Math IV - PMI - Algèbre

Feuille d'exercices nº 4

Endomorphismes orthogonaux et espaces orientés

I. Endomorphismes orthogonaux

Exercice 1. On note $O_2(\mathbb{R})$ l'ensemble des matrices orthogonales de taille (2,2). Le but de l'exercice est d'expliciter les matrices de $O_2(\mathbb{R})$.

- 1. Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in O_2(\mathbb{R})$.
 - (a) Montrer qu'il existe un réel θ tel que $a = \cos(\theta)$ et $c = \sin(\theta)$.
 - (b) Montrer que le vecteur (d, -b) est colinéaire au vecteur (a, c).
 - (c) Montrer que A est nécessairement d'une des deux formes suivantes :

$$R_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \quad \text{ou} \quad S_{\theta} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}.$$

- 2. En déduire que $O_2(\mathbb{R}) = \{R_\theta \mid \theta \in \mathbb{R}\} \cup \{S_\theta \mid \theta \in \mathbb{R}\}.$
- 3. Soient $\theta, \theta' \in \mathbb{R}$. Montrer que R_{θ} et $R_{\theta'}$ commutent. Les élements de $O_2(\mathbb{R})$ commutent-ils entre eux?
- 4. On se place dans un plan euclidien E muni d'une base orthonormée \mathcal{B} .
 - (a) Soit $\theta \in \mathbb{R}$. Interpréter géométriquement les endomorphismes r_{θ} et s_{θ} ayant pour matrices respectives R_{θ} et S_{θ} dans la base \mathcal{B} .
 - (b) Montrer que le produit de deux réflexions s_{θ} et s_{φ} est une rotation. Obtienton ainsi toutes les rotations?

Exercice 2. On munit $\mathbb{R}_3[X]$ du produit scalaire défini par :

$$\forall P, Q \in \mathbb{R}_3[X], \quad \langle P, Q \rangle = \int_{-1}^1 P(t)Q(t) \, \mathrm{d}t.$$

On considère l'endomorphisme u de $\mathbb{R}_3[X]$ défini par u(P)(X) = P(-X).

- 1. Montrer que u est un endomorphisme orthogonal.
- 2. Déterminer la nature géométrique de u.

Semestre de printemps 2023-2024 **Exercice 3.** Soient $n \geq 2$ et a, b deux réels. On munit $\mathcal{M}_n(\mathbb{R})$ du produit scalaire usuel et on considère l'endomorphisme f de $\mathcal{M}_n(\mathbb{R})$ défini par

$$\forall M \in \mathcal{M}_n(\mathbb{R}), \quad f(M) = aM + b^t M.$$

Déterminer une condition nécessaire et suffisante sur les réels a et b pour que l'endomorphisme f soit un endomorphisme orthogonal.

Exercice 4. Soient E un espace euclidien non nul et u un endomorphisme orthogonal de E diagonalisable. Montrer que u est une symétrie orthogonale.

Exercice 5. Soit E un espace euclidien de dimension $n \in \mathbb{N}^*$ et f une application de E dans E vérifiant

$$f(0_E) = 0_E$$
 et $\forall (x, y) \in E^2$, $||f(x) - f(y)|| = ||x - y||$.

- 1. Montrer que pour tout $x \in E$, ||f(x)|| = ||x||.
- 2. Montrer que pour tout $(x,y) \in E^2$, $\langle f(x), f(y) \rangle = \langle x, y \rangle$.
- 3. En introduisant une base orthonormée de E, montrer que f est un endomorphisme orthogonal.

II. Espaces orientés

Exercice 6. Soient E un espace vectoriel euclidien orienté de dimension 2 et u et vdeux vecteurs non nuls de E.

- 1. Notons θ la mesure principale de l'angle orienté (u,v). Montrer que $\langle u,v\rangle =$ $||u|||v||\cos(\theta)$ et $\det(u,v) = ||u|||v||\sin(\theta)$ (où le déterminant est pris dans une base orthonormée directe).
- 2. Soit f un endomorphisme orthogonal de E.
 - (a) On suppose que f est direct. Montrer que $(\widehat{f(u)}, \widehat{f(v)}) \equiv \widehat{(u, v)}$
 - (b) On suppose que f est indirect. Montrer que $(\widehat{f(u)}, \widehat{f(v)}) \equiv -\widehat{(u,v)}$ [2π].
 - (c) Application : Soit (ABC) un triangle isocèle en A (i.e. tel que $\|\overrightarrow{AB}\|$ = $\|\overrightarrow{AC}\|$). Montrer que $(\overrightarrow{BC}, \overrightarrow{BA}) \equiv (\overrightarrow{CA}, \overrightarrow{CB})$ [2 π].

Exercice 7. Soit E un plan euclidien orienté. On se donne une rotation r de E et une réflexion s de E. Préciser la nature des endomorphismes $r \circ s$ et $s \circ r$ puis expliciter les composées $s \circ r \circ s$ et $r \circ s \circ r$.

Exercice 8. Soit E un espace euclidien de dimension 3 orienté par une base orthonormée directe $\mathcal{B} = (e_1, e_2, e_3)$.

- 1. Déterminer l'expression dans la base \mathcal{B} du produit vectoriel de deux vecteurs u et v de E en fonction de leurs coordonnées dans \mathcal{B} .
- 2. Soient u, v deux vecteurs normés orthogonaux de E et $w \in E$. Montrer que la famille (u, v, w) est une base orthonormée de E si et seulement si $w = \pm u \wedge v$. À quelle condition cette base est-elle directe?
- 3. Application : Déterminer toutes les matrices de $O_3(\mathbb{R})$ dont la première ligne est $\begin{pmatrix} \frac{3}{5} & \frac{4}{5} & 0 \end{pmatrix}$.
- 4. Démontrer la formule du double produit vectoriel :

$$\forall (u, v, w) \in E^3, \quad u \wedge (v \wedge w) = \langle u, w \rangle v - \langle u, v \rangle w.$$

- 5. Montrer que, pour tout $(u, v) \in E^2$, $(u, v)^2 + ||u \wedge v||^2 = ||u||^2 ||v||^2$.
- 6. Soient $a, b, c \in E$ non nuls. On note $a' = b \wedge c$, $b' = c \wedge a$, $c' = a \wedge b$ et $v = \|a\|a' + \|b\|b' + \|c\|c'$. On suppose que $v \neq 0$. Montrer que:

$$\cos(\widehat{(v,a)}) = \cos(\widehat{(v,b)}) = \cos(\widehat{(v,c)}).$$

Exercice 9. Soit E un espace vectoriel euclidien de dimension 3 orienté.

- 1. Soient w un vecteur unitaire de E et $\theta \in \mathbb{R}$. On considère la rotation r d'angle θ autour de l'axe D dirigé et orienté par le vecteur w.
 - (a) Soit $x \in E$ un vecteur orthogonal à w. Montrer que

$$r(x) = \cos(\theta)x + \sin(\theta)w \wedge x.$$

(b) On suppose désormais que x est un vecteur unitaire orthogonal à w. Montrer que

$$cos(\theta) = \langle x, r(x) \rangle$$
 et $sin(\theta) = [x, r(x), w] = [w, x, r(x)]$

où [a,b,c] désigne le produit mixte des vecteurs $a,b,c\in E$.

- 2. Soit $\theta \in \mathbb{R}$. Dans $E = \mathbb{R}^3$ muni de son produit scalaire canonique, déterminer la matrice dans la base canonique de la rotation d'angle θ autour de l'axe dirigé et orienté par le vecteur w = (1, 1, 0).
- 3. Déterminer la nature de l'endomorphisme f de E dont la matrice dans une base orthonormée directe $\mathcal{B} = (e_1, e_2, e_3)$ de E est

$$M = \frac{1}{9} \begin{pmatrix} 8 & 1 & -4 \\ -4 & 4 & -7 \\ 1 & 8 & 4 \end{pmatrix}.$$

Préciser ses éléments caractéristiques.

Exercice 10. Soient a et b deux réels. On considère la matrice

$$A = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}.$$

- 1. Pour quels $a, b \in \mathbb{R}$ a-t-on A orthogonale?
- 2. Dans ce cas, préciser la nature et les éléments caractéristiques de l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique est A.

Exercice 11. Déterminer la nature et les éléments caractéristiques de l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique de \mathbb{R}^3 est

$$M = \frac{1}{10\sqrt{2}} \begin{pmatrix} -\sqrt{2} & -9\sqrt{2} & -6\\ -9\sqrt{2} & -\sqrt{2} & 6\\ 6 & -6 & 8\sqrt{2} \end{pmatrix}.$$

Exercice 12. Trouver toutes les matrices orthogonales de la forme

$$M_a = \begin{pmatrix} a & -a & 0 \\ a & a & ? \\ ? & ? & ? \end{pmatrix} \quad \text{avec } a \in \mathbb{R}$$

Soit E un espace euclidien orienté de dimension 3 muni d'une base base orthonormée directe $\mathcal{B} = (e_1, e_2, e_3)$. Pour une telle matrice orthogonale M_a , on note f_a l'endomorphisme de E dont la matrice dans \mathcal{B} est M_a . Préciser les éléments caractéristiques de f_a .

Pour aller plus loin:

Exercice 13. Soient E un espace vectoriel euclidien orienté de dimension 3 et f un endomorphisme de E. Le but de l'exercice est de démontrer l'équivalence suivante :

$$\forall (x,y) \in E^2$$
, $f(x \wedge y) = f(x) \wedge f(y) \iff f \text{ est une rotation ou } f = 0_{\mathcal{L}(E)}$.

- 1. Supposons que f est une rotation.
 - (a) Montrer que pour tout $(x,y,z) \in E^3$, [f(x),f(y),f(z)] = [x,y,z] (où [] désigne le produit mixte).
 - (b) Pour $(x, y, z) \in E^3$, simplifier $\langle f(x \wedge y) f(x) \wedge f(y), z \rangle$.
 - (c) Conclure.
- 2. Supposons désormais que $f \neq 0_{\mathcal{L}(E)}$ et vérifie : $\forall (x,y) \in E^2, f(x \land y) = f(x) \land f(y)$.
 - (a) Montrer que f est injective.
 - (b) Soit $\mathcal{B} = (e_1, e_2, e_3)$ une base orthonormée directe de E. Montrer que la famille $(f(e_1), f(e_2), f(e_3))$ est une base orthonormée directe de E.
 - (c) Conclure.
- 3. Deuxième méthode pour le sens direct : supposons que $\forall (x,y) \in E^2$, $f(x \wedge y) = f(x) \wedge f(y)$.
 - (a) Simplifier $\langle f(x) \wedge f(y), f(z) \rangle$ pour $(x, y, z) \in E^3$.
 - (b) Montrer que pour tout $w \in E$, il existe $x, y \in E$ tels que $w = x \wedge y$.
 - (c) En déduire que $f^* \circ f = \det(f) \mathrm{Id}$.
 - (d) Démontrer qu'alors $f = 0_{\mathcal{L}(E)}$ ou f est une rotation.