Feuille d'exercices nº 3

Ensembles et applications

Ensembles

Exercice 1.

- 1. On note $A = \{1, 2, 3, 4\}$ et $B = \{0, 1, 2, 3\}$. Décrire les ensembles $A \cap B$, $A \cup B$ et $A \times B$.
- 2. On note A = [1, 3] et B = [2, 4]. Déterminer $A \cap B$ et $A \cup B$.
- 3. Déterminer $[3, 8[\cap \mathbf{Z}, [-3, 2[\cap \mathbf{N} \text{ et }]0, 1[\cap \mathbf{Z}.$
- 4. Déterminer le complémentaire dans \mathbf{R} des parties $]-\infty,0]$ et [1,2[.
- 5. Déterminer $]-2,3] \setminus \mathbf{Z},]-2,3] \setminus [0,4]$ et $]-2,3] \setminus [-4,4]$.

Exercice 2.

- 1. Écrire l'ensemble des entiers naturels pairs en extension puis en compréhension.
- 2. Écrire les ensembles suivants en extension.
 - (a) $\{ n \in \mathbb{N} \mid n \le 2 \};$
 - (b) $\{ n \in \mathbb{N} \mid n < 1 \};$
 - (c) $\{ n \in \mathbb{N} \mid n \leq 1 \text{ et } n \text{ est divisible par } 2 \};$
 - (d) $\{ n \in \mathbf{N} \mid \forall m \in \mathbf{N}, n \leq m \};$
 - (e) $\{ n \in \mathbf{N} \mid \forall m \in \mathbf{N}, n < m \};$
 - (f) $\{ n \in \mathbb{N} \mid n \text{ divise } 12 \text{ ou } n \geq 7 \};$
 - (g) $\{ n \in \mathbb{N} \mid n \text{ ne divise pas } 12 \text{ et } n \leq 7 \}.$

Exercice 3. Décider si les ensembles suivants sont vides.

- 1. $\{ x \in \mathbf{R} \mid x^2 3x \ge 2 \};$
- 2. $\left\{ x \in \mathbf{R}_{-} \mid \frac{x+1}{2x-1} > 4 \right\};$
- 3. $\{(x,y) \in \mathbf{R}^2 \mid x^2 3xy + 4y^2 = -1 \};$
- 4. $\{(x,y) \in \mathbf{R}^2 \mid x^2 3xy + 4y^2 = 4\}$;
- 5. $\{(x,y) \in [0,5] \times [0,3] \mid 2x 5y 10 \ge 0 \}$.

Exercice 4. Soit a et b deux réels tels que $a \le b$. Montrer que

$$[a,b] = \{ t a + (1-t) b \mid t \in [0,1] \} = \{ (1-t') a + t' b \mid t' \in [0,1] \}.$$

Exercice 5. Soit E un ensemble et $(A, B, C) \in \mathcal{P}(E)^3$.

1. Montrer l'équivalence des propositions :

(a)
$$A \subset B$$
;

(b)
$$A \cap B = A$$
;

(c)
$$A \cup B = B$$
;

(d)
$$A \setminus B = \emptyset$$
.

2. Montrer l'équivalence des propositions :

(a)
$$A \cup B = A \cap C$$
;

(b)
$$B \subset A \subset C$$
.

3. Montrer l'implication

$$(A \cup B \subset A \cup C \text{ et } A \cap B \subset A \cap C) \implies B \subset C$$
.

Applications

Exercice 6. Décider si les paires de fonctions qui suivent sont égales.

1.
$$f: \mathbf{R} \to \mathbf{R}, x \mapsto (x^2 + 2x + 1)(x - 1)$$
 et $g: \mathbf{R} \to \mathbf{R}, x \mapsto (x + 1)(x^2 - 1)$;

2.
$$f: \mathbf{R} \to \mathbf{R}, x \mapsto \sin(x)$$
 et $g: \mathbf{R} \to \mathbf{R}, x \mapsto \exp(x)$;

3.
$$f: \mathbf{R} \to \mathbf{R}, x \mapsto x + 1 \text{ et } g: \mathbf{R} \setminus \{-1\} \to \mathbf{R}, x \mapsto \frac{x^2 - 1}{x - 1};$$

$$4. \ \ f: \{ \, x \in \mathbf{R} \, | \, |x-2| < \tfrac{1}{2} |x+3| \, \} \to \mathbf{R}, \, x \mapsto 0 \text{ et } g: \,]\tfrac{1}{3}, 7[\to \mathbf{R}, \, x \mapsto 0 \, ;$$

5.
$$f: \mathbf{R}_+ \to \mathbf{R}, x \mapsto (\sqrt{x})^2 \text{ et } g: \mathbf{R} \to \mathbf{R}, x \mapsto x.$$

Exercice 7. Étudier l'injectivité et la surjectivité des applications qui suivent. Lorsqu'elles sont bijectives, donner leur inverse.

1.
$$\mathbf{R} \to \mathbf{R}, x \mapsto \cos(x)$$
;

2.
$$[\pi, 2\pi] \to [-1, 1], x \mapsto \sin(x)$$
;

3.
$$\mathbf{R}^2 \to \mathbf{R}^2$$
, $(x, y) \mapsto (x + y, x - y)$;

4.
$$\mathbf{N} \to \mathbf{R}, x \mapsto x$$
;

5.
$$\mathbf{R} \to \mathbf{R}, x \mapsto \begin{cases} -\ln x & \text{si } x > 0 \\ x^2 & \text{sinon} \end{cases}$$
;

6.
$$\mathbf{R} \to \mathbf{R}, x \mapsto \begin{cases} \frac{1}{x} & \text{si } x < 0 \\ x^2 & \text{sinon} \end{cases}$$

6.
$$\mathbf{R} \to \mathbf{R}, x \mapsto \begin{cases} \frac{1}{x} & \text{si } x < 0 \\ x^2 & \text{sinon} \end{cases}$$
;
7. $\{0, 1, 2, 3\} \to \{1, 7, 9, 11\}, x \mapsto \begin{cases} 1 & \text{si } x = 0 \\ 11 & \text{si } x = 1 \\ 7 & \text{si } x = 2 \\ 9 & \text{si } x = 3 \end{cases}$;

8.
$$\{0,1,2\} \to \{-1,0,1\}, x \mapsto -(x-1);$$

9.
$$\mathcal{F}(\mathbf{R}, \mathbf{R}) \to \mathbf{R}, f \mapsto f(0).$$

Exercice 8.

- 1. Soit $f: \mathbf{R} \to \{0\}$. Montrer que f est surjective mais pas injective.
- 2. Soit E un ensemble, $n \in \mathbb{N}^*$, $(x_1, \dots, x_n) \in E^n$ et $f : \{x_i \mid i \in [1, n]\} \to \mathbb{R}$. Montrer que f n'est pas surjective.

Exercice 9. Soit E, F et G trois ensembles non vides. Soit $f \in \mathcal{F}(E, F)$ et $g \in \mathcal{F}(F, G)$.

- 1. On suppose $g \circ f$ injective. Montrer que f est injective et que g l'est aussi si f est surjective.
- 2. On suppose $g \circ f$ surjective. Montrer que g est surjective et que f l'est aussi si g est injective.

Exercice 10. Soit E, F et G trois ensembles non vides. Soit $f \in \mathcal{F}(E, F)$.

- 1. Montrer que f est injective si et seulement s'il existe $g \in \mathcal{F}(F, E)$ tel que $g \circ f = \mathrm{Id}_E$.
- 2. Montrer que f est surjective si et seulement s'il existe $g \in \mathcal{F}(F, E)$ tel que $f \circ g = \mathrm{Id}_F$.
- 3. On considère maintenant $f: \mathbf{R} \to \mathbf{R}^+ \times \mathbf{R}^+, x \mapsto (\max(x,0), \max(-x,0)).$
 - (a) Montrer que f est injective et donner $g: \mathbf{R}^+ \times \mathbf{R}^+ \to \mathbf{R}$ tel que $g \circ f = \mathrm{Id}_{\mathbf{R}}$.
 - (b) Quelle est l'image de f?

Exercice 11. Soit E un ensemble non vide et $f: E \to \mathcal{P}(E)$.

Étudier la surjectivité de f en considérant $A = \{x \in E \mid x \notin f(x)\}.$

Exercice 12. Soit f l'application de l'ensemble $\{1, 2, 3, 4\}$ dans lui-même définie par f(1) = 4, f(2) = 1, f(3) = 2, f(4) = 2. Déterminer $f^{-1}(A)$ lorsque $A = \{2\}$, $A = \{1, 2\}$, $A = \{3\}$.

Exercice 13. Décrire les ensembles qui suivent.

- 1. $tan({0})$;
- 2. $\sin^{-1}(\{2\})$;
- 3. $\cos^{-1}([0,1])$;
- 4. $(\cos_{\lfloor [3,7]})^{-1}([0,1]);$
- 5. $\left(\cos_{\lfloor [0,\pi]}\right)^{-1}([0,1]);$
- 6. $f^{-1}([0,1])$ pour $f; \mathbf{R} \to \mathbf{R}, x \mapsto x^2;$
- 7. $f^{-1}([0,1])$ pour $f: \left[-\frac{1}{2}, \frac{4}{3}\right] \to \mathbf{R}, x \mapsto x^2$;
- 8. $f^{-1}([0,1])$ pour $f: \mathbf{R}^+ \to \mathbf{R}, x \mapsto x^2$;
- 9. $\sqrt{\cdot} ([0,1])$;
- 10. $f^{-1}([-1,1]\cup\{2\})$ et $f([0,1]^3)$ pour $f: \mathbf{R}^3 \to \mathbf{R}, (x,y,z) \mapsto y$;
- 11. $|\cdot|([-2,-1] \cup [2,4[);$
- 12. $(|\cdot|_{|[-8,7]})^{-1}([2,3]);$
- 13. $|\cdot|^{-1}(\{1\})$.

Exercice 14. Soit E et F deux ensembles non vides et $f: E \to F$.

- 1. Soit $B \subset F$.
 - (a) Montrer que $f(f^{-1}(B)) = B \cap f(E)$.
 - (b) À quelle condition a-t-on $f(f^{-1}(B)) = B$?
- 2. Montrer que f est surjective si et seulement si, pour tout $B \in \mathcal{P}(F), f(f^{-1}(B)) = B$.
- 3. Soit $A \subset E$.
 - (a) Montrer que $A \subset f^{-1}(f(A))$.
 - (b) Que peut-on dire si $f_{|f^{-1}(f(A))}$ est injective?
- 4. Montrer que f est injective si et seulement si, pour tout $A \in \mathcal{P}(E)$, $f^{-1}(f(A)) = A$.

Exercice 15. Soit E et F deux ensembles non vides et $f: E \to F$.

1. Soit I un ensemble et $(A_i)_{i\in I} \in \mathcal{P}(E)^I$. Montrer que

$$f\left(\bigcup_{i\in I} A_i\right) = \bigcup_{i\in I} f\left(A_i\right) \text{ et } f\left(\bigcap_{i\in I} A_i\right) \subset \bigcap_{i\in I} f\left(A_i\right).$$

2. Montrer que f est injective si et seulement si, pour tout ensemble I non vide et toute famille $(A_i)_{i\in I} \in \mathcal{P}(E)^I$, on a

$$f\left(\bigcap_{i\in I}A_i\right) = \bigcap_{i\in I}f\left(A_i\right) .$$

3. Soit I un ensemble et $(B_i)_{i\in I} \in \mathcal{P}(F)^I$. Montrer que

$$f^{-1}\left(\bigcup_{i\in I}B_i\right) = \bigcup_{i\in I}f^{-1}\left(B_i\right) \text{ et } f^{-1}\left(\bigcap_{i\in I}B_i\right) = \bigcap_{i\in I}f^{-1}\left(B_i\right).$$