝑗) we have

𝑔𝑝𝑘𝜕𝑙𝑔𝑘𝑝 = tr((𝑔𝑘𝑝)−1𝜕𝑙(𝑔𝑘𝑝)) =
𝜕𝑙𝑔

𝑔
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And since 𝜕𝑙√𝑔 =
1

2√𝑔
𝜕𝑙𝑔 we have

Γ
𝑝
𝑝𝑙 =

1

√𝑔
𝜕𝑙√𝑔

and finally we can rewrite divergence formula as

divX = 𝜕𝑝𝑋
′𝑝 +

1

√𝑔
𝜕𝑙√𝑔𝑋

′𝑙 =
1

√𝑔
√𝑔𝜕𝑝𝑋

′𝑝 +
1

√𝑔
𝜕𝑝√𝑔𝑋

′𝑝 =
1

√𝑔
𝜕𝑝(√𝑔𝑋

′𝑝)

Proof: Since 𝑀 is compact we can find a finite open cover 𝑈𝑖 of 𝑀 such that at every 𝑈𝑖 we find a
local coordinate system. We can associated a 𝒞∞ partition of unit (𝜓𝑖) on 𝑀 associated to 𝑈𝑖 such that
𝜓𝑖 ∈ 𝒞

∞
𝑐 (𝑈𝑖) and ∑𝜓𝑖 = 1𝑀. We shall write 𝑂𝑖 = 𝑈𝑖∩𝑀. And by linearity of equation we want to prove,

we can prove it just for 𝜓𝑖𝑋, or without loss of generality we will write just 𝑋. Let coordinates take values
in 𝑉𝑖
If patch 𝑈𝑖 is disjoint from 𝜕𝑀, then 𝑉𝑖 are open and 𝑋 is of a compact support inside 𝑉𝑖 and we can
integrate by parts

0 = �
𝑉𝑖

𝜕𝑗1𝑋
𝑗
√𝑔𝑑𝑐 = −�

𝑉𝑖

1𝜕𝑗(𝑋
𝑗√𝑐) = −�

𝑉𝑖

1

√𝑔
𝜕𝑗(𝑋

𝑗
√𝑔)√𝑔𝑑𝑐 = −�

𝑈𝑖

div𝑀𝑋𝑑ℋ𝑛

Thus inner patches have no contribution. Lets take a patch 𝑈𝑖 that intersects boundary. By definition of
submanifold-with-boundary we can introduce coordinates 𝑐𝑖 such that {𝑐𝑛 = 0} = 𝜕𝑀 ∩ 𝑈𝑖 and 𝑐𝑛 has
values only in (−∞, 0]. This time 𝑋 does not have a compact support inside 𝑉𝑖 and thus in integration by
parts we have the 2 terms

0 = �
𝑉𝑖

𝜕𝑗1𝑋
𝑗
√𝑔𝑑𝑐 = −�

𝑈𝑖

div𝑀𝑋𝑑ℋ𝑛 +�
ℝ𝑛−1

𝑋𝑛(𝑐′, 0)�𝑔(𝑐′, 0)𝑑𝑐′

And as we can chose such coordinates, that 𝑋𝑛(𝑐′, 0) = 𝜈 ⋅ 𝑋(𝑐′, 0) we have

�
𝑈𝑖

div𝑀𝑋𝑑ℋ𝑛 = �
𝜕𝑀

𝜈 ⋅ 𝑋𝑑ℋ𝑛−1

Definition: Let v𝑖 be an orthonormal basis of 𝑇𝑦𝑀 which is 𝐶1 function of 𝑦. Then we can define the second
fundamental form 𝐵𝑦 ∶ 𝑇𝑦𝑀 × 𝑇𝑦𝑀 → (𝑇𝑦𝑀) by setting 𝐵𝑦(𝑡, 𝑛) ∶= −(𝑛 ⋅ 𝐷𝑦(v𝑖)(𝑡))v𝑖

Lets verify that this definition is independent from the choice of v𝑖, thus letw𝑖 be a different orthonormal
basis. Then they are related with an orthogonal matrix v𝑖 = 𝑂

𝑗
𝑖 w𝑗. And if we compute coordinate change

we get

(𝑛 ⋅ 𝐷𝑦(v𝑖)(𝑡))v𝑖 = (𝑛 ⋅ 𝐷𝑦(𝑂
𝑗
𝑖 w𝑗)(𝑡))O𝑘

𝑖w𝑘 = (𝑛 ⋅ 𝐷𝑦(𝑂
𝑗
𝑖 )(𝑡)w𝑗 + 𝑂

𝑗
𝑖 𝑛 ⋅ 𝐷𝑦(w𝑗)(𝑡))O𝑘

𝑖w𝑘

= (𝑂
𝑗
𝑖 𝑂

𝑘
𝑖 (𝑛 ⋅ 𝐷𝑦(w𝑗)(𝑡))w𝑘) = (𝑛 ⋅ 𝐷𝑦(w𝑘)(𝑡))w𝑘

Let 𝛾 ∶ 𝐼 → 𝑀 be a 𝒞2 curve. It’s tangent is 𝑡 = 𝛾′ and its curvature is 𝜅 = 𝛾″ and we suppose |𝑡| = 1.
Now lets differentiate a following expression

0 =
𝑑

𝑑𝑠
(𝑡 ⋅ v𝑖) =

𝑑

𝑑𝑠
𝑡 ⋅ v𝑖 + 𝑡 ⋅

𝑑

𝑑𝑠
v𝑖 = 𝜅 ⋅ v𝑖 + 𝑡 ⋅ 𝐷(𝑣𝑖)(𝑡)

Thus we get coordinates for normal curvature 𝜅𝑁 = −(𝑡 ⋅ 𝐷(v𝑖)(𝑡))v𝑖 = 𝐵(𝑡, 𝑡)

Similarly, if 𝜙 ∶ 𝑈 ⊂ ℝ2 → 𝑀, then

0 =
𝜕

𝜕𝑥2
(
𝜕

𝜕𝑥1
𝜙 ⋅𝕧𝑖) =

𝜕2

𝜕𝑥2𝜕𝑥1
𝜙 ⋅v𝑖)+

𝜕

𝜕𝑥1
𝜙 ⋅

𝜕

𝜕𝑥2
v𝑖(𝜙(𝑥1, 𝑥2)) =

𝜕2

𝜕𝑥2𝜕𝑥1
𝜙 ⋅v𝑖)+

𝜕

𝜕𝑥1
𝜙 ⋅𝐷v𝑖(

𝜕𝜙

𝜕𝑥2
)

And thus 𝐵( 𝜕𝜙
𝜕𝑥1

,
𝜕𝜙

𝜕𝑥2
) = (

𝜕2𝜙

𝜕𝑥2𝜕𝑥1
)⊥ and we remark that 𝐵 is symmetric.

Definition: We define the mean curvature vector H𝑦 of𝑀 at 𝑦 to be trace 𝐵𝑦; thus

H𝑦 = 𝐵𝑦(t𝑖, t𝑖)

where (t𝑖) is an orthonormal basis of 𝑇𝑦𝑀.
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If we rewrite this definition and recall the definition of divergence, we obtain

H𝑦 = −(𝑡𝑗 ⋅ 𝐷t𝑗(v𝑖)(v𝑖))v𝑖 = −div𝑀(v𝑖)v𝑖

Let 𝑋 be a vector field, then 𝑋⊥ = (v𝑖 ⋅ 𝑋)v𝑖 and if we take divergence on𝑀, we get

div𝑀𝑋⊥ = (v𝑖 ⋅ 𝑋)div𝑀v𝑖

because other components are in orthogonal space. Thus we conclude

div𝑀𝑋⊥ = −H ⋅ 𝑋

and recalling the integration theorem, we get

�
𝑀

div𝑀𝑋𝑑ℋ𝑛 = �
𝜕𝑀

𝜈 ⋅ 𝑋𝑑ℋ𝑛−1 −�
𝑀

H ⋅ 𝑋𝑑ℋ𝑛

7 Variations
Let’s suppose that we have Σ an 𝑛-dimensional 𝒞1 submanifold of ℝ𝑛+𝑚 and an open set 𝑈. Let’s fix a 𝒞2
map 𝜙 ∶ (−1, 1) × 𝑈 → 𝑈 and a closed subset 𝐾 ⊂ 𝑈 such that:

1. 𝜙𝑡 ∶= 𝜙(𝑡, ⋅) is a 𝒞1-diffeomorphism for every 𝑡

2. 𝜙0 = id

3. 𝜙𝑡|𝐾𝑐 = id for every 𝑡

Thus 𝜙 is a controlled geometrical variation of 𝐾. Let 𝑉 ∶= 𝜕𝑡𝜙(0, ⋅) be a velocity vector field and
𝐴 ∶= 𝜕2𝑡 𝜙(0, ⋅) an acceleration field, then

𝜙(𝑡, ⋅) = id+ 𝑡𝑉 +
𝑡2

2
𝐴 + 𝑜(𝑡2)

Lets note𝑀 ∶= 𝜙(⋅, Σ ∩ 𝐾) and 𝜓𝑡 ∶= 𝜙𝑡|Σ

Definition: By first and second variations of families𝑀 we mean following derivativesℋ𝑛(𝑀)′(0) and
ℋ𝑛(𝑀)″(0).

If we recall the area formula then we can compute variations as a function of 𝜙

ℋ𝑛(𝑀(𝑡)) = �
𝑀(0)

(J𝜓𝑡)𝑑ℋ𝑛

Thus we construct a map

𝐷𝑥𝜓𝑡 ∶ 𝑇𝑥Σ → ℝ𝑛+𝑚 = id+ 𝑡𝐷𝑥𝑉 +
𝑡2

2
𝐷𝑥𝐴 + 𝑜(𝑡2)

Lets chose an orthogonal basis 𝜏 for 𝑇𝑥𝑀 and an orthogonal basis 𝑒 for ℝ𝑛+𝑚. Then in those basis we can
write matrix of 𝐷𝑥𝜓𝑡.

[𝐷𝑥𝜓𝑡]
𝑙
𝑖 = 𝜏𝑙𝑖 + 𝑡𝐷𝑥𝑉

𝑙(𝜏𝑖) +
𝑡2

2
𝐷𝑥𝐴

𝑙(𝜏𝑖) + 𝑜(𝑡2)

To calculate J𝜓𝑡 we need to know (𝐷𝑥𝜓𝑡)
∗ ∘ (𝐷𝑥𝜓𝑡)

[(𝐷𝑥𝜓𝑡)
∗ ∘ (𝐷𝑥𝜓𝑡)]

𝑗
𝑖 =�

𝑙

[𝐷𝑥𝜓𝑡]
𝑙
𝑗[𝐷𝑥𝜓𝑡]

𝑙
𝑖 =�

𝑙

(𝜏𝑙𝑗 + 𝑡𝐷𝑥𝑉
𝑙(𝜏𝑗) +

𝑡2

2
𝐷𝑥𝐴

𝑙(𝜏𝑗) + 𝑜(𝑡2))

(𝜏𝑙𝑖 + 𝑡𝐷𝑥𝑉
𝑙(𝜏𝑖) +

𝑡2

2
𝐷𝑥𝐴

𝑙(𝜏𝑖) + 𝑜(𝑡2))

= 𝜏𝑗 ⋅ 𝜏𝑖 + 𝑡(𝜏𝑗 ⋅ 𝐷𝑥𝑉(𝜏𝑖) + 𝜏𝑖 ⋅ 𝐷𝑥𝑉(𝜏𝑗)) + 𝑡2(
1

2
(𝜏𝑗 ⋅ 𝐷𝑥𝐴(𝜏𝑖) + 𝜏𝑖 ⋅ 𝐷𝑥𝐴(𝜏𝑗)) + 𝐷𝑥𝑉(𝜏𝑖) ⋅ 𝐷𝑥𝑉(𝜏𝑗)) + 𝑜(𝑡2)

This can be abstracted as 𝐼 + 𝑡𝑆 + 𝑡2𝑇 and we want to calculate a development of determinant of it. We
have a Jacobi formula det(𝑁(𝑡))′ = det(𝑁(𝑡))tr(𝑁(𝑡)−1𝑁′(𝑡)) and it’s derivative

det(𝑁(𝑡))″ = det(𝑁(𝑡))′tr(𝑁(𝑡)−1𝑁′(𝑡)) + det(𝑁(𝑡))tr(−𝑁(𝑡)−1𝑁′(𝑡)𝑁(𝑡)−1𝑁′(𝑡) + 𝑁(𝑡)−1𝑁″(𝑡))
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and is we replace𝑁(𝑡) = 𝐼+𝑡𝑆+𝑡2𝑇, then det(𝐼+𝑡𝑆+𝑡2𝑇)′ = det(𝐼+𝑡𝑆+𝑡2𝑇)tr((𝐼+𝑡𝑆+𝑡2𝑇)−1(𝑆+
2𝑡𝑇)) and at zero we have a following equality det(𝑁(𝑡))′|𝑡=0 = tr(𝑆) and for a second derivative we
have

det(𝑁(𝑡))″|𝑡=0 = tr(𝑆)2 − tr(𝑆2) + 2tr(𝑇)

Thus we can write a Taylor Polynomial

det(𝐼 + 𝑡𝑆 + 𝑡2𝑇) = 1 + 𝑡tr(𝑆) +
𝑡2

2
(2tr(𝑇) − tr(𝑆2) + tr(𝑆)2) + 𝑜(𝑡2)

In our case we are calculating det((𝐷𝑥𝜓𝑡)∗ ∘ (𝐷𝑥𝜓𝑡)) = (J(𝜓|𝑡)(𝑥))2

tr(𝑆) =�

𝑖

(𝜏𝑖 ⋅ 𝐷𝑥𝑉(𝜏𝑖) + 𝜏𝑖 ⋅ 𝐷𝑥𝑉(𝜏𝑖)) = 2divΣ𝑉(𝑥)

tr(𝑇) = divΣ𝐴 +�

𝑖

|𝐷𝑉(𝜏𝑖)|
2

tr(𝑆2) = (𝜏𝑖 ⋅ 𝐷𝑥𝑉(𝜏𝑗) + 𝜏𝑗 ⋅ 𝐷𝑥𝑉(𝜏𝑖))(𝜏𝑖 ⋅ 𝐷𝑥𝑉(𝜏𝑗) + 𝜏𝑗 ⋅ 𝐷𝑥𝑉(𝜏𝑖)) = 2(𝜏𝑖 ⋅ 𝐷𝑥𝑉(𝜏𝑗)(𝜏𝑗 ⋅ 𝐷𝑥𝑉(𝜏𝑖))

And for Taylor Polynomial of a root we have

√1 + 𝑥 = 1 +
1

2
𝑥 −

1

8
𝑥2 + 𝑜(𝑥2)

And composed Taylor Polynomial will be

�1 + (𝑎𝑡 + 𝑏𝑡2) = 1 +
1

2
𝑎𝑡 +

𝑡2

2
(𝑏 −

1

4
𝑎2) + 𝑜(𝑡2)

In our case the value for 𝑎 is
𝑎 = 2divΣ𝑉(𝑥)

And thus we can express the first variation

det(𝑀(𝑡))′|𝑡=0 = divΣ𝑉(𝑥)

For 𝑏 the expression is a little longer

𝑏 = 2(divΣ𝑉(𝑥))2 + (divΣ𝐴 +�

𝑖

|𝐷𝑉(𝜏𝑖)|
2) − (𝜏𝑖 ⋅ 𝐷𝑥𝑉(𝜏𝑗)(𝜏𝑗 ⋅ 𝐷𝑥𝑉(𝜏𝑖))

And we have an expression for the second variation

det(𝑀(𝑡))″|𝑡=0 = (divΣ𝑉(𝑥))2 + (divΣ𝐴 +�

𝑖

|𝐷𝑉(𝜏𝑖)|
2) − (𝜏𝑖 ⋅ 𝐷𝑥𝑉(𝜏𝑗)(𝜏𝑗 ⋅ 𝐷𝑥𝑉(𝜏𝑖))

8 Varifold
An 𝑚-dimensional varifold 𝑉 is a Radon measure over ℝ𝑛 × 𝐺(𝑛,𝑚) endowed with a product topology.
We say ‖𝑉‖ is a measure in ℝ𝑛 that is reciprocal projection of a varifold 𝑉 by 𝜋−11 .

Proposition: For varifolds we consider weak-∗ topology. Then we have a convergence criteria that 𝑉𝑖 → 𝑉 if
and only if

�𝑓𝑑𝑉𝑖 → �𝑓𝑑𝑉

for every continuous function 𝑓 ∶ ℝ𝑛 × 𝐺(𝑚, 𝑛) → 𝑅 with a compact support.

Remark: Varifolds allow us separate the notion of a tangent plane from geometric properties (a similar
idea is actually used for normal maps in computer graphics). They allow us to consider possibly many
planes at the same point with different masses and also to change the mass of geometric figures.

Thus, if we have a surface 𝑀, we can consider varifolds of the kind ℋ𝑛⌞𝑀 ⊗ 𝑇, where 𝑇 is a Radon
measure on the Grassmannian. Or, if we want to be even more precise, we can have a tangent function
𝑇 that provides a tangent at a given point and a mass function 𝜃. Then, we consider a varifold of type
𝑓 → ∫𝑓(𝑥, 𝑇(𝑥))𝜃(𝑥)𝑑ℋ𝑛. And we are free to choose tangents.
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Sometimes, a choice for a tangent space can be made naturally. Then, for example, to an 𝑛-rectifiable set
𝐸, we can naturally associate a varifold 𝑣(𝐸, 𝜃) by introducing the following functional

⟨𝑉𝐸 | 𝑓⟩ ∶= �
𝐸

𝑓(𝑥, 𝑇(𝐸, 𝑥))𝜃(𝑥)𝑑ℋ𝑚, 𝑓 ∈ 𝒞𝑐(ℝ
𝑛, 𝐺(𝑚, 𝑛))

if 𝜃 = 1 we note such varifold as 𝑣(𝐸), if 𝜃 ∈ ℤ, we say that varifold is integral.

Definition: We say that a varifold 𝑉 has a tangent space 𝑇 with multiplicity 𝜃 ∈ (0,∞), using a similar
idea as for limit planes. That is to say, if

𝑉𝑥,𝑟 ⇀ 𝜃𝑣(𝑇)

Where 𝑉𝑥,𝑟 is a varifold passed through a dilation mapping at 𝑥 with renormalisation coefficient, i.e.

𝑉𝑥,𝑟(𝐴) ∶= 𝑟−𝑛𝑉({(𝑟𝑦 + 𝑥, 𝑆) | (𝑦, 𝑆) ∈ 𝐴})

Definition: By analogy to the variation of submanifolds, one can define first variation of varifolds as a
following functional

𝛿𝑉 ∶ 𝑋 ∈ 𝒞1𝑐 (ℝ
𝑛, ℝ𝑛) → �

ℝ𝑛×𝐺𝑑,𝑛

div𝑆𝑋𝑑𝑉(𝑥, 𝑠)

If it happens that first variation is continuous, which is true for rectifiable varifolds. We can decompose
first variation by Riesz’s representation theorem and Radon-Nykodim theorem into two parts, with respect
to mass measure as

𝛿𝑉 = −H𝑑‖𝑉‖ + 𝛿𝑉𝑠

Where 𝛿𝑉𝑠 is a singular part of the decomposition, which is just a restriction of the first variation on the
set where Radon-Nykodym derivative explodes. This part corresponds to the integration on the boundary
for manifolds. Here, H is a generalized mean curvature, and in the case when the varifold is actually a
rectifiable set, it is precisely its mean curvature because of the uniqueness of the decomposition.

8.1 Examples
Let’s consider an arc of radius 1 of center (0, 0) starting at (1, 0) and ending at (−1, 0) with a mass 𝜃 and
call it 𝐴 as a varifold, then

div𝐴𝑋 = 𝜕e𝛼(𝑋
𝛼e𝛼 + 𝑋𝑟e𝑟) ⋅ 𝑒𝑟 = 𝜕e𝛼𝑋

𝛼 + 𝑋𝑟

Then, the result for a first variation is

𝛿𝐴(𝑋) = �
𝐴

(𝜕e𝛼𝑋
𝛼 + 𝑋𝑟)𝜃𝑑ℋ1 = �

𝐴

𝜕e𝛼𝑋
𝛼𝜃𝑑ℋ1 +�

𝐴

𝑋𝑟𝑑ℋ1 = [𝑋𝛼𝜃]𝜋0 −�
𝐴

𝑋𝛼𝜕e𝛼𝜃𝑑ℋ
1 +�

𝐴

𝑋𝑟𝑑ℋ1

= [𝑋𝛼𝜃]𝜋0 −�
𝐴

𝑋 ⋅ (𝜕e𝛼𝜃e𝛼 − 𝜃e𝑟)𝑑ℋ1

Thus, a singular term is [𝑋𝛼𝜃]𝜋0 which corresponds to integration on the boundary with a correction for
a new mass 𝜃. Then, the curvature vector is H = 𝜕e𝛼𝜃e𝛼 − 𝜃e𝑟, which deviates from a standard one by
scaling in the orthogonal direction by mass 𝜃 and by a gradient of 𝜃 in the tangent direction.

Let’s consider a segment 𝑆 = [𝑎, 𝑏] of a horisontal line in ℝ2, and lets construct a varifold of 𝑆 which
tangent plane is orthogonal to 𝑆 at every point. Then,

𝛿𝑉(𝑋) = �
𝑆

div𝑆⊥𝑋𝑑ℋ1 = �
𝑆

(𝜕2𝑋) ⋅ 𝑒2𝑑ℋ
1 = �

𝑆

(𝜕2𝑋)𝑑ℋ
1 ⋅ 𝑒2 = 𝜕2�

𝑆

𝑋2𝑑ℋ1

And we get a perpendicular direction on the boundary. We can also remark that in this case the functional
𝛿𝑉 is no longer continuous for a supremum norm on the function space. We can have a sequence of
functions that uniformly converges to 0, but perpendicular derivative is positive and uniformly converges
to the infinity.
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