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Feuille d’exercices no 2

Sous-espace orthogonal et projections orthogonales

Exercice 1. On considère la matrice A =

1 0 0
0 2 0
0 0 3

 et on munitM3,1(R) du produit

scalaire défini par :

∀X,Y ∈M3,1(R), 〈X,Y 〉 = tX ·A · Y.

(on a identifié M1(R) avec R). Déterminer une base de l’orthogonal respectif des en-

sembles suivants :

F = Vect


1

0
0

 ,

1
0
1

 et G =


0

1
0

 .

Exercice 2. Soient F et G deux sous-espaces vectoriels d’un espace préhilbertien E.

Montrer que

(F +G)⊥ = F⊥ ∩G⊥ et F⊥ +G⊥ ⊂ (F ∩G)⊥.

Que peut-on dire de plus en dimension finie ?

Exercice 3. Soient E un espace préhilbertien (réel ou complexe) et F,G deux sous-

espaces vectoriels de E.

1. Montrer que les trois assertions suivantes sont équivalentes :

(i). F et G sont orthogonaux,

(ii). F ⊂ G⊥,

(iii). G ⊂ F⊥.

2. Soient F1, . . . , Fm des sous-espaces vectoriels de E deux à deux orthogonaux. Mon-

trer qu’ils sont en somme directe.

3. Montrer que si E = F ⊕G et F et G sont orthogonaux, alors G = F⊥.

4. On suppose désormais que E est de dimension finie. Montrer que la concaténation

d’une base orthonormée de F avec une base orthonormée de F⊥ donne une base

orthonormée de E.

Exercice 4. On se place dans E = C([0; 1];R) que l’on munit de son produit scalaire

canonique. On note F = C2([0; 1];R).

1. Soit f ∈ E. Montrer qu’il existe une unique fonction g ∈ F telle que g′′ = f et

g(0) = g(1) = 0.

2. En déduire que F⊥ = {0E}.
3. Le sous-espace vectoriel F admet-il un supplémentaire orthogonal ? Que peut-on

en déduire sur sa dimension ?

Exercice 5. (Exemples d’orthonormalisation de Gram-Schmidt)

1. On munit R3 du produit scalaire usuel.

(a) Trouver une base orthonormée du plan {(2,−3, 6)}⊥.

(b) On pose u1 = (1, 2, 2), u2 = (1, 0, 1) et u3 = (1, 1, 0). Montrer que (u1, u2, u3)

est une base de R3. Trouver une base orthonormée (e1, e2, e3) de R3 telle que

e1 soit colinéaire à u1, et que le plan engendré par e1 et e2 soit égal à celui

engendré par u1, et u2.

2. Appliquer le procédé d’orthonormalisation de Gram-Schmidt à la base

{1, X,X2, X3} pour trouver une base orthonormée de R3[X] muni du produit

scalaire suivant :

< P,Q >=

∫ 1

−1
P (x)Q(x) dx.

Exercice 6. Soit p : E → E un endomorphisme d’un K-espace vectoriel.

1. On suppose que p est un projecteur, i.e. p2 = p. Montrer que Im(p) = Ker(p−IdE),

que E = Im(p)⊕Ker(p) et que p est la projection sur Im(p) parallèlement à Ker(p).

2. Soient F et G deux sous-espaces supplémentaires dans E. On suppose que p est

la projection sur F parallèlement à G. Montrer que p est un projecteur.

3. On suppose maintenant que E est un espace hermitien ou euclidien. Soit p

un projecteur de E. Montrer que p est un projecteur orthogonal si et s. si :

∀(x, y) ∈ Im(p)×Ker(p), 〈x, y〉 = 0.

Exercice 7. Dans M2(R) muni de son produit scalaire canonique, on considère

F =

{(
a b
−b a

)
| a, b ∈ R

}
.

1. Déterminer le projeté orthogonal de J =

(
1 1
1 1

)
sur F ainsi que le symétrique

orthogonal de J par rapport à F .

2. Calculer la distance de J à F .

3. En déduire inf{2(1− a)2 + 2(1 + b2) | a, b ∈ R}.



Exercice 8. On considère R3 muni du produit scalaire usuel. On se donne v1 =

(1, 0, 2), v2 = (2, 1, 0) dans R3. Soit F = Vect(v1, v2). On notera pF la projection

orthogonale sur F .

1. Déterminer la matrice de pF dans la base canonique de R3.

2. Trouver une base orthonormale B pour laquelle la matrice de pF soit la matrice

diagonale Diag(1, 1, 0).

3. Déterminer toutes les bases de R3 pour lesquelles la matrice de pF est Diag(1, 1, 0).

Exercice 9. Soit E = R3[X] muni du produit scalaire suivant :

< a0 + a1X + a2X
2 + a3X

3, b0 + b1X + b2X
2 + b3X

3 >= a0b0 + a1b1 + a2b2 + a3b3.

On note H l’hyperplan suivant : H = {P ∈ E | P (1) = 0}.
1. Déterminer une base de H.

2. Déterminer une base orthonormale de H.

3. En déduire la projection orthogonale de X sur H, puis la distance de X à H.

Exercice 10. Dans C6, soitH = {(x1, . . . , x6) ∈ C6 | x1−2x2+3x3+x4−3x5−x6 = 0}.
Déterminer une base orthonormée de H⊥ puis la distance entre u = (i,−1, 0,−2, 4i, 0)

et H.

Exercice 11. Soit C l’espace vectoriel des fonctions continues de [−π, π] dans R. Pour

f et g dans C on pose

〈f, g〉 =

∫ π

−π
f(t)g(t)dt.

1. Soit f ∈ C. Interpréter

inf
(a,b,c)∈R3

∫ π

−π
(f(t)− a− b sin(t)− c cos(t))2dt

comme le carré de la distance de f à un sous-espace vectoriel de C que l’on déter-

minera.

2. En déduire l’expression de a, b et c en fonction de f pour lesquels l’inf précédent

est atteint.

3. Application : Déterminer a, b, c pour f : t 7−→ t.

Exercice 12. Soient E un espace euclidien et p un projecteur sur E. Démontrer

l’équivalence suivante :

p est un projecteur orthogonal ⇐⇒ pour tout x ∈ E, ‖p(x)‖ ≤ ‖x‖.

Exercice 13. Soit (E, 〈 , 〉) un espace euclidien. Soit p : E → E un projecteur.

On suppose que p satisfait : ∀x ∈ E, 〈p(x), x〉 ≥ 0. Montrer que p est un projecteur

orthogonal.

Exercice 14. Soit E un espace euclidien. Soient p et q deux projecteurs orthogonaux.

Montrer l’équivalence entre :

1. Im(p) ⊆ Im(q),

2. pour tout x ∈ E, ‖p(x)‖ ≤ ‖q(x)‖.

Pour s’entrâıner :

Exercice 15. Dans Mn(R) on note S le sous-espace vectoriel des matrices symé-

triques et A celui des matrices antisymétriques. On munit Mn(R) du produit scalaire

canonique défini par 〈M,N〉 =
∑

1≤i,j≤n

mijnij où mij sont les coefficients de M et nij

ceux de N .

1. Vérifier que pour M,N ∈Mn(R), 〈M,N〉 = Tr(tM ·N).

2. Soient S ∈ S et A ∈ A. Remarquer que 〈tS, tA〉 = 〈S,A〉.
En déduire que 〈S,A〉 = 0.

3. Déduire de la question précédente que S ⊆ A⊥ puis que S = A⊥.

4. On sait alors que Mn(R) = S ⊕A.

Soit M ∈Mn(R). Déterminer l’unique S ∈ S et l’unique A ∈ A en fonction de M

telles que M = S +A.

5. DansM2(R), soit M =

(
1 4
0 3

)
. Déterminer la distance entre M et S, la distance

entre M et A, puis la distance entre pS(M) et pA(M).

Exercice 16. Soient E = Rn[X] et a0, . . . , an des réels distincts deux à deux. Pour

P,Q ∈ E, on pose

< P,Q >=

n∑
i=0

P (ai)Q(ai).

1. Vérifier qu’avec cette application, E est muni d’un produit scalaire.

2. Déterminer une base orthonormé de E.

3. Pour Q ∈ E, déterminer la distance de Q à H =

{
P ∈ E |

n∑
i=0

P (ai) = 0

}
.


