Feuille d'exercices nº 1

Intégrales généralisées

I. Rappels : comparaison locale de fonctions

Exercice 1.

- 1. Est-ce que] -1; $0[\cup]0$; 1[est un voisinage de 0? un voisinage pointé?
- 2. Soient f, g et h des fonctions réelles de la variable réelle définies sur un voisinage pointé de x_0 (avec $x_0 \in \mathbb{R}$ ou x_0 infini). Démontrer les assertions suivantes :
 - (a) si $g =_{x_0} o(h)$ alors $fg =_{x_0} o(fh)$,
 - (b) si $f \sim_{x_0} g$ et $h =_{x_0} o(f)$, alors $h =_{x_0} o(g)$,
 - (c) si $f =_{x_0} o(g)$ et $g =_{x_0} \mathcal{O}(h)$, alors $f =_{x_0} o(h)$.

Exercice 2. Soit $f(x) = x^4 + \cos(x) + \frac{1}{x}$. Pour les fonctions g suivantes, expliquer si l'on a ou non $f \sim_{+\infty} g$:

1.
$$g(x) = x^4$$
, 2. $g(x) = 2x^4$, 3. $g(x) = x^4 + 1$, 4. $g(x) = x^4 + \frac{1}{x}$.

Exercice 3. Vrai ou faux?

$$\begin{array}{lll} 1. \ x \sim_0 0, & 2. \ x^3 =_{+\infty} o(x^3 + x^2), & 3. \sin(x) =_0 x + o(x), & 4. \ 1 =_0 \cos(x) + o(x^2) \\ 5. \ o(f) + o(f) =_{x_0} o(f), & 6. \ o(x^2) + o(x) =_0 o(x), & 7. \ \ln(1+x) - x =_0 o(1). \end{array}$$

Exercice 4. Calculer les limites suivantes :

$$1. \lim_{x \to 0} \frac{\sin(2x)}{\sin(x)},$$

2.
$$\lim_{x \to 0} \left(\frac{2}{\sin^2(x)} - \frac{1}{1 - \cos(x)} \right)$$
.

II. Intégrales généralisées

Exercice 5. Étudier l'intégrabilité des fonctions suivantes sur les domaines considérés et déterminer la valeur de leur intégrale dans les cas intégrables :

- 1. $x \longmapsto e^{-x}$ sur $[0; +\infty[$ et $x \longmapsto e^{-|x|}$ sur \mathbb{R} ,
- 2. $x \mapsto \frac{1}{x^{\alpha}} \text{ sur } [1; +\infty[\text{ et sur }]0; 1], \text{ discuter du résultat en fonction de } \alpha \in \mathbb{R},$
- 3. $x \mapsto \ln(x)$ sur]0;1] et $x \mapsto \frac{\ln(x)}{x^2}$ sur $[1;+\infty[$.

Exercice 6. Les fonctions suivantes sont-elles absolument intégrables sur les intervalles donnés :

1.
$$t \mapsto \frac{\ln(t)}{t^{1/2}} \text{ sur }]0;1],$$

2.
$$x \mapsto \frac{e^{-x}}{\sqrt{x}} \text{ sur }]0; +\infty[,$$

3.
$$x \mapsto x^{a-1}e^{-x}$$
 sur $]0; +\infty[$, pour $a > 0$ fixé. On note lorsque cela a un sens $\Gamma(a) := \int_0^{+\infty} x^{a-1}e^{-x} dx$. Calculer $\Gamma(n+1)$ pour $n \in \mathbb{N}$.

Exercice 7. Démontrer l'énoncé suivant :

 $Th\'{e}or\`{e}me:$ Soit $f:[1,+\infty[\to \mathbb{R}^+$ une fonction continue et décroissante. On a alors l'équivalence suivante :

$$\lim_{N \to \infty} \sum_{n=1}^N f(n) \quad \text{existe} \qquad \Longleftrightarrow \qquad \int_1^\infty f(x) \, \mathrm{d}x \quad \text{converge}.$$

(Pour une fonction $f: I \longrightarrow \mathbb{R}^+$ continue, à valeurs positives, on dit que l'intégrale $\int_I f(t) dt$ converge si elle est finie, et diverge sinon.)

Exercice 8. Intégrales de Bertrand.

Soient $\alpha, \beta \in \mathbb{R}$. On veut étudier la nature de l'intégrale

$$\int_{e}^{+\infty} \frac{1}{t^{\alpha}(\ln t)^{\beta}} \, \mathrm{d}t.$$

(Les intégrales de Riemann sont supposées connues, mais pas les intégrales de Bertrand.)

- 1. On suppose $\alpha > 1$.
 - (a) Montrer qu'il existe $\gamma \in \mathbb{R}$ tel que $\frac{t^{\gamma}}{t^{\alpha}(\ln t)^{\beta}} \longrightarrow 0$ quand t tend vers $+\infty$.
 - (b) En déduire la convergence de l'intégrale étudiée.
- 2. On suppose $\alpha = 1$.
 - (a) Soit x > e. Calculer $\int_{e}^{x} \frac{1}{t(\ln t)^{\beta}} dt$.
 - (b) Déterminer pour quels $\beta \in \mathbb{R}$ l'intégrale étudiée converge.
- 3. On suppose enfin $\alpha < 1$.
 - (a) Déterminer la limite de $\frac{t}{t^{\alpha}(\ln t)^{\beta}}$ lorsque t tend vers $+\infty$.
 - (b) En déduire la nature de l'intégrale étudiée.

Exercice 9. Donner une condition nécessaire et suffisante sur $a \in \mathbb{R}$ pour que l'intégrale $\int_0^\infty \frac{t - \sin t}{t^a} dt$ définisse un réel.

2

Exercice 10. Déterminer la nature des intégrales suivantes :

1.
$$\int_{1}^{\infty} \frac{\arctan(x)}{x \ln(2+x^2)} \, \mathrm{d}x,$$

$$2. \int_0^\infty e^{-\sqrt{t}} \, \mathrm{d}t,$$

3.
$$\int_0^\infty e^{-\sqrt{\ln(t)}} dt,$$

4.
$$\int_0^1 \frac{\cosh x - \cos x}{x^{5/2}} \, \mathrm{d}x,$$

5.
$$\int_0^\infty \frac{\sqrt{x}\sin\left(1/x^2\right)}{\ln(1+x)} \, \mathrm{d}x.$$

Exercice 11. Montrer que les intégrales impropres suivantes existent :

$$1. \int_0^{+\infty} \frac{\sin(y)}{y} \, \mathrm{d}y,$$

2.
$$\int_0^{+\infty} \sin(x^2) dx$$
 (Intégrale de Fresnel)

Exercice 12. Démontrer l'énoncé suivant (Critère de Cauchy) :

Théorème : Soit $f:[1,+\infty[\to\mathbb{R}$ une fonction continue. Alors l'intégrale impropre $\int_1^{+\infty}f(x)\,\mathrm{d}x$ existe si et seulement si pour tout $\varepsilon>0$ il existe R>1 tel que pour tout a,b>R on a

$$\left| \int_{1}^{a} f(x) dx - \int_{1}^{b} f(x) dx \right| = \left| \int_{b}^{a} f(x) dx \right| < \varepsilon.$$

Exercice 13. Démontrer l'énoncé suivant :

 $\label{eq:theoreme: Soit f: [1,+\infty[] + mune fonction continue et intégrable sur [1;+\infty[et soit $g:[0,+\infty[] \to \mathbb{R}$ une fonction continue par morceaux. Supposons que $|g| \le f$. Alors l'intégrale généralisée $\int_1^{+\infty} g(x) \,\mathrm{d}x$ existe.}$

3

Exercice 14. Démontrons de deux manières différentes que $x \mapsto \frac{\sin t}{t}$ n'est pas intégrable sur $[1; +\infty[$.

- 1. (a) Montrer que pour tout $t \in \mathbb{R}$, $|\sin t| \ge \sin^2 t$.
 - (b) Démontrer que l'intégrale $\int_1^{+\infty} \frac{\cos(2t)}{t} dt$ est convergente.
 - (c) En déduire que $t \longmapsto \frac{\sin t}{t}$ n'est pas intégrable sur $[1; +\infty[$.
- 2. En utilisant les séries numériques :

(a) Soit
$$k \in \mathbb{N}^*$$
. Calculer $\int_{k\pi}^{(k+1)\pi} |\sin t| dt$.

(b) Soit
$$N \in \mathbb{N}^*$$
. Montrer que $\int_{\pi}^{N\pi} \frac{|\sin t|}{t} dt \ge \sum_{k=1}^{N-1} \frac{2}{(k+1)\pi}$.

- (c) Montrer que pour tout $k \in \mathbb{N}^*$, on a $\ln(k+1) \ln k \le \frac{1}{k}$. En déduire la limite de $\sum_{k=2}^{N} \frac{1}{k}$ lorsque $N \to +\infty$.
- (d) Conclure sur la non intégrabilité de $t \longmapsto \frac{\sin t}{t}$ sur $[1; +\infty[$.