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Math III - PMI

Feuille d’exercices no 10

Fonctions de plusieurs variables réelles - Etude locale

1 Inversion locale et fonctions implicites

Exercice 1. Montrer qu’il existe r > 0 tel que pour tout (a, b) ∈ R2 tel que |a| + |b| ≤ r il existe une unique

solution (x, y) ∈ R2 au système suivant. {
2x+ 3y + 5x2y3 = a

x− y + sin(x6y3) = b

Exercice 2. On considère l’équation 2xy − 2x+ y − 2 = 0.

a) Montrer que l’équation définit implicitement deux fonctions y(x) et x(y).

b) Représenter ces deux fonctions dans un même repère.

c) Montrer qu’elles sont bijectives et déterminer leurs fonctions reciproques.

Exercice 3. Soit f : R3 −→ R2 définie par f(x, y, z) = (x2 − y2 + z2 − 1, xyz − 1). Soit (x0, y0, z0) ∈ R3 tel que

f(x0, y0, z0) = (0, 0). Montrer qu’il existe un intervalle I contenant x0 et une application ϕ : I −→ R2 tels que

ϕ(x0) = (y0, z0) et f(x, ϕ(x)) = 0 pour tout x ∈ I.

Exercice 4. Soit f : R2 −→ R l’application f(x, y) = x2 + y2 − 1. Démontrer que pour x suffisamment proche

de 0, il existe un unique y = y(x) > 0 tel que f(x, y) = 0. Vérifier sans resolution explicite que y′(x) = x
y

Exercice 5. Soit E = Mn(R). On munit E d’une norme quelconque. Montrer qu’il existe deux voisinages ouverts

U et V de IdE tels que pour tout X ∈ U , il existe un unique Y ∈ V tel que : Y 3 = X. (Indication : On pensera à

développer (IdE +A)3.)

Exercice 6. On considère la fonction f :]−∞, 1[×R −→ R définie par f(x, y) = x3 − y3 − 1.

a) Montrer en utilisant le théorème des fonctions implicites, que pour tout (x0, y0) ∈] − ∞, 1[×R vérifiant

f(x0, y0) = 0 il existe un voisinage U de x0 et une fonction ϕ : U → R de classe C∞ vérifiant ϕ(x0) = y0

et f(x, ϕ(x)) = 0 pour tout x ∈ U .

b) Montrer qu’en fait f(x, y) = 0 définit implicitement une unique fonction ϕ : ]−∞, 1[→ R. Vérifier que ϕ est de

classe C3 dans ]−∞, 1[ et qu’elle vérifie : ϕ2ϕ′′′ + 6ϕϕ′ϕ′′ + 2(ϕ′)3 + 2 = 0.

Exercice 7. Soit (u, v) 7→ f(u, v) une application de classe C1 de R2 dans R. On pose g(x, y) = f(arctan y
x , arctan

x
y ).

La relation g(x, y) = 0 définit-elle une fonction implicite y = j(x) ? Si oui, calculer sa dérivée j′(x), et expliciter

la fonction j.
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Exercice 8. (Point fixe avec un paramètre)

Soit F : R×Rn → Rn une application de classe C1. On suppose qu’il existe un nombre réel λ ∈ [0; 1[ tel que pour

tout t ∈ R et pour tous x, y ∈ Rn,

∥F (t, x)− F (t, y)∥ ≤ λ∥x− y∥.

1. Justifier que pour tout t ∈ R, il existe une unique solution x ∈ Rn à l’équation F (t, x) = x. On notera xt

cette solution.

2. Montrer que l’application (g : R → Rn, t 7→ xt) est de classe C1. (On pourra appliquer le théorème des

fonctions implicites à (t, x) 7→ F (t, x)− x.)

3. Application. Montrer que, pour tout t ∈ R, le système suivant{
x = 1

2 sin(x+ y) + t− 1

y = 1
3 cos(x− y)− t+ 1

2

admet une unique solution (xt, yt) ∈ R2 et que l’application t 7→ (xt, yt) est de classe C1. (Indication : on

pourra utiliser la norme 1 ainsi que le théorème des accroissements finis et obtenir une inégalité concernant

| sin(x+ y)− sin(x′ + y′)| et | cos(x− y)− cos(x′ − y′)|.)

Exercice 9. Soit E = Rd[X] l’espace vectoriel des polynômes d’une variable réelle de degré au plus d. On le

munit de la norme infinie. Soit P0 = c0 + c1X + · · · + cdX
d un polynôme de E ayant une racine x0 ∈ R. On la

supposera simple.

On définit F : E ×R → R comme suit : étant donné P ∈ E s’écrivant P = a0 + a1X + · · ·+ xdX
d et pour t ∈ R,

on pose F (P, t) = a0 + a1t+ · · ·+ adt
d.

Montrer qu’il existe r > 0 tel que pour tout (a0, . . . , ad) ∈ Rd+1 tel que |ai−ci| < r, le polynôme P = a0+· · ·+adX
d

admet une unique racine simple xP dans ]x0 − r;x0 + r[ et la fonction P 7→ xP est de classe C1.

Remarque : avec moins de rigueur, on dira que les racines simples dépendent continûment (et même de façon C1)

des coefficients du polynôme.

Exercice 10. Soit U = R2 \ {(0, 0)} et soit f : U −→ U l’application définie par f(x, y) = (x2 − y2, 2xy).

a) Rappeler pourquoi U est un ouvert de R2.

b) Montrer que f est de classe C1 et calculer sa matrice Jacobienne. Quelle est la matrice de df(a,b) dans la base

canonique de R2 ?

c) Montrer que f est un difféomorphisme local.

d) Montrer que f n’est pas un difféomorphisme global.

Exercice 11. Soit f : R3 −→ R3 l’application définie par f(x, y, z) = (e2y + e2z, e2x − e2z, x− y).

Montrer que f est un difféomorphisme de R3 sur son image f(R3), et que f(R3) est un ouvert strictement inclus

dans R3.

Exercice 12. Soit f : R → R donnée par f(0) = 0 et pour x ̸= 0, f(x) = x + x2 sin(πx ). Montrer que f est

continue et différentiable sur R. Montrer que la différentielle en 0 est un isomorphisme. Montrer cependant que

la restriction de f à n’importe quel voisinage de 0 n’est pas injective. Qu’en pensez-vous ?
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Exercice 13. Soit a, b deux réels et soit f : R2 −→ R2 définie par f(x, y) = (x+ a sin(y), y + b sin(x)).

a) Calculer la matrice Jacobienne de f .

b) Pour quelles valeurs de a et b l’application f est-elle un difféomorphime local ?

Dans la suite on suppose que a, b vérifient cette condition.

c) Montrer que ∀t, t′ ∈ R on a | sin(t)− sin(t′)| ≤ |t− t′|.
d) En déduire que f est un difféomorphisme global sur son image.

Exercice 14. Soit f : R2 −→ R2 définie par f(x, y) = (sin(y/2)− x, sin(x/2)− y)

a) Justifier que f est de classe C1, calculer sa différentielle df(x,y) et montrer que la différentielle est inversible

∀(x, y) ∈ R2.

b) Montrer que f est un difféomorphisme de classe C1 de R2 sur son image f(R2). Justifier que f(R2) est un

ouvert.

c) Montrer que f−1 est lipschitzienne. (On prendra comme norme sur R2 la norme ∥(x, y)∥ = |x|+ |y|).
d) En deduire que f est un difféomorphisme de R2 sur R2.

e) Calculer dpf
−1 ou p = (1− π

2 ,
√
2
2 − π).

Exercice 15. Établir si les applications f : R → R et g : R → R définies par x 7→ x3 et x 7→ x + x3 sont des

difféomorphismes de R dans R.

Exercice 16. On considère l’application f : R2 → R définie par (x, y) 7→ x3 − 2xy+2y2 − 1. Trouver la pente de

la droite tangente à la courbe d’équation f(x, y) = 0 au point (1, 1). Préciser la position de la courbe par rapport

à sa tangente en ce point.

Exercice 17. On considère l’application f : R3 → R définie par (x, y, z) 7→ x2 − xy3 − y2z + z3.

Déterminer l’équation du plan tangent à cette surface au point (1, 1, 1).

Vérifier qu’au voisinage du point (1, 1, 1) la surface f(x, y, z) = 0 est le graphe d’une fonction z = g(x, y). Écrire

le développement limité de g au voisinage de (1, 1) d’ordre 2. Quelle est la matrice hessienne de g dans les bases

canoniques ? Quelle est la position de la courbe par rapport au plan tangent ?

2 Extrema locaux

Exercice 18. Soit f : R2 → R la fonction définie par f(x, y) = 2x3 + 6xy − 3y2 + 2.

1. Déterminer les extrema locaux de la fonction f .

2. La fonction f possède-t-elle d’extrema globaux sur R2 ?

3. Déterminer les extréma globaux de la restriction de f à l’ensemble

L = {(x, y) ∈ R2 : − 2 ≤ x ≤ 0, y = x+ 1}

en précisant en quels points ils sont atteints.
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Exercice 19. Soit f : R2 → R l’application définie par f(x, y) = 2x2+2y2+x2+y2−x4−y4 pour tout (x, y) ∈ R2.

1. Déterminer les extrema locaux de f .

2. À l’aide des coordonnées polaires, vérifier que f(x, y) ≤ 2r2− r4

4 , où r2 = x2+y2. En déduire que f(x, y) ≤ 4.

3. Trouver le maximum global de f et les points où il est atteint.

4. Y at-il un minimum global ?

Exercice 20. On définit f : R2 → R par f(x, y) = x3 + xy2 − 2x2 + 2.

1. Vérifier que si D est une droite passant par (0, 0), la restriction de f à D possède un maximum local à

l’origine.

2. Établir si (0, 0) est un point de maximum local.

Exercice 21. Déterminer les bornes de la fonction g : R2 → R définie par

g(x, y) = 3xy − 3x2 − y3

sur le compact K = [−1, 1]× [−1, 1].

Exercice 22. Déterminer sur le compact K = [0, 1] × [0, 1] la borne supérieure de la fonction f : R2 → R

suivante :

f(x, y) =

{
x(1− y2), x ≤ y

y(1− x2), x > y.
.

Exercice 23. Soient f et g les fonctions : R3 → R définies par f(x, y, z) = x2+2y2+ z2+xy−xz et g(x, y, z) =

x2 + y4 + y2 + z3 − 2xz. Démontrer que l’origine est un point critique pour f et g et en préciser la nature. Donner

la nature du point critique de g, P = (− 2
3 , 0,

2
3 ).
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