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Les séries de Fourier constituent un outil fondamental d’approximation des fonctions périodiques,
qu’il faut commencer par bien comprendre.

1 Fonctions périodiques

Definition 1 On appelle période d’une fonction f : R→ C tout nombre réel T tel que

∀t ∈ R , f(t+ T ) = f(t) .

On dit que f est périodique si elle admet une période non nulle, et plus précisément qu’elle est T -
périodique si T est une période strictement positive.

Exercice 1 Vérifier que l’ensemble des périodes d’une fonction f : R→ C est un sous-groupe de R.
Si de plus est f est continue et non constante, montrer que l’ensemble de ses périodes est de la forme
TZ avec T ∈ R+∗.

Une fonction T -périodique est entièrement déterminée par sa restriction à un intervalle semi-ouvert
de longueur T , ce que l’on peut exprimer un termes algébriques comme suit.

Proposition 1 L’ensemble

FT := {f : R→ C ; ∀t ∈ R , f(t+ T ) = f(t)}

des fonctions T -périodiques est un espace vectoriel, de même que, quel que soit a ∈ R, l’ensemble
F ([a, a+ T [) des fonctions g : [a, a+ T [→ C, et l’application

FT → F ([a, a+ T [)
f 7→ f|[a,a+T [

est un isomorphisme d’espaces vectoriels.

En pratique, nous allons considérer des fonctions périodiques de classe C k par morceaux.

Definition 2 Une fonction f : R → C périodique de période T est dite de classe C k par morceaux,
pour un entier naturel k, si sa restriction f|[0,T ] est de classe C k par morceaux, c’est-à-dire s’il existe
une subdivision (a0, . . . , an) de [0, T ] telle que la restriction de f à chacun des intervalles ouverts
]aj , aj+1[ (pour j ∈ {0, . . . , n− 1}) admette un prolongement de classe C k.

On rappelle qu’une fonction est dite de classe C 0 (par morceaux) si elle est continue (par mor-
ceaux). Dans la suite, on notera
• C k

T l’espace vectoriel des fonctions T -périodiques de classe C k,
• C k

mcx,T l’espace vectoriel des fonctions T -périodiques de classe C k par morceaux.

Proposition 2 Si g est de classe C k par morceaux sur un segment [a, a + T ], il existe une unique
fonction f qui soit T -périodique, de classe C k par morceaux et cöıncidant avec g sur [a, a+ T [.
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Démonstration. Pour x = a + nT avec n ∈ Z, on a nécessairement f(x) = f(a) = g(a). Pour
x ∈ R\(a+ TZ), il existe un unique entier n ∈ Z tel que

a+ nT < x < a+ (n+ 1)T ,

et on a nécessairement f(x) = f(x− nT ) = g(x− nT ). La fonction ainsi obtenue est par construction
T -périodique, et de classe C k par morceaux comme g (pour qu’une fonction T -périodique soit de
classe C k par morceaux il suffit que sa restriction à un segment de longueur T soit de classe C k par
morceaux). �

Attention, si g est de classe C k, f reste seulement de classe C k par morceaux en général.

Proposition 3 Toute fonction périodique continue par morceaux est bornée.

Démonstration. Pour montrer qu’une fonction T -périodique est bornée, il suffit de montrer qu’elle
bornée sur [0, T ]. Si f est continue par morceaux sur [0, T ], si (a0, . . . , an) est une subdivision adaptée
à f , la restriction de f à chaque intervalle ]aj , aj+1[, j ∈ {0, n − 1}, admet un prolongement continu

f̃j au segment [aj , aj+1]. Donc

|f(x)| ≤ max

(
max

j∈{0,...,n}
|f(aj)| , max

j∈{1,...,n}
max

t∈[aj ,aj+1]
|f̃j(t)|)

)
∀x ∈ [0, T ] .

�

Proposition 4 Toute fonction périodique continue est uniformément continue.

Démonstration. Soit f une fonction T -périodique. Alors sa restriction au segment [−T/2, 3T/2]
est continue donc uniformément continue. Soit ε > 0. Il existe η > 0 tel que, pour t, s ∈ [−T/2, 3T/2],

|t− s| ≤ η ⇒ |f(t)− f(s)| ≤ ε .

Soient x, y ∈ R tels que |x− y| ≤ T/2. Il existe un unique entier n ∈ Z tel que x− nT ∈ [0, T [. Alors
y − nT ∈ [−T/2, 3T/2]. Si de plus |x− y| ≤ η alors

|f(x)− f(y)| = |f(x− nT )− f(y − nT )| ≤ ε

puisque |(x− nT )− (y − nT )| = |x− y| ≤ η et x− nT , y − nT ∈ [−T/2, 3T/2]. Ceci démontre que f
est uniformément continue sur R. �

Proposition 5 Soit f : R→ C, T -périodique et continue par morceaux. Alors pour tout réel a on a∫ a+T

a
f(t)dt =

∫ T

0
f(t)dt .

Démonstration. Par la relation de Chasles,∫ a+T

a
f(t)dt =

∫ 0

a
f(t)dt +

∫ T

0
f(t)dt +

∫ a+T

T
f(t)dt .
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La dernière intégrale vaut ∫ a+T

T
f(t)dt =

∫ a

0
f(s− T )ds =

∫ a

0
f(s)ds

par changement de variables (translation) et périodicité de f , c’est-à-dire l’opposé de la première. �
Étant données deux fonctions f et g : R→ C T -périodiques et continue par morceaux, on note

〈f |g〉 :=
1

T

∫ T

0
f(t)g(t)dt .

Proposition 6 L’application
C k
mcx,T × C k

mcx,T → C
(f, g) 7→ 〈f |g〉

est sesquilinéaire 1 hermitienne positive sur C k
mcx,T .

Pour tout f ∈ C k
mcx,T , on note

‖f‖2 :=
√
〈f |f〉 .

Proposition 7 Si f ∈ C 0
mcx,T est telle que ‖f‖2 = 0 alors f est nulle sauf peut-être sur un ensemble

de points dont l’intersection avec [0, T ] est finie. Si f ∈ C 0
T est telle que ‖f‖2 = 0 alors f est nulle.

L’espace C 0
T est préhilbertien.

Proposition 8 Quelles que soient f et g ∈ C k
mcx,T , on a

Inégalité triangulaire : ‖f + g‖2 ≤ ‖f‖2 + ‖g‖2,

Inégalité de Cauchy–Schwarz : |〈f |g〉| ≤ ‖f‖2 ‖g‖2.

Désormais on choisit T = 2π, par commodité. Quel que soit n ∈ Z on note

En : t 7→ eint ,

et pour n ∈ N∗ on note
Cn : t 7→ cos(nt) , Sn : t 7→ sin(nt) .

De façon cohérente, C0 désignera la fonction constante égale à 1.

Proposition 9 La famille de fonctions {En ; n ∈ Z} est orthonormée dans l’espace préhilbertien C 0
2π.

La famille {Cn ; n ∈ N} ∪ {Sn ; n ∈ N∗} est orthogonale dans C 0
2π et

‖C0‖2 = 1 , ‖Cn‖2 =

√
2

2
∀n ∈ N∗ , ‖Sn‖2 =

√
2

2
∀n ∈ N .

Definition 3 On appelle polynôme trigonométrique 2 toute combinaison linéaire (finie) de la famille
{En ; n ∈ Z}.

1. c’est-à-dire linéaire à droite, semi-linéaire à gauche
2. On devrait dire � fonction polynôme trigonométrique �.
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Proposition 10 Soit P un polynôme trigonométrique. Alors il existe p ∈ N tel que

P =

p∑
n=−p

cnEn , cn := 〈En|P 〉 ,

ce qui équivaut à

P =
a0
2

+

p∑
n=1

(anCn + bnSn) , an := cn + c−n = 2〈Cn|P 〉 , bn := i(cn − c−n) = 2〈Sn|P 〉 .

On a de plus

‖P‖22 =

p∑
n=−p

|cn|2 =
|a0|2

4
+

1

2

p∑
n=1

(|an|2 + |bn|2) .

2 Séries trigonométriques

Definition 4 On appelle série trigonométrique toute série de fonctions Σun où un est combinaison
linéaire de En et E−n quel que soit n ∈ N.

Proposition 11 Les sommes partielles d’une série trigonométrique sont des polynômes trigonométriques.

On notera souvent les séries trigonométriques comme des séries bilatères
∑
cnEn, où il est entendu

que l’indice n parcourt Z : de même qu’une série � ordinaire � , une série bilatère
∑
zn s’identifie à

la suite de ses sommes partielles (σn)n∈N, définies par

σn =
n∑

`=−n
z` ,

et on dit qu’une série bilatère converge si la suite de ses sommes partielles converge, auquel cas on
note

+∞∑
n=−∞

zn = lim
n→+∞

(
n∑

`=−n
z`

)
.

Proposition 12 Une série trigonométrique
∑
cnEn est normalement convergente si et seulement si la

série numérique
∑

(|cn|+|c−n|) converge, ou de façon équivalente, la série numérique
∑

n≥1(|an|+|bn|)
définie par

an := cn + c−n , bn := i(cn − c−n)

converge.

Démonstration. Par convergence normale de
∑
cnEn on entend que la série bilatère numérique∑

‖cnEn‖∞ =
∑
|cn| converge. Si c’est le cas, alors la suite des sommes partielles de la série

∑
(|cn|+

|c−n|) est majorée par
∑+∞

n=−∞ |cn| donc
∑

(|cn|+|c−n|), série à termes positifs, converge. Réciproquement,
la convergence de la série

∑
(|cn| + |c−n|) implique que la suite (

∑n
`=−n |c`|)n∈N est majorée et

comme elle est croissante, cette suite converge. Pour montrer l’équivalence entre la convergence de∑
(|cn|+ |c−n|) et celle de

∑
n≥1(|an|+ |bn|), on utilise les relations

an = cn + c−n , bn = i(cn − c−n) , cn =
an − ibn

2
, c−n =

an + ibn
2

,
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pour obtenir à l’aide de l’inégalité triangulaire :

|cn|+ |c−n| ≤ |an|+ |bn| ≤ 2(|cn|+ |c−n|) .

�

3 Coefficients de Fourier

Definition 5 Étant donnée une fonction f : R → C, 2π-périodique et continue par morceaux, on
définit ses coefficients de Fourier exponentiels par

cn(f) := 〈En|f〉 =
1

2π

∫ π

−π
f(t)e−int dt , n ∈ Z ,

et ses coefficients de Fourier trigonométriques par

an(f) := 2 〈Cn|f〉 =
1

π

∫ π

−π
f(t) cos(nt) dt , n ∈ N ,

bn(f) := 2 〈Sn|f〉 =
1

π

∫ π

−π
f(t) sin(nt) dt , n ∈ N .

Noter que b0(f) = 0 : il est défini par commodité afin d’avoir les relations

an(f) = cn(f)+c−n(f) , bn(f) = i(cn(f)−c−n(f)) , cn(f) =
an(f)− ibn(f)

2
, c−n(f) =

an(f) + ibn(f)

2
,

quel que soit n ∈ N.

Remarque 1
• Si f est à valeurs réelles, ses coefficients trigonométriques an(f) et bn(f) sont tous réels.
• Si f est paire, ses coefficients trigonométriques bn(f) sont tous nuls.
• Si f est impaire, ses coefficients trigonométriques an(f) sont tous nuls.

On peut décliner quelques propriétés algébriques des coefficients de Fourier.

Proposition 13 Soit f : R → C, 2π-périodique et continue par morceaux. On note f la fonction
conjuguée, f̌ : t 7→ f(−t) la fonction symétrique et pour a ∈ R, fa : t 7→ f(t+ a) la fonction translatée
Alors

cn(f) = c−n(f) , cn(f̌) = c−n(f) , cn(fa) = eina cn(f) .

Proposition 14 Soit f : R→ C, 2π-périodique et continue par morceaux. Ses coefficients de Fourier
vérifient

|cn(f)| ≤ ‖f‖1 ≤ ‖f‖2 ≤ ‖f‖∞ .
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Definition 6 Étant donnée une fonction f : R → C, 2π-périodique et continue par morceaux, on
définit sa série de Fourier comme la série trigonométrique

∑
cn(f)En, qu’on écrit souvent 3∑

cn(f)eint , ou encore
a0(f)

2
+
∑
n≥1

(an(f) cos(nt) + bn(f) sin(nt)) .

Pour toute fonction f : R → C, 2π-périodique et continue par morceaux, on notera Sp(f) les
sommes partielles de sa série de Fourier pour p ∈ N (ne pas confondre Sn dans Sn(f) avec la notation
Sn pour sin(nt), que l’on n’utilisera plus désormais) :

Sp(f) : t 7→
p∑

n=−p
cn(f)eint =

a0(f)

2
+

p∑
n=1

(an(f) cos(nt) + bn(f) sin(nt))

Proposition 15 Soit f : R → C, 2π-périodique et continue par morceaux et Sp(f) les sommes par-
tielles de sa série de Fourier. Alors pour tout p ∈ N, f − Sp(f) est orthogonal au sous-espace vectoriel
engendré par (En)|n|≤p. Autrement dit, Sp est la projection orthogonale sur Vect

(
(En)|n|≤p

)
.

Démonstration. Par définition de Sp(f) et par linéarité de 〈·|·〉 par rapport à sa deuxième variable,

〈Em, f − Sp(f)〉 = 〈Em, f〉 −
∑
|n|≤p

〈En, f〉〈Em, En〉 = 0

puisque la famille (En)n∈Z est orthonormée. �

Corollaire 1 (Inégalité de Bessel) Soit f : R → C, 2π-périodique et continue par morceaux et
Sp(f) les sommes partielles de sa série de Fourier. Alors pour tout p ∈ N,

‖Sp(f)‖2 ≤ ‖f‖2 .

En outre, la série bilatère
∑
|cn(f)|2 et la série

∑
(|an(f)|2 + |bn(f)|2) convergent et l’on a

+∞∑
n=−∞

|cn(f)|2 =
|a0(f)|2

4
+

1

2

+∞∑
n=1

(|an(f)|2 + |bn(f)|2) ≤ ‖f‖22 .

Démonstration. Puisque

f = f − Sp(f) + Sp(f) , f − Sp(f) ⊥ Sp(f) ,

on a
‖f‖22 = ‖f − Sp(f)‖2 + ‖Sp(f)‖2 .

(En vertu du théorème de Pythagore dans l’espace C k
mcx,T muni de 〈·|·〉 !) La deuxième assertion

provient du fait qu’une série à termes positifs converge si et seulement si la suite de ses sommes
partielles est majorée. �

Noter que l’inégalité |cn(f)| ≤ ‖f‖2 de la Proposition 14 est une conséquence de l’inégalité de
Bessel, cette dernière étant plus précise.

3. avec le même abus que pour les séries entières, sans flèche bien que ce soit une série de fonctions et non une série
numérique
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Corollaire 2 Les coefficients de Fourier d’une fonction f : R → C, 2π-périodique et continue par
morceaux tendent vers zéro à l’infini, c’est-à-dire que

lim
|n|→+∞

cn(f) = 0 , lim
n→+∞

an(f) = 0 , lim
n→+∞

bn(f) = 0 .

Démonstration. Ceci vient du corollaire précédent et du fait que le terme général d’une série
convergente tend vers zéro. �

Corollaire 3 (Lemme de Riemann-Lebesgue) Si f est une fonction continue par morceaux sur
le segment [a, b] alors on a

lim
n→+∞

∫ b

a
f(t) eint dt = 0 .

Noter que ce passage à la limite sous le signe
∫

ne se déduit pas des théorèmes � classiques � car
la suite de fonctions (En)n∈N ne converge même pas simplement. Pour le démontrer, on remarque que
grâce à la relation de Chasles, il suffit de le montrer pour a < b < a+ 2π, et si c’est le cas on applique
le corollaire 2 à la fonction 2π-périodique cöıncidant avec f sur [a, b] et nulle sur ]b, a+ 2π[.

Plus f est régulière, plus ses coefficients de Fourier tendent rapidement vers zéro, c’est l’objet du
résultat suivant.

Proposition 16 Si f : R → C est 2π-périodique et de classe C k (pour k ∈ N) alors ses coefficients
de Fourier vérifient

cn(f) = o(1/|n|k) , |n| → +∞ .

Démonstration. Par intégration par parties successives, on montre que

cn(f (k)) = (in)k cn(f)

et comme cn(f (k)) tend vers zéro lorsque |n| → +∞, on en déduit que cn(f) = o(1/|n|k). �

Théorème 1 Si une série trigonométrique
∑
γnEn converge uniformément sur R alors sa somme f

est continue, 2π-périodique, et ses coefficients de Fourier sont précisément cn(f) = γn.

Démonstration. La somme f =
∑+∞

n=−∞ γnEn est continue comme limite uniforme d’une suite
(celle des sommes partielles) de fonctions continues. Elle est 2π-périodique comme limite d’une suite
de fonction 2π-périodiques. De plus ses coefficients de Fourier sont définis par

cn(f) =
1

2π

∫ π

−π

+∞∑
m=−∞

γmeimte−int dt

et comme la série
∑
γnEn converge uniformément, on peut intervertir

∫
et
∑

, ce qui donne

cn(f) =

+∞∑
m=−∞

1

2π

∫ π

−π
γmei(m−n)t dt = γn .

�
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4 Convergences des séries de Fourier

4.1 Convergence simple

Théorème 2 (Dirichlet) Soit f : R → C une fonction 2π-périodique, continue par morceaux. On
suppose en outre que

t 7→ f(t)− f(t−0 )

t− t0
et t 7→ f(t)− f(t+0 )

t− t0
ont une limite respectivement quand t↗ t0 et quand t↘ t0, où f(t−0 ) désigne la limite à gauche de f
en t0 et f(t+0 ) sa limite à droite. Alors la série de Fourier de f converge en t0 et

+∞∑
n=−∞

cn(f)eint0 =
f(t−0 ) + f(t+0 )

2
.

Attention, si les valeurs des limites

lim
t↗t0

f(t)− f(t−0 )

t− t0
et lim

t↘t0

f(t)− f(t+0 )

t− t0

n’apparaissent pas dans la conclusion, l’existence de ces limites est cruciale dans la démonstration. Ces
limites existent par exemple pour toutes les fonctions de classe C 1 par morceaux , auquel ce théorème
s’applique donc. (Il est faux pour les fonctions � seulement � continues par morceaux en général.)

La démonstration repose sur les propriétés du � noyau de Dirichlet � données ci-dessous et sur le
lemme de Riemann–Lebesgue.

Proposition 17 Soit p ∈ N et Dp :=
∑p

n=−pEn. Le polynôme trigonométrique Dp est à valeurs
réelles, pair, et vérifie :

1

2π

∫ π

−π
Dp = 1 ,

∀t ∈ R\{2πZ} , Dp(t) =
sin
(
(p+ 1

2)t
)

sin
(
t
2

) ,

∀t ∈ 2πZ , Dp(t) = 2p+ 1 .

Démonstration. [Théorème de Dirichlet] On commence par observer que, par définition de Dp,
puis grâce à sa parité et au fait qu’il soit de moyenne 1,

Sp(f)(t0)−
f(t−0 ) + f(t+0 )

2
=

1

2π

∫ π

0
(f(t0+θ)−f(t+0 ))Dp(θ) dθ +

1

2π

∫ π

0
(f(t0−θ)−f(t−0 ))Dp(θ) dθ .

Il s’agit de montrer que les deux intégrales ci-dessus tendent vers zéro lorsque p → +∞. Nous allons
traiter la première, la démonstration étant analogue pour la seconde. La difficulté provient du fait que
la suite de fonctions (Dp)p∈N ne converge pas uniformément ni même simplement sur [0, π]. D’après
l’expression explicite de Dp, on a∫ π

0
(f(t0 + θ)− f(t+0 ))Dp(θ) dθ =

∫ π

0
g(θ) sin

(
(p+ 1

2)θ
)

dθ ,
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où g est la fonction continue par morceaux définie par

g(θ) =
f(t0 + θ)− f(t+0 )

sin
(
θ
2

) , si θ ∈ [−π, π]\{0} ,

g(0) = 2 lim
θ↘0

f(t0 + θ)− f(t+0 )

θ
.

Comme
sin
(
(p+ 1

2)θ
)

= sin(pθ) cos
(
θ
2

)
+ cos(pθ) sin

(
θ
2

)
,

on obtient donc grâce au lemme de Riemann–Lebesgue que

lim
p→+∞

∫ π

0
g(θ) sin

(
(p+ 1

2)θ
)

dθ = 0 .

�

4.2 Convergence normale

Théorème 3 Soit f : R→ C une fonction 2π-périodique, de classe C 1 par morceaux. On suppose en
outre qu’elle est continue. Alors la série de Fourier de f converge normalement et sa somme est f .

Démonstration. Le fait que f soit classe C 1 par morceaux et continue implique que (la série
bilatère numérique)

∑
cn(f) converge absolument. En effet, si (a0, . . . , ap) est une subdivision de [0, 2π]

adaptée à f , on a

cn(f) =
1

2π

p−1∑
j=0

∫ aj+1

aj

f̃j(t)e
−int dt ,

avec f̃j de classe C 1 sur [aj , aj+1], sachant que f et f̃j cöıncident sur ]aj , aj+1[. Comme f est continue,

on a de plus f̃j(aj+1) = f̃j+1(aj+1) = f(aj+1). Ainsi, en intégrant par parties chaque intégrale, on
obtient

cn(f) =
1

2iπn

p−1∑
j=0

∫ aj+1

aj

f̃ ′j(t)e
−int dt +

1

2iπn

p−1∑
j=0

[f̃j(t)e
−int]

aj+1
aj =

cn(g)

in

où g est la fonction 2π-périodique continue par morceaux définie par

g(x) = f̃ ′j(x) si x ∈ [aj , aj+1[ .

La somme des � termes de bord � est nulle car

p−1∑
j=0

[f̃j(t)e
−int]

aj+1
aj =

p−1∑
j=0

(f̃j(aj+1)e
−inaj+1 − f̃j(aj)e

−inaj ) =

f̃p−1(ap)e
−inap − f̃0(a0)e

−ina0 +

p−2∑
j=1

(f̃j(aj+1)− f̃j+1(aj+1)) e−inaj+1 = f(2π)e−2iπn − f(0) = 0 .

Par suite,

|cn(f)| ≤ |cn(g)|
|n|

≤ |cn(g)|2 +
1

4|n|2
,
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donc la série
∑
|cn(f)| converge comme somme de deux séries convergentes. Enfin, d’après le théorème

de Dirichlet et puisque f est continue, on a pour tout t ∈ R,

+∞∑
n=−∞

cn(f)eint = f(t) .

�
Attention, la continuité de f est cruciale dans ce théorème.

4.3 Convergence en moyenne quadratique

Théorème 4 (Parseval) Soit f : R→ C une fonction 2π-périodique, continue par morceaux. Alors
la suite des sommes partielles (Sp(f))p∈N de la série de Fourier de f est telle que

lim
p→+∞

‖Sp(f) − f‖2 = 0 ,

et

lim
p→+∞

‖Sp(f)‖22 =
+∞∑

n=−∞
|cn(f)|2 =

|a0(f)|2

4
+

1

2

+∞∑
n=1

(|an(f)|2 + |bn(f)|2) = ‖f‖22 .

La démonstration repose sur le résultat d’approximation suivant.

Théorème 5 Soit f : R→ C une fonction 2π-périodique, continue par morceaux. Quel que soit ε > 0,
il existe un polynôme trigonométrique P tel que

‖f − P‖2 ≤ ε .

Démonstration. On procède en trois étapes.
1) Étant donné ε > 0, il existe une fonction g : R → C, continue 2π-périodique et affine par

morceaux telle que
‖f − g‖2 ≤ ε .

(Attention, ce serait faux avec la norme∞ !) Pour la construire, on commence par � approcher � f par
une fonction ϕ en escalier et 2π-périodique : grâce à la continuité uniforme de toute fonction continue
sur un segment, on peut en effet trouver une fonction en escalier 2π-périodique telle que

‖f − ϕ‖∞ ≤ ε
2 .

(Ici, ‖f‖∞ signifie max{|f(t)| ; t 6= ak , k = 0, . . . , n} si (ak)0≤k≤n est une subdivision adaptée à f .)
Puis on � régularise � ϕ en posant, si (a0, . . . , an) est une subdivision adaptée à ϕ et si α > 0 est
strictement inférieur à la moitié du pas de cette subdivision,

g(t) =


ϕ(t) (t− aj)/α , si t ∈ [aj , aj + α] ,
ϕ(t) , si t ∈ [aj + α, aj+1 − α] ,
ϕ(t) (aj+1 − t)/α , si t ∈ [aj+1 − α, aj+1] .

Le calcul montre que ∫ 2π

0
|ϕ(t)− g(t)|2dt ≤ 2αn ‖ϕ‖2∞ .
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Quitte à diminuer α, on peut donc supposer que

‖ϕ− g‖2 ≤ ε
2 .

Finalement, on a par l’inégalité triangulaire

‖f − g‖2 ≤ ‖f − ϕ‖2 + ‖ϕ− g‖2 ≤ ‖f − ϕ‖∞ + ‖ϕ− g‖2 ≤ ε
2 + ε

2 = ε .

(Rappelons que ‖u‖2 ≤ ‖u‖∞ avec notre définition de ‖u‖2, la moyenne quadratique de u.)
2) La fonction g étant continue 2π-périodique et affine par morceaux, elle est limite uniforme

des sommes partielles de sa série de Fourier (d’après le théorème 3). Donc il existe un polynôme
trigonométrique P tel que

‖g − P‖∞ ≤ ε .

Finalement, par l’inégalité triangulaire on a

‖f − P‖2 ≤ ‖f − g‖2 + ‖g − P‖2 ≤ ‖f − g‖2 + ‖g − P‖∞ ≤ 3ε .

�
Démonstration. [Théorème de Parseval] Soit ε > 0. Il existe un polynôme trigonométrique P tel

que

‖f − P‖2 ≤
ε

2
.

Ainsi on a par l’inégalité triangulaire, pour tout p ∈ N,

‖Sp(f) − f‖2 ≤ ‖Sp(f) − Sp(P )‖2 + ‖Sp(P ) − P‖2 + ‖P − f‖2 ≤ ‖Sp(P ) − P‖2 + 2 ‖P − f‖2

d’après l’inégalité de Bessel. Or comme P est un polynôme trigonométrique, il existe p0 ∈ N tel que
pour tout p ≥ p0, Sp(P ) = P , d’où

‖Sp(f) − f‖2 ≤ ε .

Ceci prouve la première assertion, et implique la deuxième car

lim
p→+∞

‖Sp(f) − f‖2 = 0 =⇒ lim
p→+∞

‖Sp(f)‖2 = ‖f‖2 .

�

Exercice 2 Calculer les coefficients de Fourier de la fonction 2π-périodique telle que f(t) = t2 pour
t ∈ [−π, π]. En déduire les égalités suivantes, respectivement à l’aide du théorème de Dirichlet et à
l’aide du théorème de Parseval :

+∞∑
n=1

1

n2
=

π2

6
,

+∞∑
n=1

1

n4
=

π4

90
.


