Université Claude Bernard - Lyon 1

Semestre d'automne 2020-2021

Mathématiques III PMI - Analyse

Feuille d'exercices nº 3

SÉRIES NUMÉRIQUES

I. Quelques séries simples

Exercice 1. Justifier l'existence des sommes suivantes et les calculer :

1.
$$\sum_{n=0}^{+\infty} \left(-\frac{1}{2}\right)^n$$
, 2. $\sum_{n=0}^{+\infty} \frac{1}{n!}$,

$$2. \sum_{n=0}^{+\infty} \frac{1}{n!},$$

3.
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$$

Pour la 2ème (resp. 3ème), on appliquera la formule de Taylor-Lagrange à l'exponentielle (resp. la fonction $x \longmapsto -\ln(1+x)$) entre 0 et 1.

Généralisation facultative : $\sum_{n=0}^{+\infty} \frac{x^n}{n!}$ pour $x \in \mathbb{R}$.

Exercice 2. Déterminer la nature des séries de termes généraux suivants et calculer leur somme en cas de convergence :

$$u_n = \frac{n^2}{n^2 + 1}, \quad v_n = \ln\left(\frac{n}{n+1}\right), \quad w_n = e^{-n} \quad \text{ et } \quad x_n = \left(1 - \frac{1}{n}\right)^n.$$

II. Séries à termes positifs

Exercice 3. Étudier la convergence de la série de terme général u_n dans les cas suivants:

1. (a)
$$u_n = \frac{n+1}{n^3 - 7}$$
, (c) $u_n = \frac{n+1}{n-7}$, (e) $u_n = \frac{2^n + 3^n}{n^2 + 5^n}$,

(c)
$$u_n = \frac{n+1}{n-7}$$
,

(e)
$$u_n = \frac{2^n + 3^n}{n^2 + 5^n}$$

(b)
$$u_n = \frac{n+1}{n^2 - 7}$$

(b)
$$u_n = \frac{n+1}{n^2 - 7}$$
, (d) $u_n = \sin\left(\frac{1}{n^2}\right)$, (f) $u_n = \frac{1}{n^{(1+\frac{1}{\sqrt{n}})}}$,

(f)
$$u_n = \frac{1}{n^{(1+\frac{1}{\sqrt{n}})}}$$

2. (a)
$$u_n = \frac{1}{\ln(n^2 + 2)}$$
,

(c)
$$u_n = \frac{n}{2^n}$$
,

(b)
$$u_n = \frac{\ln(n)}{n^{\frac{3}{2}}},$$

(d)
$$u_n = \frac{n^{100\ 000}}{2^n}$$
,

3. (a)
$$u_n = \frac{1}{n!}$$
,

(c)
$$u_n = \frac{2^n}{n!}$$
,

(b)
$$u_n = \frac{n^{100\ 000}}{n!}$$

4. (a)
$$u_n = \left(\sin\left(\frac{1}{n}\right)\right)^n$$
, (b) $u_n = \left(1 - \frac{1}{n}\right)^{n^2}$, (c) $u_n = \left(1 + \frac{1}{n}\right)^{n^2}$.

$$(b) u_n = \left(1 - \frac{1}{n}\right)^{n^2}$$

$$c) u_n = \left(1 + \frac{1}{n}\right)^{n^2}$$

Exercice 4.

- 1. Montrer que pour a > 1, l'intégrale impropre $\int_{a}^{+\infty} \frac{\mathrm{d}x}{x \ln^3(x)}$ est convergente.
- 2. On pose $u_n = \frac{1}{n \ln^3(n)}$ pour $n \ge 2$. Montrer que la série $\sum u_n$ converge.
- 3. Donner un équivalent de R_n , le reste d'ordre n de la série $\sum u_n$, lorsque $n \to +\infty$.

Exercice 5. Déterminer la nature et la somme de la série $\sum_{n=1,2,3} \frac{3n-2}{n^3+3n^2+2n}$.

Exercice 6. Cas limite de la règle de d'Alembert

Soit a > 0. On définit la suite $(u_n)_{n \in \mathbb{N}^*}$ par $u_n = \frac{a^n n!}{n^n}$.

- 1. Étudier la convergence de la série $\sum u_n$ lorsque $a \neq e$.
- 2. Lorsque a = e, prouver que, pour n assez grand, $u_{n+1}/u_n \ge 1$. Que dire de la nature de la série $\sum u_n$?

Exercice 7. On note, pour tout $n \ge 2$, $u_n = \sum_{k=0}^{\infty} (\ln k)^2$.

- 1. Soit $n \geq 2$. Encadrer u_n à l'aide de deux intégrales et en déduire un équivalent de u_n lorsque $n \to +\infty$.
- 2. Déterminer la nature de la série de terme général $\frac{1}{n}$.

Exercice 8.

- 1. Soit $n \in \mathbb{N}$, on pose $u_n = \sqrt{n}2^{-n}$, et $v_n = u_n u_{n+1}$. Montrer qu'il existe $\alpha \in \mathbb{R}$ tel que $u_n \underset{n\to+\infty}{\sim} \alpha v_n$.
- 2. Trouver un équivalent simple de $R_n = \sum_{k=0}^{+\infty} \sqrt{k} 2^{-k}$ lorsque l'entier n tend vers l'infini.

III. Séries à termes quelconques

Exercice 9. Étudier la convergence de la série de terme général u_n dans les cas sui-

1. (a)
$$u_n = (-1)^n \frac{n^3}{n!}$$
,

(c)
$$u_n = na^{n-1}$$
 avec $a \in \mathbb{C}$,

(b)
$$u_n = \frac{a^n}{n!}$$
 avec $a \in \mathbb{C}$,

2. (a)
$$u_n = (-1)^n \frac{1}{\ln(n+1)}$$
,

(c)
$$u_n = (-1)^n (\sqrt{1+n} - \sqrt{n}).$$

(b)
$$u_n = \sin\left(\left(n + \frac{1}{n}\right)\pi\right)$$
,

Exercice 10. Une erreur classique

- 1. Montrer que la série $\sum \frac{(-1)^n}{\sqrt{n}}$ converge.
- 2. Démontrer que $\frac{(-1)^n}{\sqrt{n} + (-1)^n} = \frac{(-1)^n}{\sqrt{n}} \frac{1}{n} + \frac{(-1)^n}{n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right).$
- 3. Étudier la convergence de la série $\sum \frac{(-1)^n}{\sqrt{n} + (-1)^n}$.
- 4. Qu'a-t-on voulu mettre en évidence dans cet exercice?

Exercice 11. Étudier la convergence de la série de terme général u_n dans les deux cas suivants : $u_n = \frac{\cos(n)}{n^2}$ et $u_n = \frac{\cos(n)}{n}$. Pour l'étude de cette dernière, on pourra utiliser la règle d'Abel.

Exercice 12.

- 1. En linéarisant $\cos^2(n)$, montrer que la série de terme général $u_n = \frac{\cos^2(n)}{n}$ diverge.
- 2. En utilisant un développement limité, montrer que la série de terme général $u_n =$ $\sqrt{1+\frac{(-1)^n}{\sqrt{n}}}-1$, pour $n\geq 1$, diverge.

Exercice 13. Étudier la convergence de la série de terme général u_n dans les deux cas suivants:

1.
$$u_n = n \ln \left(1 + \frac{1}{n} \right) - \cos \left(\frac{1}{\sqrt{n}} \right),$$
 2. $u_n = \frac{(-1)^n}{n + (-1)^n \sqrt{n}}.$

2.
$$u_n = \frac{(-1)^n}{n + (-1)^n \sqrt{n}}$$
.

Exercice 14. Les séries suivantes sont-elles convergentes?

1.
$$\sum \left(\frac{1}{n^{3/4}} + \frac{\sin(2n)}{n^{3/4}}\right)$$
,

2.
$$\sum \left(\frac{1}{n^{3/4}} + \frac{1 - n^{(n-3/4)}}{n^n}\right)$$
,

3.
$$\sum \left(\sqrt{1+\frac{(-1)^n}{n^{3/4}}} - \exp\left(\frac{(-1)^{n+1}}{2n^{3/4}}\right)\right)$$
.

Exercice 15. Justifier l'existence et calculer la somme $\sum_{n=0}^{+\infty} u_n$, où $u_n = \sum_{n=0}^{+\infty} \frac{1}{(n-k)! \, k!}$.

Exercice 16. Justifier l'existence et calculer la somme $\sum_{n=0}^{+\infty} u_n$, où $u_n = \sum_{n=0}^{\infty} \frac{(-1)^{n-k}}{k! \, 2^{n-k}}$.

Pour aller plus loin:

Exercice 17. (Développement asymptotique de H_n)

- 1. Soit $\alpha > 1$. Donner un équivalent du reste de la série convergente $\sum \frac{1}{n^{\alpha}}$.
- 2. Pour $n \ge 1$, on note $H_n = \sum_{k=1}^{n} \frac{1}{k}$ la n-ième somme partielle de la série harmonique.
 - (a) Montrer l'inégalité : $\ln(1+x) \le x$ pour tout x > -1.
 - (b) Soit $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ les suites définies par $u_n=H_n-\ln n$ et $v_n=u_n-\frac{1}{n}$. Montrer que les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ convergent vers la même limite.
 - (c) On définit la suite $(t_n)_{n\in\mathbb{N}^*}$ par $t_n=u_n-\gamma$. Montrer l'équivalent $t_n\sim \frac{1}{2n}$. Indication : on pourra commencer par chercher un équivalent de $t_{n+1} - t_n$.
 - (d) On définit la suite $(w_n)_{n\in\mathbb{N}^*}$ par $w_n=u_n-\gamma-\frac{1}{2n}$. Montrer l'équivalent $w_n \sim -\frac{1}{12n^2}$.
 - (e) En déduire un développement asymptotique à quatre termes de H_n .