Université Claude Bernard - Lyon 1

Semestre d'automne 2025-2026

Mathématiques III PMI - Analyse

Feuille d'exercices nº 5

SÉRIES DE FONCTIONS

Exercice 1. Convergence simple, normale et uniforme

Étudier la convergence simple, la convergence normale puis la convergence uniforme de la série de fonctions $\sum_{n \in \mathbb{N}^*} f_n$ dans les cas suivants :

- 1. $f_n: x \longmapsto \frac{x^n}{1+x^n}$ sur $[0,+\infty[$, puis sur [0,1[, puis sur [0,a] avec $a \in]0,1[$,
- 2. $f_n: x \mapsto \frac{x^2}{n^3 + x^3}$, sur $[0, +\infty[$ puis sur [0, a] avec a > 0,
- 3. $f_n: x \longmapsto \frac{x}{n^3 + x^{3/2}} \operatorname{sur} [0, +\infty[.$

Exercice 2. Convergence simple, uniforme et normale

Pour tout $n \in \mathbb{N}^*$, on considère la fonction $f_n : \mathbb{R} \longrightarrow \mathbb{R}$ définie pour tout $x \in \mathbb{R}$ par $f_n(x) = \frac{(-1)^n x^2}{x^4 + n}$.

- 1. Étudier la convergence simple de la série de fonctions $\sum_{n\geq 1} f_n$ sur \mathbb{R} .
- 2. Montrer que la série de fonctions $\sum_{n\geq 1} f_n$ est uniformément convergente sur \mathbb{R} .
- 3. Montrer qu'il n'existe aucune partie (non vide) de \mathbb{R}^* sur laquelle elle converge normalement.

Exercice 3. Série de fonctions et intégrale, et dérivée

On considère la série de fonctions $\sum_{n\geq 1} f_n$ où pour tout $n\in\mathbb{N}^*$, pour tout $x\in\mathbb{R}$,

$$f_n(x) = \frac{\sin(nx)}{n^3}.$$

- 1. Montrer que cette série de fonctions converge simplement sur \mathbb{R} .
- 2. Montrer que sa somme $f = \sum_{n=1}^{+\infty} f_n$ est une fonction continue sur \mathbb{R} .

- 3. Montrer que $\int_0^{\pi} f(x) dx = 2 \sum_{n=1}^{+\infty} \frac{1}{(2n-1)^4}$.
- 4. Montrer que f est dérivable sur \mathbb{R} , et donner une expression de f'(x) sous forme de série pour tout $x \in \mathbb{R}$.

Exercice 4. Pour $x \in \mathbb{R}^+$, on pose (lorsque cela a un sens)

$$\varphi(x) = \sum_{n=2}^{+\infty} \left(\frac{1}{n-x} - \frac{1}{n+x} \right).$$

- 1. Déterminer le domaine de définition de la fonction φ .
- 2. Justifier l'existence de l'intégrale suivante et la calculer explicitement :

$$I = \int_0^1 \varphi(x) \, \mathrm{d}x.$$

Exercice 5.

- 1. Montrer que pour tout t > 0, $\frac{1}{e^t 1} = \sum_{n=0}^{+\infty} e^{-(n+1)t}$.
- 2. En déduire la valeur de l'intégrale $\int_0^{+\infty} \frac{t}{e^t-1} dt$. On admettra l'égalité $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$

Exercice 6. Pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}^+$, on pose $f_n(x) = x^n(1 - \sqrt{x})$.

- 1. Montrer que $\sum_{n=1}^{+\infty} \int_0^1 f_n(x) dx = \int_0^1 \frac{x}{1+\sqrt{x}} dx$.
- 2. En déduire la valeur de la somme $\sum_{n=1}^{+\infty} \frac{1}{(n+1)(2n+3)}.$

Exercice 7. Classe \mathcal{C}^{∞}

On pose, pour tout $x \in \mathbb{R}^+$, $f(x) = \sum_{n=1}^{+\infty} \frac{(-1)^n}{x+n}$. Montrer que f est bien définie et qu'elle est de classe C^{∞} sur \mathbb{R}^+ .

Exercice 8. On pose $u_n(x) = \frac{2x}{x^2 + n^2}$ pour tout $n \in \mathbb{N}^*$ et pour tout $x \in \mathbb{R}$.

- 1. Étudier la convergence simple de la série de fonctions $\sum u_n$.
- 2. Montrer que sa somme, notée S, est continue.
- 3. (*) En remarquant que pour $n \in \mathbb{N}^*$, pour tout $x \in \mathbb{R}^+$, le reste d'ordre n en x vérifie $|R_n(x)| \ge \sum_{k=n+1}^{2n} \frac{2x}{x^2 + k^2}$, montrer que la série de fonctions $\sum u_n$ ne converge pas uniformément sur \mathbb{R}^+ .
- 4. Étudier la limite en $+\infty$ de sa somme S.

Exercice 9. On considère la série de fonctions $\sum f_n$ où

$$\forall n \in \mathbb{N}, \quad \forall t \in \mathbb{R}, \quad f_n(t) = \frac{(-1)^n e^{-nt}}{n+1}.$$

- 1. (a) Montrer que la série de fonctions $\sum f_n$ converge simplement sur $E_s = [0, +\infty[$.
 - (b) Montrer que la série de fonctions $\sum f_n$ converge absolument sur $E_a =]0, +\infty[$.
 - (c) Montrer que la série $\sum f_n$ converge uniformément sur E_s .
 - (d) La série converge-t-elle normalement sur E_s ? Et sur E_a ? Justifier.
- 2. Soit S la fonction somme de la série de fonctions $\sum f_n$. Montrer que lorsque t tend vers $+\infty$, S(t) tend vers 1.
- 3. Soit A une partie non vide de \mathbb{R} . Trouver une condition nécessaire et suffisante sur $\inf(A)$ pour que la série de fonctions $\sum f_n$ converge normalement sur A.

Pour s'entraîner :

Exercice 10. Soit $\alpha \in \mathbb{R}$. On considère pour tout $n \in \mathbb{N}^*$ la fonction

$$f_n: \mathbb{R}^+ \longrightarrow \mathbb{R}$$

$$x \longmapsto n^{\alpha} x e^{-nx^2/2}$$

- 1. Montrer que la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R}^+ vers la fonction nulle.
- 2. La convergence est-elle uniforme sur \mathbb{R}^+ ? On discutera suivant les valeurs de α .
- 3. Montrer que pour tout h > 0, $(f_n)_{n \in \mathbb{N}^*}$ converge uniformément sur $[h; +\infty[$ vers la fonction nulle.
- 4. On se place maintenant dans le cas particulier où $\alpha = 1$ et on considère maintenant la série de fonctions de terme général f_n .
 - (a) Montrer qu'elle converge simplement sur \mathbb{R}^+ et que sa somme $S:[0,+\infty[\to\mathbb{R}$ est continue sur $]0;+\infty[$.
 - (b) Calculer, pour $x \geq 0$ et $m \in \mathbb{N}^*$, $S_m(x) = \sum_{n=1}^m f_n(x)$, puis expliciter S(x) pour $x \geq 0$.
 - (c) La fonction S est-elle continue en 0?

Exercice 11. Pour x réel, on pose

$$f(x) = \sum_{n=0}^{+\infty} e^{-x\sqrt{n}}.$$

- 1. Déterminer le domaine de définition de f, noté D_f .
- 2. Étudier la continuité de f sur D_f .
- 3. Montrer que la fonction f est strictement décroissante.
- 4. Étudier la limite de f en $+\infty$.
- 5. Déterminer un équivalent simple de f(x) quand $x \to 0^+$.