Feuille d'exercices nº 9

CALCUL DIFFÉRENTIEL

1 Derivées partielles

Exercice 1. Trouver la dérivée partielle de la fonction $f(x,y) = xy^2$ suivant le vecteur $\vec{v} = \vec{i} - 2\vec{j}$ au point A de coordonnées (2,1).

Exercice 2. Soit $\overrightarrow{G}: \mathbb{R}^3 \to \mathbb{R}^3$ l'application définie par $\overrightarrow{G}(x,y,z) = (x \sin y, y \sin x, z)$. Calculer $\operatorname{div}(\overrightarrow{G}), \overrightarrow{\operatorname{rot}}(\overrightarrow{G})$ et $\overrightarrow{\operatorname{grad}} \circ \operatorname{div}(\overrightarrow{G})$.

Exercice 3. Soit $\overrightarrow{F}: \mathbb{R}^2 \to \mathbb{R}^2$ l'application définie par $\overrightarrow{F} = r^2(x\overrightarrow{i} + y\overrightarrow{j})$ où $r = x^2 + y^2$.

- 1. Calculer $\frac{\partial r}{\partial x}$ et $\frac{\partial r}{\partial y}$.
- 2. Trouver $\overrightarrow{rot}\overrightarrow{F}$.

Exercice 4. Étudier la continuité, ainsi que l'existence et la continuité des dérivées partielles premières de la fonction suivante :

$$f(x,y) = \begin{cases} x^2, & |x| > y \\ y^2, & |x| \le y \end{cases}$$

2 Différentielle d'une fonction

Rappel. GRANDE IDÉE DU CALCUL DIFFÉRENTIEL :

$$\left(\begin{array}{c} accroissement \\ de \ la \ fonction \end{array}\right) = \left(\begin{array}{c} terme \ lin\'eaire \ par \ rapport \ \grave{a} \\ l'accroissement \ de \ la \ variable \end{array}\right) + \left(\begin{array}{c} _{petit \ terme} \\ _{correctif} \end{array}\right)$$

Soit $f: D \subset \mathbb{R}^p \to \mathbb{R}^q$, $A \in D$. La <u>différentielle</u> df(A) de f au point A est <u>une application linéaire</u> de \mathbb{R}^p dans \mathbb{R}^q telle que au voisinage de A on a :

$$f(A+h) - f(A) = (df(A))(h) + r(h)$$
, où $r(h) = o(||h||)$.

Ici, $h \in \mathbb{R}^p$, tel que A + h est au voisinage de A.

La différentielle d'une fonction est donnée par sa matrice jacobienne.

Exercice 5. Soient E, F deux espaces réels et $f: E \to F$ une fonction de classe C^1 . Dans les cas suivants trouver la dimension de la matrice jacobienne de f, puis à l'aide des entrées de la matrice jacobienne décrire la différentielle de f:

- 1. f est une fonction réelle d'une variable réelle $(E = F = \mathbb{R})$
- 2. f est une fonction vectorielle d'une variable réelle $(E = \mathbb{R}, F = \mathbb{R}^p)$
- 3. f est une fonction numerique (réelle) d'une variable vectorielle ($E = \mathbb{R}^n, F = \mathbb{R}$.) Quel est le lien avec le gradient de f dans ce cas là?
- 4. f est une fonction vectorielle d'une variable vectorielle $(E = \mathbb{R}^n, F = \mathbb{R}^p)$

Exercice 6. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$f(x,y) = \frac{x^2y - y^3}{x^2 + y^2}$$
 pour $(x,y) \neq (0,0)$ et $f(0,0) = 0$.

Calculer les dérivées partielles $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ en (0,0). L'application est-elle différentiable en (0,0)?

Exercice 7. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$f(x,y) = \frac{xy^2}{x^2 + y^2}$$
 pour $(x,y) \neq (0,0)$ et $f(0,0) = 0$.

Montrer que f admet des dérivées directionnelles dans toutes les directions en (0,0) mais n'y est pas différentiable.

Exercice 8. Soit une application $f: \mathbb{R}^2 \to \mathbb{R}$. On considère les assertions suivantes :

- A. L'application f est continue en (0,0).
- B. Les dérivées partielles $(\partial f/\partial x)(0,0)$ et $(\partial f/\partial y)(0,0)$ existent et sont continues.
- C. L'application f est différentiable en (0,0).
- 1) Rappeler les implications qu'il y a entre ces propriétés.
- 2) Montrer que chaque implication n'est pas une équivalence. On pourra utiliser les deux fonctions suivantes :

$$f(x,y) = \begin{cases} x^2 \sin\frac{1}{x} + y^2 \sin\frac{1}{y} & \text{si } xy \neq 0 \\ x^2 \sin\frac{1}{x} & \text{si } y = 0 \text{ et } x \neq 0 \\ y^2 \sin\frac{1}{y} & \text{si } x = 0 \text{ et } y \neq 0 \\ 0 & \text{en } (0,0) \end{cases}$$

et
$$g(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{en } (0,0) \end{cases}$$

Exercice 9. Soit $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = 2x + 5y + x^2(\sqrt{|y|} + \sqrt{|x|})$. Déterminer l'ensemble des points où f

2

- 1. est continue;
- 2. est différentiable;
- 3. est de classe C^1 :
- 4. admet des dérivées partielles;
- 5. admet des dérivées directionnelles.

3 Fonctions composées

Exercice 10. Justifier que les fonctions suivantes sont différentiables, et calculer leur matrices Jacobiennes.

$$f(x,y) = e^{xy}(x+y), \ g(x,y) = xy + yz + zx, \ h(x,y) = (y\sin x, \cos x)$$

Exercice 11. Justifier que les fonctions suivantes sont différentiables, et calculer leur différentielles.

$$f(x, y, z) = \left(\frac{x^2 - z^2}{2}, \sin x \sin y\right), \ g(x, y) = \left(xy, \frac{x^2}{2} + y, \ln(1 + x^2)\right)$$

Exercice 12. Soit f(x,y) une fonction définie sur $\mathbb{R}^2 \setminus \{(0,0)\}$ qui a des dérivées partielles suivantes :

$$\frac{\partial f}{\partial x} = \frac{1}{x}, \ \frac{\partial f}{\partial y} = \frac{1}{y}.$$

Soit $x = r \cos \theta$, $y = r \sin \theta$, $r \in \mathbb{R}_{>0}$, $\theta \in [0, 2\pi[$. Calculer $\frac{\partial f}{\partial \theta}$ et $\frac{\partial f}{\partial r}$ en tant que fonctions de r et θ .

Exercice 13.

- 1. Si $(x, y) \mapsto f(x, y)$ est différentiable de \mathbb{R}^2 dans \mathbb{R} , dériver les fonctions u(x) = f(x, -x) et g(x, y) = f(y, x).
- 2. Soient E et F deux espace normés, U un ouvert de E, et $f: E \to F$, différentiable. Pour $a \in U$ et $v \in E$ dériver la fonction composée $t \mapsto f(a+tv)$ en t=0.

Exercice 14. Soit $\gamma(t) = (x(t), y(t))$ une courbe paramétrée de \mathbb{R}^2 (une application d'un intervalle $I \subset \mathbb{R}$ dans \mathbb{R}^2). Soit $f(x,y) = e^{xy}$. En sachant que $\gamma(0) = (1,2)$, et $\gamma'(0) = (3,4)$. Trouver la valeur de $\frac{df(\gamma(t))}{dt}\Big|_{t=0}$.

Exercice 15. Soit z(t) = f(x(t), y(t)) où f est une fonction de classe C^1 dans \mathbb{R}^2 et x et y sont des fonctions dérivables dans \mathbb{R} . Trouver une expression pour z'(t). Appliquer la formule aux cas particuliers :

- 1. $f(x,y) = x^2 + 2xy + 4y^2$ avec x = t et $y = e^{3t}$.
- $2. \ f(x,y)=xy^2+x^2y \ {\rm avec} \ x=t^2 \ {\rm et} \ y=\ln t.$

Exercice 16. On considère les fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ et $g: \mathbb{R}^3 \to \mathbb{R}^2$ définies par

$$f(x,y) = x^2 - y^2$$
 et $g(x,y,z) = (x + y + z, x - y + z)$

On considère aussi $h = f \circ g$.

- 1. Expliciter h. Montrer que f,g et h sont de classe C^1 et écrire leur jacobiennes.
- 2. Vérifier que $J_{h(x,y,z)} = J_{f_{g(x,y,z)}} \circ J_{g_{(x,y,z)}}$