Université Claude Bernard - Lyon 1

Mathématiques III PMI - Analyse

Feuille d'exercices nº 6

SÉRIES ENTIÈRES

Exercice 1. Rayon de convergence

Déterminer le rayon de convergence des séries entières complexes suivantes (pour $z \in$ \mathbb{C}):

1.
$$\sum (-1)^n (n+3)! \ z^n$$

3.
$$\sum \frac{(2n)!}{(n!)^2} z^n$$
,

1.
$$\sum (-1)^n (n+3)! \ z^n$$
, 3. $\sum \frac{(2n)!}{(n!)^2} z^n$, 5. $\sum \left(1 + \frac{1}{n}\right)^{n^2} z^n$,

$$2. \sum n^n z^n,$$

$$4. \sum \frac{\ln(n)}{\ln(n+1)} z^n,$$

4.
$$\sum \frac{\ln(n)}{\ln(n+1)} z^n, \qquad 6. \sum \cos\left(\frac{2n\pi}{3}\right) z^n.$$

Exercice 2.

- 1. Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites complexes vérifiant : $\forall n\in\mathbb{N}, |a_n|\leq |b_n|$. Comparer les rayons de convergences, notés respectivement R_a et R_b , des séries entières $\sum a_n z^n$ et $\sum b_n z^n$.
- 2. Pour $n \in \mathbb{N}$, on pose $c_n = n^2 \int_0^1 \arctan(x^n) dx$. On donne l'inégalité : $\forall x \in [0; 1], \quad x - \frac{x^3}{3} \le \arctan(x).$
 - (a) Pour $n \in \mathbb{N}$, déterminer un encadrement de c_n , par des termes non nuls.
 - (b) En déduire le rayon de convergence de la série entière $\sum c_n z^n$.

Exercice 3. Rayon de convergence

Soit $\sum a_n z^n$ une série entière de rayon de convergence R. Déterminer le rayon de convergence des séries entières suivantes :

1.
$$\sum a_n z^{3n},$$

$$2. \sum a_n 3^n z^{2n},$$

3. On suppose désormais R>0. Montrer que la série entière $\sum \frac{a_n}{n!}z^n$ a un rayon de convergence infini.

Semestre d'automne 2024-2025 Exercice 4. Rayon de convergence

Déterminer le rayon de convergence des séries entières complexes suivantes :

1.
$$\sum (-1)^n \frac{n^n}{n!} z^{4n+1}$$
,

1.
$$\sum (-1)^n \frac{n^n}{n!} z^{4n+1}$$
, 3. $\sum \frac{n!}{1 \cdot 3 \cdot \dots \cdot (2n+1)} z^{2n+3}$. 5. $\sum z^{n!}$,

2.
$$\sum \frac{(1+i)^n}{n2^n} z^{3n}$$
,

4.
$$\sum (1+(-1)^n/n)^{(n^2)}z^n$$
. 6. $\sum n^n z^{n^2}$.

Exercice 5. Vrai ou Faux Les assertions suivantes sont elles vraies ou fausses? (On donnera une démonstration si elles sont vraies ou un contre-exemple si elles sont fausses).

- 1. Les séries entières $\sum a_n z^n$ et $\sum (-1)^n a_n z^n$ ont le même rayon de convergence.
- 2. Les séries entières $\sum a_n z^n$ et $\sum (-1)^n a_n z^n$ ont le même domaine de convergence.

Exercice 6. Série entière, calcul explicite

Déterminer le rayon de convergence ainsi que le domaine de convergence des séries entières associées, et déterminer la valeur des sommes suivantes pour x dans l'intervalle ouvert de convergence :

$$1. \sum_{n=0}^{+\infty} nx^n,$$

3.
$$\sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1},$$

1.
$$\sum_{n=0}^{+\infty} nx^n,$$
 3.
$$\sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1},$$
 5.
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+3)!} x^n,$$
 7.
$$\sum_{n=0}^{+\infty} \frac{1}{(3+(-1)^n)^n} x^n$$

2.
$$\sum_{n=0}^{+\infty} n^2 x^{2n}$$
,

4.
$$\sum_{n=0}^{+\infty} \frac{n3^n}{n+1} x^n$$

2.
$$\sum_{n=0}^{+\infty} n^2 x^{2n}$$
, 4. $\sum_{n=0}^{+\infty} \frac{n3^n}{n+1} x^n$, 6. $\sum_{n=3}^{+\infty} \frac{n^2}{(n-1)(n-2)} x^n$

Exercice 7. Séries entières et équation différentielle

Déterminer les séries entières dont la fonction somme est solution de

$$x^{2}f''(x) - x(2x^{2} - 1)f'(x) - (2x^{2} + 1)f(x) = 0.$$
(1)

Préciser le rayon des séries entières obtenues.

Exercice 8. Série entière et équation différentielle On considère l'équation différentielle

(E)
$$f''(x) - 4f(x) = 0.$$
 (2)

On cherche f sous la forme de la somme d'une série entière : $f(x) = \sum_{n=0}^{+\infty} a_n x^n$, et vérifiant les conditions f(0) = 4 et f'(0) = 0.

Montrer que la seule solution est donnée par $f(x) = \sum_{p=0}^{+\infty} \frac{4^{p+1}}{(2p)!} x^{2p}$, et l'exprimer à l'aide de fonctions usuelles.

Exercice 9. Attention au rayon!!

Déterminer l'ensemble des fonctions développables en séries entières (au voisinage de 0) de l'équation différentielle

$$(E): \quad x^2y' + y = x.$$

Exercice 10. Développements en série entière

Développer en série entière autour de 0 les fonctions suivantes et déterminer les rayons de convergence des séries entières obtenues :

$$1. \ x \mapsto \frac{1}{x-5},$$

4.
$$x \mapsto \frac{1}{(2+x)^3}$$
,

1.
$$x \mapsto \frac{1}{x-5}$$
, 4. $x \mapsto \frac{1}{(2+x)^3}$, 7. $x \mapsto \frac{\ln(1-x)}{x-1}$,

$$2. \ x \mapsto \frac{1}{1+9x^2},$$

$$5. \ x \mapsto \frac{1}{\sqrt{1-x^3}}$$

1.
$$x \mapsto \frac{1}{x-5}$$
, 4. $x \mapsto \frac{1}{(2+x)^3}$, 7. $x \mapsto \frac{1}{x-1}$,
2. $x \mapsto \frac{1}{1+9x^2}$, 5. $x \mapsto \frac{1}{\sqrt{1-x^3}}$, 8. $(*) x \mapsto \frac{1}{x^2-2x(\cos\alpha)+1}$ pour $\alpha \in]0,\pi[$ fixé,

$$3. \ x \mapsto \ln\left(\frac{5-x}{3+x}\right).$$

3.
$$x \mapsto \ln\left(\frac{5-x}{3+x}\right)$$
. 6. $x \mapsto \frac{1}{(x-1)^2(x+2)}$, 9. $(*) x \mapsto \ln(1+x+x^2)$.

9.
$$(*)$$
 $x \mapsto \ln(1+x+x^2)$.

Indication : pour la question 8, on factorisera le dénominateur dans C, et pour la question 9, on pourra remarquer que $1 - x^3 = (1 - x)(1 + x + x^2)$.

Exercice 11. Développements en série entière en un point différent de 0

Développer en série entière les fonctions suivantes au point donné :

1.
$$x \mapsto \ln(x)$$
 en 1 puis en 2,

3.
$$x \longmapsto e^x \text{ en } x_0 \in \mathbb{R}$$
,

2.
$$x \mapsto \sin(x)$$
 en $\pi/4$,

4.
$$x \longmapsto \frac{1}{1+x}$$
 en 2.

Exercice 12. Applications des séries entières

- 1. On considère la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par $f(x) = \frac{e^x 1}{r}$ si $x \neq 0$ et par f(0) = 1. Montrer que la fonction f est de classe \mathcal{C}^{∞} sur \mathbb{R}
- 2. (a) Montrer que la fonction sinus cardinal définie sur \mathbb{R} par $\operatorname{sinc}(x) = \frac{\sin x}{x}$ pour $x \neq 0$ et $\operatorname{sinc}(0) = 1$ est de classe \mathcal{C}^{∞} sur \mathbb{R} .
 - (b) Établir l'égalité :

$$\int_0^{\pi} \operatorname{sinc}(t) \, dt = \sum_{n=0}^{+\infty} \frac{(-1)^n \pi^{2n+1}}{(2n+1)!(2n+1)}.$$

Exercice 13. Série de Taylor

Donner un exemple de fonction définie sur tout $\mathbb R$ mais dont la série de Taylor ne converge pas sur tout \mathbb{R} .

Exercice 14. Série de Taylor

Exemple classique (mais un peu lourd) : la série de Taylor converge, mais pas vers la fonction! On considère la fonction

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} \exp(-1/x^2) & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases}$$

- 1. Montrer par récurrence que pour tout $n \in \mathbb{N}$, il existe un polynôme P_n tel que pour tout $x \in \mathbb{R}^*$, $f^{(n)}(x) = \frac{P_n(x)}{r^{3n}} \exp(-1/x^2)$.
- 2. En déduire que pour tout $n \in \mathbb{N}$, $f^{(n)}(0) = 0$.
- 3. En déduire que f n'est pas développable en série entière en 0.

Pour aller plus loin:

Exercice 15. Pour $n \geq 1$, et $x \in \mathbb{R}$, on note

$$f_n(x) = e^{-n} \cos(n^2 x)$$
 puis on pose $f(x) = \sum_{n=1}^{+\infty} f_n(x) \quad \forall x \in \mathbb{R}.$

- 1. Montrer que la série de fonctions qui définit f converge simplement sur \mathbb{R} .
- 2. Montrer que sa somme f est de classe C^{∞} , et en particulier que, pour tout $k \geq 1$:

$$f^{(2k)}(0) = (-1)^k \sum_{n=1}^{+\infty} e^{-n} n^{4k}.$$

En utilisant la formule de Stirling $n! \sim_{n \to +\infty} \sqrt{2n\pi} \left(\frac{n}{e}\right)^n$, montrer que la série de Taylor de f en 0 a un rayon de convergence nul.

Pour s'entraîner:

Exercice 16. Soit $F: \mathbb{R} \longrightarrow \mathbb{R}$ la fonction définie par $F(x) = \int_0^x \frac{\ln(1+t^2)}{t} dt$.

- 1. Sans expliciter l'intégrale, justifier que F est définie et continue sur \mathbb{R} .
- 2. Montrer que F est développable en série entière sur]-1;1[, et que son développement en série entière est :

$$F(x) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{x^{2n}}{2n^2}.$$

- 3. Montrer que la série entière associée au développement de F ci-dessus converge uniformément sur [-1;1].
- 4. En déduire :

$$\int_0^1 \frac{\ln(1+t^2)}{t} dt = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{2n^2}.$$

Exercice 17. Série entière et équation différentielle

On cherche le développement en série entière de $f: x \longmapsto (1+x)^{\alpha}$, pour $\alpha \in \mathbb{R}$, par la "méthode de l'équation différentielle".

1. Montrer que f est solution d'une équation différentielle linéaire d'ordre 1 notée (E) que l'on précisera.

- 2. Déterminer les solutions de (E) développables en séries entières et préciser le rayon de convergence de la série entière associée.
- 3. Montrer que si g est solution de l'équation (E) sur un intervalle I contenu dans $]-1;+\infty[$ alors il existe $C\in\mathbb{R}$ tel que $\forall x\in I,\ g(x)=C(1+x)^{\alpha}.$
- 4. En déduire le développement en série entière de f en 0.

Exercice 18. Montrer que l'équation différentielle $x^2y'' + 4xy' + (2 - x^2)y - 1 = 0$ admet une unique solution développable en série entière et déterminer le rayon de convergence de la série entière obtenue.

Exercice 19.

- 1. Pour x > 0 et $n \in \mathbb{N}^*$, on pose $u_n(x) = \frac{1}{2^{nx}}$.
 - (a) Justifier l'existence et calculer $S(x) = \sum_{n=0}^{+\infty} u_n(x)$ pour x > 0.
 - (b) Justifier la dérivabilité de u_n pour $n \in \mathbb{N}^*$. Montrer que la série de fonctions $\sum u'_n$ converge normalement sur tout intervalle [a,b] où $a,b \in \mathbb{R}_+^*$ tels que 0 < a < b.
 - (c) Calculer alors la somme de cette série pour x > 0.
- 2. Trouver le rayon de convergence R des séries entières $\sum a_n z^n$ où $(a_n)_n$ est donnée par :

(a)
$$a_n = \frac{n^3}{3^n}, \forall n \ge 0,$$

- (b) $a_n = \frac{\cos(n\theta)}{n}$, $\forall n \geq 1$, avec $\theta \in \mathbb{R}$. Indication: on pourra d'abord regarder le cas où |z| < 1, puis raisonner par l'absurde en utilisant la série dérivée.
- 3. On considère l'équation différentielle $(E): xy'' + 3y' 4x^3y = 0$.
 - (a) Montrer qu'il existe une unique solution f de (E), développable en série entière autour de 0 et telle que f(0) = 1.
 - (b) Exprimer f à l'aide des fonctions élémentaires.