Feuille d'exercices nº 5

DIAGONALISATION DES ENDOMORPHISMES/MATRICES

Exercice 1. Montrer que les matrices suivantes sont diagonalisables dans $\mathcal{M}_2(\mathbb{R})$, et effectuer la diagonalisation en exhibant des matrices de passage :

$$A = \begin{pmatrix} 1 & 5 \\ 2 & 4 \end{pmatrix} \qquad ; \qquad B = \begin{pmatrix} 4 & 4 \\ 1 & 4 \end{pmatrix}.$$

Exercice 2. Étudier la diagonalisabilité des matrices suivantes (dans $\mathcal{M}_n(\mathbb{R})$). Lorsqu'elles sont diagonalisables, effectuer la réduction, en exhibant en particulier une matrice de passage adéquate.

$$A = \begin{pmatrix} 2 & 1 \\ -1 & 4 \end{pmatrix} \qquad ; \qquad B = \begin{pmatrix} 0 & -1 & 2 \\ 0 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix} \qquad ; \qquad C = \begin{pmatrix} 3 & 2 & 4 \\ -1 & 3 & -1 \\ -2 & -1 & -3 \end{pmatrix}. \quad \textbf{Exercice 7.}$$

Exercice 3. On considère l'endomorphisme u de $\mathbb{R}_2[X]$ dont la matrice dans la base canonique est $A = \begin{pmatrix} 9 & 0 & 0 \\ -5 & 4 & 0 \\ -8 & 0 & 1 \end{pmatrix}$.

- 1. Déterminer le polynôme caractéristique et les valeurs propres de u.
- 2. L'endomorphisme u est-il diagonalisable?
- 3. Déterminer ses sous-espaces propres et une base de $\mathbb{R}_2[X]$ formée de vecteurs propres de u.
- 4. Calculer u^n pour tout entier naturel n.

Exercice 4. Soient $E = \mathbb{R}_n[X]$ et f l'application définie par $f(P) = (X^2 - 1)P'' + 2XP'$ pour tout $P \in E$.

- 1. Montrer que f est un endomorphisme de E et former la matrice de f dans la base canonique de E.
- 2. En déduire que f est diagonalisable, et en déterminer les valeurs propres ainsi que les dimensions des sous-espaces propres associés.

Semestre d'automne 2025-2026 Exercice 5. Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique

$$(e_1, e_2, e_3)$$
 est $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

- 1. Montrer que u est diagonalisable et écrire la matrice de u dans une base de vecteurs propres.
- 2. Donner une interprétation géométrique de u.

Exercice 6. Soit u l'endomorphisme de \mathbb{R}^4 dont la matrice dans la base canonique (e_1, e_2, e_3, e_4) est

- 1. Déterminer le rang de u. En déduire que 0 est valeur propre de u.
- 2. En déduire que le polynôme caractéristique est scindé sur \mathbb{R} et déterminer explicitement celui-ci.
- 3. Construire une base de \mathbb{R}^4 formée de vecteurs propres de u.

- 1. Que dire d'un endomorphisme diagonalisable qui n'a qu'une seule valeur propre?
- 2. Les matrices suivantes sont-elles diagonalisables?

$$C = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \qquad ; \qquad D = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}$$

3. À quelle condition une matrice triangulaire supérieure dont les éléments diagonaux sont tous égaux entre eux est-elle diagonalisable?

Exercice 8. On considère des nombres complexes a, b, c, et on pose

$$A = \left(\begin{array}{cc} a & b \\ c & -a \end{array}\right).$$

- 1. Calculer la somme et le produit des valeurs propres de A.
- 2. Montrer que si son déterminant n'est pas nul, A est diagonalisable.
- 3. On suppose que A est de déterminant nul. À quelle condition la matrice A est-elle diagonalisable?
- 4. En supposant que la matrice A est réelle, à quelle condition est-elle diagonalisable dans $\mathcal{M}_2(\mathbb{R})$?

Exercice 9. Soit $A = \begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$.

- 1. Déterminer $P \in GL_2(\mathbb{C})$ et D diagonale telle que $D = P^{-1}AP$.
- 2. Soit $n \in \mathbb{N}^*$.
 - (a) Soit $M \in \mathcal{M}_n(\mathbb{C})$ telle que $M^n = A$. On note $N = P^{-1}MP$. Montrer que N commute avec D puis déterminer la forme de N.
 - (b) Résoudre l'équation $M^n = A$ d'inconnue $M \in \mathcal{M}_2(\mathbb{C})$.

Exercice 10. Soit $A = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. En diagonalisant A, résoudre l'équation $X^2 =$

A d'inconnue $X \in \mathcal{M}_3(\mathbb{C})$ (on pourra s'inspirer de la méthode vue dans l'exercice précédent).

Exercice 11. On pose $M = \begin{pmatrix} a & c & b \\ c & a+b & c \\ b & c & a \end{pmatrix}$ avec $a,b,c \in \mathbb{C}$. Étudier la diagonalisabilité de M (dans $\mathcal{M}_3(\mathbb{C})$) en fonction des valeurs de a,b et c.

Exercice 12. On définit $u \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}))$ par $u : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. Montrer que u est diagonalisable et donner une base de diagonalisation de u.

Exercice 13. Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \geq 2$ et u un endomorphisme de E de rang égal à 1.

- 1. Montrer qu'il existe une valeur propre λ de u telle que tr $u = \lambda$.
- 2. En déduire que u est diagonalisable si et seulement si tr $u \neq 0$.