Feuille d'exercices nº 4

SÉRIES DE FONCTIONS

Exercice 1. Convergence simple, normale et uniforme

Étudier la convergence simple, la convergence normale puis la convergence uniforme de la série de fonctions $\sum_{n\in\mathbb{N}} f_n$

dans les cas suivants :

1.
$$f_n: x \longmapsto \frac{x^n}{1+x^n}$$
 sur $[0,+\infty[$, puis sur $[0,1[$, puis sur $[0,a]$ avec $a \in]0,1[$,

2.
$$f_n: x \longmapsto \frac{x^2}{n^3 + x^3}$$
, sur $[0, +\infty[$ puis sur $[0, a]$ avec $a > 0$,

3.
$$f_n: x \longmapsto \frac{x}{n^3 + x^{3/2}}$$
 sur $[0, +\infty[$.

Exercice 2. Convergence simple, uniforme et normale

Pour tout $n \in \mathbb{N}^*$, on considère la fonction $f_n : \mathbb{R} \longrightarrow \mathbb{R}$ définie pour tout $x \in \mathbb{R}$ par $f_n(x) = \frac{(-1)^n x^2}{x^4 + n}$.

1. Étudier la convergence simple de la série de fonctions
$$\sum_{n\geq 1} f_n$$
 sur \mathbb{R} .

2. Montrer que la série de fonctions
$$\sum_{n\geq 1} f_n$$
 est uniformément convergente sur \mathbb{R} .

3. Montrer qu'il n'existe aucune partie (non vide) de R* sur laquelle elle converge normalement.

Exercice 3. Série de fonctions et intégrale, et dérivée

On considère la série de fonctions $\sum_{n\geq 1} f_n$ où pour tout $n\in\mathbb{N}^*$, pour tout $x\in\mathbb{R}$, $f_n(x)=\frac{\sin(nx)}{n^3}$.

- 1. Montrer que cette série de fonctions converge simplement sur \mathbb{R} .
- 2. Montrer que sa somme $f = \sum_{n=1}^{+\infty} f_n$ est une fonction continue sur \mathbb{R} .

3. Montrer que
$$\int_0^{\pi} f(x) dx = 2 \sum_{n=1}^{+\infty} \frac{1}{(2n-1)^4}$$
.

4. Montrer que f est dérivable sur \mathbb{R} , et donner une expression de f'(x) sous forme de série pour tout $x \in \mathbb{R}$.

Exercice 4. Pour $x \in \mathbb{R}^+$, on pose (lorsque cela a un sens)

$$\varphi(x) = \sum_{n=2}^{+\infty} \left(\frac{1}{n-x} - \frac{1}{n+x} \right).$$

- 1. Déterminer le domaine de définition de la fonction φ .
- 2. Justifier l'existence de l'intégrale suivante et la calculer explicitement :

$$I = \int_0^1 \varphi(x) \, \mathrm{d}x.$$

Exercice 5. Classe \mathcal{C}^{∞}

On pose, pour tout $x \in \mathbb{R}^+$, $f(x) = \sum_{n=1}^{+\infty} \frac{(-1)^n}{x+n}$. Montrer que f est bien définie et qu'elle est de classe \mathcal{C}^{∞} sur \mathbb{R}^+ .

Exercice 6. On pose $u_n(x) = \frac{2x}{x^2 + n^2}$ pour tout $n \in \mathbb{N}^*$ et pour tout $x \in \mathbb{R}$.

- 1. Étudier la convergence simple de la série de fonctions $\sum u_n$.
- 2. Sa somme est-elle continue?
- 3. Étudier le comportement en $+\infty$ de sa somme S définie par $S(x) = \sum_{n=1}^{+\infty} u_n(x)$ pour tout $x \in \mathbb{R}$.

Exercice 7. Règle d'Abel uniforme

Soit I un intervalle inclus dans \mathbb{R} . Soit $(f_n)_{n\geq 0}$ une suite de fonctions définies sur I telle que pour tout $x\in I$, $f_n(x)=a_n(x)b_n(x)$ avec $(a_n)_{n\geq 0}$ une suite de fonctions réelles, $(b_n)_n$ une suite de fonctions complexes vérifiant

- (i). $\forall x \in I$, la suite $(a_n(x))_{n \geq 0}$ est positive et décroissante,
- (ii). la suite de fonctions $(a_n)_n$ converge uniformément vers la fonction nulle sur I,

(iii). il existe
$$M > 0$$
 tel que pour tout $n \ge 0$, $\left\| \sum_{k=0}^n b_k \right\|_{\infty} \le M$, i.e pour tout $x \in I$, $\left| \sum_{k=0}^n b_k(x) \right| \le M$.

- 1. Pour tout $n \in \mathbb{N}$, posons $B_n = \sum_{k=0}^n b_k$ et B_{-1} la fonction nulle. Pour tout $x \in I$, pour tout $n \in \mathbb{N}$, exprimer $b_n(x)$ en fonction des B_k .
- 2. Soient $n, p \in \mathbb{N}, p \ge 1$. Montrer que pour tout $x \in I$, on a $\left| \sum_{k=n+1}^{n+p} f_k(x) \right| \le 2a_{n+1}(x)M$.
- 3. En déduire que la série de fonctions $\sum f_n$ converge uniformément sur I.

Exercice 8. Règle d'Abel uniforme (II)

On considère la série de fonctions $\sum_{n\geq 1} f_n$ où pour tout $n\in \mathbb{N}^*$, $f_n(x)=\frac{\sin(nx)}{n+x}$ pour tout $x\in [\pi/2;\pi]$.

- 1. En utilisant la règle d'Abel uniforme, montrer que $\sum_{n\geq 1} f_n$ converge uniformément sur $[\pi/2;\pi]$.
- 2. Montrer que $\sum_{n\geq 1} f_n$ ne converge pas normalement sur $[\pi/2;\pi]$.

Exercice 9. On considère la série de fonctions $\sum f_n$ où

$$\forall n \in \mathbb{N}, \quad \forall t \in \mathbb{R}, \quad f_n(t) = \frac{(-1)^n e^{-nt}}{n+1}.$$

- 1. (a) Montrer que la série de fonctions $\sum f_n$ converge simplement sur $E_s = [0, +\infty[$.
 - (b) Montrer que la série de fonctions $\sum f_n$ converge absolument sur $E_a =]0, +\infty[$.
 - (c) Montrer que la série $\sum f_n$ converge uniformément sur E_s .
 - (d) La série converge-t-elle normalement sur E_s ? Et sur E_a ? Justifier.
- 2. Soit S la fonction somme de la série de fonctions $\sum f_n$. Montrer que lorsque t tend vers $+\infty$, S(t) tend vers 1.
- 3. Soit A une partie non vide de \mathbb{R} . Trouver une condition nécessaire et suffisante sur $\inf(A)$ pour que la série de fonctions $\sum f_n$ converge normalement sur A.

2

Exercice 10. Soit $\alpha \in \mathbb{R}$. On considère pour tout $n \in \mathbb{N}^*$ la fonction

$$f_n: \mathbb{R}^+ \longrightarrow \mathbb{R}$$
$$x \longmapsto n^{\alpha} x e^{-nx^2/2}$$

- 1. Montrer que la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R}^+ vers la fonction nulle.
- 2. La convergence est-elle uniforme sur \mathbb{R}^+ ? On discutera suivant les valeurs de α .
- 3. Montrer que pour tout h > 0, $(f_n)_{n \in \mathbb{N}^*}$ converge uniformément sur $[h; +\infty[$ vers la fonction nulle.
- 4. On se place maintenant dans le cas particulier où $\alpha = 1$ et on considère maintenant la série de fonctions de terme général f_n .
 - (a) Montrer qu'elle converge simplement sur \mathbb{R}^+ et que sa somme $S:[0,+\infty[\to\mathbb{R}$ est continue sur $]0;+\infty[$.
 - (b) Calculer, pour $x \ge 0$ et $m \in \mathbb{N}^*$, $S_m(x) = \sum_{n=1}^m f_n(x)$, puis expliciter S(x) pour $x \ge 0$.
 - (c) La fonction S est-elle continue en 0?

Exercice 11. Pour x réel, on pose

$$f(x) = \sum_{n=0}^{+\infty} e^{-x\sqrt{n}}.$$

- 1. Déterminer le domaine de définition de f, noté D_f .
- 2. Étudier la continuité de f sur D_f .
- 3. Montrer que la fonction f est strictement décroissante.
- 4. Étudier la limite de f en $+\infty$.
- 5. Déterminer un équivalent simple de f(x) quand $x \to 0^+$.