Mathématiques III PMI - Analyse

Feuille d'exercices nº 7

INTÉGRALES À PARAMÈTRE

Exercice 1. On considère la fonction F définie sur $]0; +\infty[$ par $F(x)=\int_0^x \frac{\sin(t)}{x+t} dt.$

- 1. À l'aide d'un changement de variable, montrer que F(x) peut s'écrire comme une intégrale dont les bornes ne dépendent pas de x, pour x > 0.
- 2. Étudier la continuité de F.
- 3. Montrer que F est dérivable sur $]0; +\infty[$ et donner une expression de sa dérivée.
- 4. Retrouver les résultats des deux questions précédentes à l'aide des théorèmes pour les intégrales à paramètre à bornes variables.

Exercice 2. Soit f une application définie sur [0;1], à valeurs strictement positives, et continue.

Pour $\alpha \ge 0$, on pose $F(\alpha) = \int_0^1 (f(t))^{\alpha} dt$.

- 1. Justifier que F est dérivable sur \mathbb{R}_+ , et calculer F'(0).
- 2. En écrivant un développement limité de F à l'ordre 1 en 0, en déduire la valeur de

$$\lim_{\alpha \to 0} \left(\int_0^1 (f(t))^{\alpha} dt \right)^{1/\alpha}.$$

Exercice 3. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ de classe \mathscr{C}^{∞} telle que f(0) = 0.

- 1. Montrer que la fonction $g: x \longmapsto \int_0^1 f'(xt) dt$ est de classe \mathscr{C}^{∞} sur \mathbb{R} et donner l'expression de ses dérivées successives.
- 2. Soit $h: \mathbb{R}^* \longrightarrow \mathbb{R}$ définie par $h(x) = \frac{f(x)}{x}$.
 - (a) Pour tout $x \in \mathbb{R}^*$, exprimer h(x) en fonction de g(x).
 - (b) En déduire que h se prolonge en une fonction de classe \mathscr{C}^{∞} sur \mathbb{R} et exprimer ses dérivées successives en 0 en fonction de celles de f.

Exercice 4. Soit F définie par $F(x) = \int_0^{+\infty} e^{-t^2} \operatorname{ch}(2xt) dt$.

- 1. Soit $a \in \mathbb{R}$. Montrer que la fonction $t \longmapsto e^{-t^2+2at}$ est intégrable sur \mathbb{R}^+ .
- 2. Montrer que la fonction F est définie et continue sur \mathbb{R} .
- 3. Montrer que la fonction F est de classe \mathscr{C}^1 sur \mathbb{R} et que F'(x)=2xF(x) pour tout $x\in\mathbb{R}$.
- 4. En déduire une expression explicite de F sur \mathbb{R} .

Exercice 5. On pose, pour a > 0, $F(x) = \int_{-\infty}^{+\infty} e^{-itx} e^{-at^2} dt$.

- 1. Montrer que F est de classe \mathscr{C}^1 sur \mathbb{R} et que l'on a $F'(x) = \frac{-x}{2a}F(x)$ pour tout $x \in \mathbb{R}$.
- 2. En déduire que $F(x) = F(0)e^{-x^2/4a}$ pour tout x réel puis que $F(x) = \sqrt{\frac{\pi}{a}}e^{-x^2/4a}$.

On rappelle que $\int_{-\infty}^{+\infty} e^{-u^2} du = \sqrt{\pi}$.

Exercice 6.

- 1. À l'aide du théorème des accroissements finis, montrer que : $\forall u \in \mathbb{R}, |\sin(u)| \leq |u|$.
- 2. On considère la fonction $F: \mathbb{R}^+ \longrightarrow \mathbb{R}$ définie par

$$F(x) = \int_0^{+\infty} \frac{\sin(xt)}{t} e^{-t} dt.$$

- (a) Montrer que la fonction F est définie et de classe \mathscr{C}^1 sur \mathbb{R}^+ et expliciter F'(x) à l'aide d'une intégrale, pour tout $x \in \mathbb{R}^+$.
- (b) En déduire une expression explicite de F(x) pour tout $x \in \mathbb{R}^+$.

Exercice 7. Soit F définie par $F(x) = \int_0^1 \frac{t-1}{\ln t} t^x dt$.

- 1. Montrer que l'ensemble de définition de la fonction F est égal à $]-1;+\infty[$.
- 2. Montrer qu'il existe $M \in \mathbb{R}^+$ vérifiant : pour tout $t \in]0;1[, \left|\frac{t-1}{\ln t}\right| \leq M.$
- 3. En déduire que F admet une limite lorsque x tend vers $+\infty$ et la déterminer.

- 4. Montrer que la fonction F est continue sur $]-1;+\infty[$.
- 5. Montrer que la fonction F est de classe \mathscr{C}^1 sur $]-1;+\infty[$ et calculer expliciter F'(x) pour x>-1.
- 6. En déduire une expression explicite de F.

Exercice de cours : la fonction Γ d'Euler

Exercice 8. Pour $x \in \mathbb{R}$, on définit $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$.

- 1. Quel est le domaine de définition de Γ ?
- 2. (a) Pour $k \ge 1$ et $0 < A < B < +\infty$, on pose

$$g_k(t) = \begin{cases} t^{A-1} e^{-t} |\ln t|^k & \text{si } 0 < t < 1 \\ t^{B-1} e^{-t} |\ln t|^k & \text{si } t \ge 1. \end{cases}$$

Démontrer que g_k est intégrable sur $]0; +\infty[$.

- (b) En déduire que Γ est \mathscr{C}^{∞} sur son domaine de définition, et calculer $\Gamma^{(k)}$.
- 3. Montrer que pour tout x > 0, on a : $\Gamma(x+1) = x\Gamma(x)$. En déduire la valeur $\Gamma(n+1)$ pour n entier naturel et un équivalent de Γ en 0.
- 4. Montrer que la fonction Γ est convexe.

Pour s'entraîner:

Exercice 9. Soit $f: x \longmapsto \int_0^{\pi/2} \frac{\cos t}{t+x} dt$.

- 1. Montrer que f est définie, continue sur \mathbb{R}^{+*} . Étudier les variations de f.
- 2. Déterminer les limites de f en 0^+ et $+\infty$.
- 3. (*) Démontrer les équivalents suivants :

$$f(x) \underset{x \to +\infty}{\sim} \frac{1}{x}$$
 et $f(x) \underset{x \to 0^+}{\sim} -\ln(x)$.

Indication: pour l'équivalent lorsque $x \to 0^+$, on pourra (démontrer et) utiliser l'encadrement: pour tout $t \in [0; \pi/2], 1 - \frac{t^2}{2} \le \cos(t) \le 1$.

Exercice 10. Pour tout $x \in [-1; 1]$, on pose $F(x) = \int_{1}^{+\infty} \frac{(t+2)^{x-1}}{(t+1)^{x+1}} dt$.

- 1. Montrer que F est continue sur [-1;1].
- 2. En déduire la limite $\lim_{x\to 0} \int_1^{+\infty} \frac{(t+2)^{x-1}}{(t+1)^{x+1}} dt$.

Exercice 11. Pour tout $x \in [0; +\infty[$, on note $f(x) = \int_0^{\frac{\pi}{2}} t^x \cos t \, dt$.

- 1. Calculer f(0) et f(1).
- 2. Étudier la continuité de f sur $[0; +\infty[$.
- 3. Montrer qu'il existe $c \in [0; +\infty[$ tel que $f(c) = \frac{3}{4}$.