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Math III - PMI

Feuille d’exercices no 1

Révisions d’algèbre linéaire

1 Espaces vectoriels – Bases

Exercice 1. Soient F et G des sous-espaces vectoriels de E.

1. Montrer que F ∩G = F +G si et seulement si F = G.

2. Montrer que F ∪G est un sous-espace vectoriel de E si et seulement si F ⊂ G ou G ⊂ F .

Exercice 2.

1. Soient F = {f ∈ C1(R,R) | f(0) = f ′(0) = 0} et G = {x 7−→ ax+ b, (a, b) ∈ R2}. Montrer que F et G sont

des sous-espaces vectoriels supplémentaires de C1(R,R).

2. Soit H = {(x1, . . . , xn) ∈ Rn | x1 + · · · + xn = 0}. Montrer que H et Vect(1, . . . , 1) sont des sous-espaces

supplémentaires de Rn.

Exercice 3.

1. Soient F et G deux sous espaces vectoriels d’un R-espace vectoriel E de dimension finie n. Montrer que si

dimF + dimG > n, alors F ∩G contient un vecteur non nul.

2. Dans R4, on considère les vecteurs u = (1, 0, 1, 0), v = (0, 1,−1, 0), w = (1, 1, 1, 1), x = (0, 0, 1, 0) et

y = (1, 1, 0,−1). Soit F = Vect(u, v, w) et G = Vect(x, y). Quelles sont les dimensions de F,G, F + G et

F ∩G ?

Exercice 4. Soient E un R-espace vectoriel et (e1, . . . , en) une famille libre de vecteurs de E.

1. On pose f1 = e1 + e2, f2 = e2 + e3 et f3 = e3 + e1. Montrer que la famille (f1, f2, f3) est libre.

2. On pose g1 = e1 + e2, g2 = e2 + e3, g3 = e3 + e4 et g4 = e4 + e1. Montrer que la famille (g1, g2, g3) n’est pas

libre.

3. On pose h1 = e1 + e2, h2 = e2 + e3, . . . , hn−1 = en−1 + en et hn = en + e1. La famille de vecteurs

(h1, h2, . . . , hn−1, hn) est-elle libre ?

Exercice 5. On considère les vecteurs suivants de R5 : u1 =


1
2
0
1
1

, u2 =


0
1
1
1
1

 et u3 =


1
4
1
2
1

.

1. Montrer que la famille (u1, u2, u3) est libre.

2. Soit v ∈ R5. A quelle condition v ∈ Vect(u1, u2, u3) ?

3. Trouver un supplémentaire de E = Vect(u1, u2, u3) dans R5.
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2 Applications linéaires – Théorème du rang

Exercice 6. Soit α ∈ R. On considère l’application u :

u : R4 −→ R3

(x, y, z, t) 7−→ (x+ y + αz + t, x+ z + t, y + z)

1. Montrer que u est une application linéaire de R4 dans R3.

2. Déterminer le noyau et l’image de u.

Exercice 7. Pour chacune des applications qui suit, dire (en le justifiant) si elle est ou non linéaire :

1. f : R[X] −→ R[X]
P 7−→ 2PP ′

où P ′ désigne le polynôme dérivé de P ,

2. f : R[X] −→ R3[X] définie par “f(P ) est le reste de la division euclidienne de P par X4 − 5X + 2 (pour

P ∈ R[X])”.

Exercice 8. Soient E un R-espace vectoriel de dimension finie et u un endomorphisme de E.

1. Montrer que Ker(u) ⊂ Ker(u2) et que Im(u2) ⊂ Im(u).

2. (a) Montrer que Ker(u) = Ker(u2) si et seulement si Im(u) = Im(u2).

(b) Montrer que Ker(u) = Ker(u2) si et seulement si E = Ker(u)⊕ Im(u).

(c) Montrer que E = Ker(u)⊕ Im(u) si et seulement si Im(u) ⊂ Im(u2).

3. (a) Donner des exemples d’endomorphismes vérifiant les propriétés équivalentes du 2.

(b) Les équivalences sont-elles encore vraies en dimension infinie ?

Exercice 9. Soient E un R-espace vectoriel de dimension finie n et u un endomorphisme de E. On suppose qu’il

existe x0 ∈ E tel que B = (u(x0), u2(x0), . . . , un(x0)) forme une base de E.

1. Montrer que u est bijective.

2. Montrer qu’il existe (a0, . . . , an) ∈ Rn tels que un + an−1u
n−1 + · · ·+ a0idE = 0L(E).

Exercice 10. Soit E un K-espace vectoriel. On dit qu’un endomorphisme u ∈ L(E) est nilpotent s’il existe un

entier naturel p tel que up = 0L(E). On dira que u est ponctuellement nilpotent si, pour tout x ∈ E, il existe un

entier naturel p (qui dépend de x) tel que up(x) = 0E .

1. Démontrer que tout endomorphisme nilpotent est ponctuellement nilpotent.

2. Démontrer que la réciproque est vraie si E est de dimension finie.

3. Donner un exemple d’endomorphisme ponctuellememt nilpotent non nilpotent.

4. On suppose E de dimension finie n et soit u ∈ L(E) un endomorphisme nilpotent. Démontrer que un = 0L(E).

Indication : soit p le plus petit entier strictement positif tel que up = 0, montrer qu’il existe x ∈ E tel que

la famille (x, u(x), u2(x), . . . , up−1(x)) soit libre.

Exercice 11. Soit E un R-espace vectoriel de dimension finie. Montrer qu’il existe un endomorphisme f ∈ L(E)

tel que Ker(f) = Im(f) si et seulement si la dimension de E est paire.
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3 Matrices

Exercice 12. On considère l’endomorphisme u de R3[X] défini par :

u(P ) = (1−X2)P ′′ −XP ′,

pour tout polynôme P de R3[X].

1. Écrire la matrice de u dans la base canonique (1, X,X2, X3) de R3[X].

2. Déterminer des bases respectives de l’image et du noyau de u.

Exercice 13. On note S(n) = {A ∈ Mn(K) | A =t A} l’ensemble des matrices symétriques de taille n et

A(n) = {A ∈Mn(K) | A = −tA} l’ensemble des matrices antisymétriques.

1. Montrer que S(n) et A(n) sont deux sous-espaces vectoriels supplémentaires de Mn(K).

2. Calculer la dimension de chacun de ces sous-espaces vectoriels.

3. On considère l’endomorphisme φ de Mn(K) défini par φ(A) = tA pour tout A ∈ Mn(K). Calculer la trace

et le déterminant de φ.

Exercice 14. Soit u l’endomorphisme de R3 dont la matrice dans la base canonique estA =
1

3

−10 8 −4
−4 2 −4
8 −16 2

.

Soit E = {x ∈ R3| u(x) = 2x} et F = {x ∈ R3 | u(x) = −2x}.

1. Montrer que E et F sont des sous-espaces vectoriels de R3, en donner une base et leurs dimensions.

2. Montrer que R3 = E ⊕ F .

3. Soit e1 un vecteur directeur de E et (e2, e3) une base de F . Calculer la matrice de u dans la base (e1, e2, e3).

Exercice 15. Soit u ∈ L(R3,R4) définie par u(x, y, z) = (x− y, y + z, x+ y + 2z, x).

1. Ecrire la matrice A de u relativement aux bases canoniques de R3 et R4.

2. Montrer que A est équivalente à la matrice


1 0 0
0 1 0
0 0 1
0 0 0

.

Exercice 16. Soit u l’endomorphisme de R3 dont la matrice dans la base canonique Bc = (e1, e2, e3) est

A =

 3 1 −3
−1 1 1
1 1 −1

. On pose ε1 = (1; 1; 1), ε2 = (1;−1; 0), ε3 = (1; 0; 1) et B = (ε1, ε2, ε3).

1. Montrer que B constitue une base de R3.

2. Écrire la matrice de u dans cette base.

3. Déterminer une base de Keru et de Im(u).

Exercice 17. Soit A ∈Mn(C). On définit l’application :

u : Mn(C) −→Mn(C)

M 7−→ AM −MA
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1. Montrer que u est une application linéaire.

2. (a) En calculant u(In), déterminer s’il existe des matrices A tels que l’application u soit injective.

(b) Existe-il des matrices A tels que l’application u soit surjective ?

3. Soit A =

(
a 1
1 a+ 1

)
où a ∈ C. Donner la matrice de u dans la base canonique de M2(C).

4 Déterminant – Inversibilité

Exercice 18. Calculer les déterminants suivants :

∆1 =

∣∣∣∣∣∣
1 4 8
5 2 7
9 0 3

∣∣∣∣∣∣ ∆2 =

∣∣∣∣∣∣∣∣
x a a a
a x a a
a a x a
a a a x

∣∣∣∣∣∣∣∣ ∆3 =

∣∣∣∣∣∣∣∣∣∣∣∣

1 n · · · · · · n
n 2 n · · · n
...

. . .
. . .

. . .
...

...
. . .

. . . n
n · · · · · · n n

∣∣∣∣∣∣∣∣∣∣∣∣

Exercice 19. Soit a ∈ R et An =


a 1 · · · 1
...

. . .
. . .

...
...

. . . 1
a · · · · · · a

 ∈Mn(R). On note Dn = detAn.

1. Calculer D2 et D3.

2. Trouver une relation de récurrence entre Dn et Dn−1.

3. En déduire une expression de Dn en fonction de n.

4. Calculer le rang de la matrice An en fonction de a.

Exercice 20. On note GLn(Z) = {M ∈Mn(Z) |M−1 ∈Mn(Z)}. Soit M ∈Mn(Z). Montrer que M ∈ GLn(Z)

si et seulement si detM = ±1.

Exercice 21. Calculer l’inverse des matrices carrées suivantes : A =

 1 0 1
2 −1 1
−1 1 −1

, B =

1 1 −1
2 0 1
2 1 −1

, et

C =

 2 0 1
−1 1 1
1 0 1

.

Exercice 22. Soit A =

(
−1 −2
3 4

)
.

1. Calculer A2 − 3A+ 2I2.

2. En déduire que la matrice A est inversible et expliciter son inverse.

3. Pour tout entier n ≥ 2, déterminer le reste de la division euclidienne de Xn par X2 − 3X + 2.

4. En déduire An pour tout n ≥ 2.

Exercice 23. Soit A = (ai,j) ∈Mn(C) telle que pour tout i ∈ {1, . . . , n}, on ait
∑

1≤j≤n
j 6=i

|ai,j | < |ai,i|.

Montrer que A est inversible.
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