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Feuille d’exercices n° 2

SOUS-ESPACE ORTHOGONAL ET PROJECTEUR

Exercice 1. On considere la matrice A = et on munit Ms 1 (R) du produit scalaire défini par :

OO =
O NN O
w O O

VXV,YE./\/l?,@(R)7 <X,Y>=tX~A~Y.

(on a identifié M;(R) avec R). Déterminer une base de 'orthogonal respectif des ensembles suivants :

1 1 0
F = Vect 01,10 et G= 1
0 1 0

Exercice 2. Soient F' et G deux sous-espaces vectoriels d’un espace préhilbertien . Montrer que
(F+G)t=FtnGt e Fr4+Gtc(FNnGo)t
Que peut-on dire de plus en dimension finie ?

Exercice 3. (Exemples d’orthonormalisation de Gram-Schmidt)
1. On munit R? du produits scalaire usuel.
(a) Trouver une base orthonormée du plan {(2,—3,6)}+.
(b) On pose u; = (1,2,2),us = (1,0,1) et uz = (1,1,0). Montrer que (uy,us,u3) est une base de R3.
Trouver une base orthonormée (ey, €2, e3) de R3 telle que e soit colinéaire a ug, et que le plan engendré

par e; et es soit égal a celui engendré par uy, et us.

2. Appliquer le procédé d’orthonormalisation de Gram-Schmidt & la base {1, X, X2, X3} pour trouver une base

orthonormée de R3[X] muni du produit scalaire suivant :
1
< PQ >:/ P(z)Q(x)dx.
-1

Exercice 4. Montrer que si F est un sous-espace vectoriel d’un espace euclidien F alors E = F @ F1.
Indication : concernant dim(F*), on pourra considérer 'application (E — R™; 2+ (< 2,by >,...,< o, by, >)),

les b; formant une base orthonormée de F'.

Exercice 5 (Sur les projecteurs). Soit p: E — E un endomorphisme d’un espace vectoriel de dimension finie n.
— On dit que p est un projecteur si p? = p.
— Soient F' et G deux sous-espaces vectoriels tels que £ = F @ G. On dit que p est la projection sur F
parallglement & G si pour tout (f,g) € F x G, p(f +g) = f.

1. On suppose que p est un projecteur. Montrer que E = Im(p) @ ker(p) et que p est la projection sur Im(p)

parallelement & ker(p).

2. On suppose que p est la projection sur F' parallelement & G. Montrer que p est un projecteur.



On suppose maintenant que E est muni d’un produit scalaire. On dit que p est un projecteur orthogonal s’il existe

un sous-espace F tel que p soit la projection sur F parallelement & FL.

3. Soit p un projecteur de E. Montrer que p est un projecteur orthogonal si et s. si : V(x,y) € Im(p) x
ker(p), (x,y) =0.

Exercice 6. Soient E un espace euclidien et p un projecteur sur £. Démontrer 1’équivalence suivante : p est un

projecteur orthogonal <= pour tout z € E, |p(z)| < |z||.

Exercice 7. Soit (E,{, )) un espace euclidien. Soit p : F — E un projecteur. On suppose que p satisfait :

Va € E, (p(z),z) > 0. Montrer que p est un projecteur orthogonal.

Exercice 8. Soit E un espace euclidien. Soient p et ¢ deux projecteurs orthogonaux. Montrer ’équivalence entre :
L. Im(p) € Im(q),

2. pour tout z € E, ||p(z)|| < l|g(x)]|.

Exercice 9. On se donne v; = (1,0,2),v3 = (2,1,0) dans R3. Soit F = Vect(vy,v2).
1. Calculer la matrice de pr dans la base canonique de R3.
2. Trouver une base orthonormale B pour laquelle la matrice de pr soit la matrice diagonale Diag(1, 1,0).

3. Déterminer toutes les bases de R? pour lesquelles la matrice de pr est Diag(1,1,0).

Exercice 10. Dans le plan réel, on considere un triangle ABC. On note a, b et ¢ les longueurs des cotés respectifs
BC, AC et AB et on note 6 'angle ACB. Montrer I'égalité suivante (dite de Al-Kashi (1380-1429), ou loi des
cosinus) :

¢ = a® + b* — 2abcos(h).

En déduire le théoreme de Pythagore ainsi que sa réciproque.

Exercice 11 (Révision de cours). Soit (F,(, )) un espace euclidien. Soit F' un sous-espace vectoriel de E.

Soit z € E. On pose d(z, F') = inf,cr d(x,y). Montrer que

d(x, F) = ||z = pr(2)l| = [lpp- (2)]|

Exercice 12. Soit E = R3[X] muni du produit scalaire suivant :
< ag + alX —+ a2X2 + a3X3, bo —+ le + b2X2 —+ b3X3 >= aobo —+ a1b1 —+ a2b2 + agbg.

On note H T’hyperplan suivant : H = {P € E | P(1) = 0}.
1. Déterminer une base de H.
2. Déterminer une base orthonormale de H.

3. En déduire la projection orthogonale de X sur H, puis la distance de X a H.



Exercice 13. Soient F = R, [X] et ao,...,a, des réels distincts deux & deux. Pour P,Q € E, on pose

<PQ>=) Pla)Q(a).

i=0
1. Vérifier qu’avec cette application, F est muni d’un produit scalaire.
2. Déterminer une base orthonormé de FE.

3. Pour @ € E quelconque, déterminer la distance de Q & H ={P € E | >_I , P(a;) = 0}.

Exercice 14. Dans RS, soit H = {(x1,...,26) € RS | 21 — 225 + 323 + 4 — 35 — 26 = 0}. Déterminer une base

orthonormée de H* puis la distance entre u = (1, —1,0,2,4,0) et H.

Exercice 15. Dans M, (R) on note S le sous-espace vectoriel des matrices symétriques et A celui des matrices
antisymétriques. On munit M, (R) du produit scalaire canonique défini par (M, N) = ZL ; Mijnij ol m;; sont
les coefficients de M et n;; ceux de N.

0. Vérifier que pour M, N € M, (R), (M,N) = tr(*M - N).

1. Soient S € S et A € A. Remarquer que (*S,'A) = (S, A).
En déduire que (S, A) = 0.

2. Déduire de la question précédente que S C A+ puis que S = AL,

3. On sait alors (voir par exemple 'ex. 2) que M, (R) =S ® A.

Soit M € M, (R). Déterminer I'unique S € S et I'unique A € A en fonction de M telles que M = S + A.

4. Dans M5 (R), soit M = (1) ;1

distance entre ps(M) et pa(M).

. Déterminer la distance entre M et S, la distance entre M et A, puis la

Exercice 16. Soit C ’espace vectoriel des fonctions continues de [—m, 7] dans R. Pour f et g dans C on pose
(fo)=[ [f(t)g(t)dt.

1. Montrer que ( , ) définit un produit scalaire sur C.
2. Soit f € C. Interpréter
inf t) —a — bsin(t) — t))%dt
it [ = a bsin(o) - ccos(t)

—T
comme la distance de f a un sous-espace vectoriel de C que I'on déterminera.

3. En déduire I'expression de a, b et ¢ en fonction de f pour lesquels 'inf précédent est atteint.

4. Application : Détrminer a, b, ¢ pour f(t) =t.



