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Les séries de Fourier constituent un outil fondamental d’approximation des fonctions périodiques,
u’il fau mmencer par bien comprendre.
il faut commencer par bien co endre

1 Fonctions périodiques
Definition 1 On appelle période d’une fonction f : R — C tout nombre réel T tel que
VieR, ft+T)= f(t).

On dit que f est périodique si elle admet une période non nulle, et plus précisément qu’elle est T-
périodique si T' est une période strictement positive.

Exercice 1 Vérifier que l’ensemble des périodes d’une fonction f : R — C est un sous-groupe de R.
Si de plus est f est continue et non constante, montrer que l’ensemble de ses périodes est de la forme
TZ avec T € RT*,

Une fonction T-périodique est entierement déterminée par sa restriction a un intervalle semi-ouvert
de longueur T, ce que 'on peut exprimer un termes algébriques comme suit.

Proposition 1 L’ensemble
Fr={fR>C;VteR, ft+T)=f(t)}

des fonctions T-périodiques est un espace vectoriel, de méme que, quel que soit a € R, l’ensemble
F([a,a+ T[) des fonctions g : [a,a + T[— C, et l'application

Fr — F(a,a+T))
I flaatT]

est un isomorphisme d’espaces vectoriels.
En pratique, nous allons considérer des fonctions périodiques de classe €* par morceaux.

Definition 2 Une fonction f : R — C périodique de période T est dite de classe €% par morceaux,
pour un entier naturel k, si sa restriction fijo ) est de classe ¢ k par morceauz, c’est-a-dire s’il existe
une subdivision (ag,...,a,) de [0,T] telle que la restriction de f a chacun des intervalles ouverts
laj,aji1] (pour j € {0,...,n — 1} ) admette un prolongement de classe €*.

On rappelle qu'une fonction est dite de classe €° (par morceaux) si elle est continue (par mor-
ceaux). Dans la suite, on notera

° %jlf I'espace vectoriel des fonctions T-périodiques de classe €,
° r’flCX’T I’espace vectoriel des fonctions T-périodiques de classe €% par morceaux.
Proposition 2 Si g est de classe €F par morceaux sur un segment [a,a + T, il existe une unique
fonction f qui soit T-périodique, de classe €* par morceauz et coincidant avec g sur [a,a + T1.
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Démonstration. Pour 2 = a + nT avec n € Z, on a nécessairement f(z) = f(a) = g(a). Pour
x € R\(a +T7Z), il existe un unique entier n € Z tel que

a+nT <z <a+(n+1)T,

et on a néeessairement f(z) = f(x —nT) = g(x —nT). La fonction ainsi obtenue est par construction
T-périodique, et de classe €% par morceaux comme g (pour qu'une fonction T-périodique soit de
classe €% par morceaux il suffit que sa restriction a un segment de longueur 7' soit de classe €* par
morceaux). O
Attention, si g est de classe €%, f reste seulement de classe €* par morceaux en général.

Proposition 3 Toute fonction périodique continue par morceaux est bornée.

Démonstration. Pour montrer qu'une fonction T-périodique est bornée, il suffit de montrer qu’elle
bornée sur [0, 7. Si f est continue par morceaux sur [0, 7], si (ao, ..., a,) est une subdivision adaptée
a f, la restriction de f a chaque intervalle Jaj,a;11[, j € {0,n — 1}, admet un prolongement continu

fj au segment [a;, a;j41]. Donc

]f(x)|§max< max _|f(a;)|, max max ]E(t))) Vo € [0,T].

j€{0,...,n} T ge{l,..n} telaj,a 4]

Proposition 4 Toute fonction périodique continue est uniformément continue.

Démonstration. Soit f une fonction T-périodique. Alors sa restriction au segment [—1'/2,37"/2]
est continue donc uniformément continue. Soit € > 0. Il existe n > 0 tel que, pour ¢, s € [-1/2,3T/2],

t—sl<n = |f(t)-f(s)l<e.

Soient z, y € R tels que |z — y| < T/2. 1l existe un unique entier n € Z tel que x — nT € [0, T]. Alors
y—nT € [-T/2,3T/2]. Si de plus |x — y| < n alors

[f(@) = f(y)l = [f(x = nT) - fly —nT)| < e

puisque [(z —nT) — (y —nT)| =z —y| <netxz—nT, y —nT € [-T/2,3T/2]. Ceci démontre que f
est uniformément continue sur R. (]

Proposition 5 Soit f: R — C, T-périodique et continue par morceaux. Alors pour tout réel a on a

/GM F(H)dt = /OT Ft)dt .

Démonstration. Par la relation de Chasles,

/aMf (t)dt = / " paa + /0 "t + /T .
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La derniere intégrale vaut
a+T a a
/ F(t)dt = / F(s—T)ds = / f(5)ds
T 0 0

par changement de variables (translation) et périodicité de f, c’est-a-dire 'opposé de la premiere. [J
Etant données deux fonctions f et g : R — C T-périodiques et continue par morceaux, on note

Ti
(flg) = ;/O f()g(t)dt.

Proposition 6 L’application
k k
CnexT X Cpexr —  C

e e ()

est sesquilinéaire - hermitienne positive sur ‘KmCX’T.

Pour tout f € an’icx 7, on note

[fll2 == V(1) -

Proposition 7 Si f € %&CX’T est telle que ||f||2 =0 alors f est nulle sauf peut-étre sur un ensemble

de points dont Uintersection avec [0,T] est finie. Si f € €2 est telle que ||f|l2 = 0 alors f est nulle.
L’espace ‘5% est préhilbertien.

Proposition 8 Quelles que soient f et g € Cgr’fmxj, on a
Inégalité triangulaire : || f + gll2 < ||fll2 + |lgll2,
Inégalité de Cauchy—Schwarz : |(f|g)| < ||fll2lgll2-
Désormais on choisit T' = 27, par commodité. Quel que soit n € Z on note

int

E,:t—e™

et pour n € N* on note
Cp it —cos(nt), Sp:tw—sin(nt).

De facon cohérente, Cy désignera la fonction constante égale a 1.

Proposition 9 La famille de fonctions {E,; n € Z} est orthonormée dans l’espace préhilbertien €y .
La famille {Cy,; n € N} U{S,; n € N*} est orthogonale dans €y, et

V3L V2
ICollz =1, [[Cullz = = ¥ € N, [[Sulla = *5- ¥ € N.

Definition 3 On appelle polynome trigonométrique? toute combinaison linéaire (finie) de la famille
{En; neZ}.

1. c’est-a-dire linéaire a droite, semi-linéaire a gauche
2. On devrait dire <« fonction polynéme trigonométrique .
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Proposition 10 Soit P un polynome trigonométrique. Alors il existe p € N tel que

p
P = Z cnbn, cpi= <En|P>7

n=-—p

ce qui équivaut a

p
= 50 Z (anCp +brSn),  an:i=cp+ c—pn =2(Cph|P), by :=1i(cn — c—p) = 2(Sy|P) .

n=1

On a de plus

\ao! 1 J
1P|l = Z len]? = + 5 > (lanl* + [0al*).

n=—p n=1

2 Séries trigonométriques

Definition 4 On appelle série trigonométrique toute série de fonctions Xu, ot u, est combinaison
linéaire de E,, et E_,, quel que soit n € N.

Proposition 11 Les sommes partielles d’une série trigonométrique sont des polynoémes trigonométriques.

On notera souvent les séries trigonométriques comme des séries bilatéres . ¢, E,,, ou il est entendu
que l'indice n parcourt Z : de méme qu’une série < ordinaire > , une série bilatere »_ z, s’identifie a
. . o o
la suite de ses sommes partielles neN, définies par

n
On = E 20

l=—n

et on dit qu’une série bilatere converge si la suite de ses sommes partielles converge, auquel cas on
note

Proposition 12 Une série trigonométrique »_ ¢, F,, est normalement convergente si et seulement si la
série numérique Y (|cn|+|c—n|) converge, ou de facon équivalente, la série numérique ., . (|an|+|bn|)
définie par -

Ap = Cp + Copy by = i(cn — c_p)

converge.

Démonstration. Par convergence normale de > ¢, E, on entend que la série bilatére numérique
dllenEnlloo = lenl converge. Si c’est le cas, alors la suite des sommes partielles de la série > (|c, |+
|c_n|) est majorée par Zn, o [en] donc Y (Jcp|+|c—nl), série a termes positifs, converge. Réciproquement,
la convergence de la série > (|cn| + |c—n|) implique que la suite (3 ,__, |c/|)nen est majorée et
comme elle est croissante, cette suite converge. Pour montrer ’équivalence entre la convergence de
Y (Jen| + |e—n|) et celle de >, < (Jan| + |bn|), on utilise les relations

an:cn_‘_c—n,bn:i(cn_c—n)a Cn:w7c—n:wa

2
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pour obtenir a l'aide de I'inégalité triangulaire :

lcn] + le—n] < Jan] + [bn| < 2(Jcal + |c—nl) -

3 Coefficients de Fourier

Definition 5 Etant donnée une fonction f : R — C, 2w-périodique et continue par morceaux, on
définit ses coefficients de Fourier exponentiels par

Cn(f) = <En’f> = % /_ f(t)e_m't dt, neZ,

et ses coefficients de Fourier trigonométriques par

an(f) = 2(Colf) = % " f(t)cos(nt)dt, neN,
bn(f) =2 <Sn|f> - % ! f(f) sin(nt) dt, n € N

Noter que by(f) = 0 : il est défini par commodité afin d’avoir les relations

anl7) = en(F e a(f), bald) = ilenl)—en(h), en) = 2O o gy = anlDD A TalD)

quel que soit n € N.

Remarque 1
o Si f est a valeurs réelles, ses coefficients trigonométriques ay(f) et b, (f) sont tous réels.
e Si f est paire, ses coefficients trigonométriques by (f) sont tous nuls.
e Si f est impaire, ses coefficients trigonométriques a,(f) sont tous nuls.

On peut décliner quelques propriétés algébriques des coefficients de Fourier.
Proposition 13 Soit f : R — C, 2w-périodique et continue par morceauz. On note f la fonction

conjuguée, f :t— f(—t) la fonction symétrique et pour a € R, f, : t — f(t+a) la fonction translatée
Alors

Cn(?) =c-n(f), Cn(f) =cn(f), cnl(fa) = e’ en(f) -

Proposition 14 Soit f : R — C, 2w-périodique et continue par morceauzx. Ses coefficients de Fourier
vérifient

len(OI < IfI < Wfll2 < 1l -
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Definition 6 Etant donnée une fonction f : R — C, 2w-périodique et continue par morceaux, on
définit sa série de Fourier comme la série trigonométrique . ¢, (f)En, qu’on écrit souvent®

ch(f)emt, ou encore + Z (an(f)cos(nt) + b,(f) sin(nt)) .

n>1

Pour toute fonction f : R — C, 2m-périodique et continue par morceaux, on notera S,(f) les
sommes partielles de sa série de Fourier pour p € N (ne pas confondre S,, dans S, (f) avec la notation
Sy, pour sin(nt), que 'on n’utilisera plus désormais) :

S -t S e\ int (L()(f)
P(f) U= Z Cn(f)e = 5 +

n=-—p n=1

(an(f) cos(nt) + b,(f) sin(nt))

NE

Proposition 15 Soit f : R — C, 2m-périodique et continue par morceaux et Sy(f) les sommes par-
tielles de sa série de Fourier. Alors pour tout p € N, f—S,(f) est orthogonal au sous-espace vectoriel
engendré par (Ep)jn|<p- Autrement dit, S, est la projection orthogonale sur Vect ((En)|n|§p).

Démonstration. Par définition de S,(f) et par linéarité de (-|-) par rapport a sa deuxieme variable,
(Emy f = Sp(£)) = (Ems f) = > {En, [)(Bm, En) = 0
In|<p

puisque la famille (E,),ecz est orthonormée. O

Corollaire 1 (Inégalité de Bessel) Soit f : R — C, 2w-périodique et continue par morceauz et
Sp(f) les sommes partielles de sa série de Fourier. Alors pour tout p € N,

1Sp(Hllz < [1fll2-

En outre, la série bilatére > e, (f)]? et la série S (lan(f)|> + |bn(f)|?) convergent et l'on a

+o0

S fea(ppt = ot Zmn DI+ 1ba(HP) < 1713

n=—oo

Démonstration. Puisque

f:f_sp(f)+sp(f)7 f_Sp(f)J—Sp(f)7

on a
113 = 1L = Sp(HIZ + 1ISp (A1

(En vertu du théoréme de Pythagore dans 'espace €F mex,r muni de (-]-)!) La deuxiéme assertion
provient du fait qu'une série & termes positifs converge si et seulement si la suite de ses sommes
partielles est majorée. O

Noter que l'inégalité |c,(f)| < || fll2 de la Proposition 14 est une conséquence de l'inégalité de
Bessel, cette derniere étant plus précise.

3. avec le méme abus que pour les séries entieres, sans fleche bien que ce soit une série de fonctions et non une série
numérique
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Corollaire 2 Les coefficients de Fourier d’une fonction f : R — C, 2w-périodique et continue par
morceaux tendent vers zéro o l'infini, c’est-a-dire que

lim ¢, (f)=0, lim a,(f)=0, lim b,(f)=0.

[n]—+o0 n—-+o0o n——+o0o

Démonstration. Ceci vient du corollaire précédent et du fait que le terme général d’une série
convergente tend vers zéro. O

Corollaire 3 (Lemme de Riemann-Lebesgue) Si f est une fonction continue par morceaus sur
le segment [a,b] alors on a

b .
lim / ft)e™dt = 0.

n—-+00

Noter que ce passage a la limite sous le signe | ne se déduit pas des théorémes < classiques > car
la suite de fonctions (E,),en ne converge méme pas simplement. Pour le démontrer, on remarque que
grace a la relation de Chasles, il suffit de le montrer pour a < b < a + 27, et si c’est le cas on applique
le corollaire 2 & la fonction 27-périodique coincidant avec f sur [a,b] et nulle sur |b,a + 27].

Plus f est réguliere, plus ses coefficients de Fourier tendent rapidement vers zéro, c’est 'objet du
résultat suivant.

Proposition 16 Si f : R — C est 2m-périodique et de classe €* (pour k € N) alors ses coefficients
de Fourier vérifient
ea(f) = o(1/In["), |n| = +o0.

Démonstration. Par intégration par parties successives, on montre que

(/) = (in)* ea(f)
et comme ¢, (f*)) tend vers zéro lorsque |n| — 400, on en déduit que c,(f) = o(1/|n|¥). O

Théoréme 1 Si une série trigonométrique Y v, E, converge uniformément sur R alors sa somme f
est continue, 2m-périodique, et ses coefficients de Fourier sont précisément c,(f) = vn.

Démonstration. La somme f = j{io_oo YnEry est continue comme limite uniforme d’une suite
(celle des sommes partielles) de fonctions continues. Elle est 27-périodique comme limite d’une suite
de fonction 2m-périodiques. De plus ses coefficients de Fourier sont définis par

1 X
= imt —int
en(f) = 27T/7r Z Yme et dt
m=—0o0
et comme la série Y v, E,, converge uniformément, on peut intervertir [ et ), ce qui donne

+00
R
en(f) = Z 277/ 7meZ(m dt = Tn -

m=—00
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4 Convergences des séries de Fourier

4.1 Convergence simple

Théoréme 2 (Dirichlet) Soit f : R — C une fonction 2mw-périodique, continue par morceauz. On
suppose en outre que

t) — flty t) — f(ts
Ry I R 179

t—to t—to

t—

ont une limite respectivement quand t / to et quand t \ to, ot f(t,) désigne la limite a gauche de f
en ty et f(t3) sa limite a droite. Alors la série de Fourier de f converge en to et

- e F(E5) + F(T)
Z en(f)e _H_

n=-—oo

Attention, si les valeurs des limites

GO 0 = S
t o t—to t\ito t—to

n’apparaissent pas dans la conclusion, I’existence de ces limites est cruciale dans la démonstration. Ces
limites existent par exemple pour toutes les fonctions de classe €' par morceauz, auquel ce théoreme
s’applique donc. (II est faux pour les fonctions < seulement > continues par morceaux en général.)

La démonstration repose sur les propriétés du < noyau de Dirichlet » données ci-dessous et sur le
lemme de Riemann—Lebesgue.

Proposition 17 Soit p € N et D, := flzfp E,. Le polynome trigonométrique D, est a valeurs
réelles, pair, et vérifie :
1 ™
D,=1,
2w P

vt e R\{2rZ}, Dy(t) = — 207
Vte2mZ, D,(t)=2p+1.

Démonstration. [Théoreme de Dirichlet] On commence par observer que, par définition de D,,
puis grace a sa parité et au fait qu’il soit de moyenne 1,

W _ 2i /ﬂ(f(to—i—@)—f(ta“))Dp(H)dH+1 /ﬂ(f(to—e)—f(ta))Dp(G)dﬂ-
™ Jo 0

Splf)(to) - -

Il s’agit de montrer que les deux intégrales ci-dessus tendent vers zéro lorsque p — +00. Nous allons
traiter la premiere, la démonstration étant analogue pour la seconde. La difficulté provient du fait que
la suite de fonctions (Dp)pen ne converge pas uniformément ni méme simplement sur [0, 7]. D’apres
I'expression explicite de D), on a

/ “(Flto +6) — £(t)) Dy(6)d6 = / " 9(0) sin (v + 1)0) do,
0 0
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ou g est la fonction continue par morceaux définie par

flto+0) — f(t])

g9(0) = - 70 , sife [_71-7 7[']\{0},
S1n (5)
o fto+0) — f(t])
g(0) = 2%1{1(1) 0 g 0z,

Comme
sin ((p + %)9) = sin(ph) cos( ) + cos(pf) sin (g) ,
on obtient donc grace au lemme de Riemann—Lebesgue que
™

lim g(0) sin ((p+3)0) dd = 0.

p—+oo J

4.2 Convergence normale

Théoréme 3 Soit f : R — C une fonction 2m-périodique, de classe €' par morceauz. On suppose en
outre qu’elle est continue. Alors la série de Fourier de f converge normalement et sa somme est f.

Démonstration. Le fait que f soit classe ¢! par morceaux et continue implique que (la série
bilatere numérique) Y ¢, (f) converge absolument. En effet, si (ao, . .., ap,) est une subdivision de [0, 27]

adaptée a f, on a
aj+1
7mt
en T or Z/a fi(®) d,

avec f] de classe ¢! sur [a],a]+1] sachant que f et f] coincident sur Jaj, a;41[. Comme f est continue,

on a de plus fj (aj41) = fj+1(aj+1) = f(aj4+1). Ainsi, en intégrant par parties chaque intégrale, on

obtient
p—1

aj+1 ~ B 1 B . Cn(g)
nt int10;+1
= 2imn Z/a fJ a + JZ: [fj( Je ]aj in

ol g est la fonction 2m-périodique continue par morceaux définie par

cn

9(z) = [;

La somme des <« termes de bord > est nulle car

<

() si @ € [a;,a;41].

DU = 3 (ilage)e ™ — filag)e ™) =
j=0 Jj=0
fo—1(ap)e™ ™ — fo(ag)e " Z Filaji1) — fipa(ajpr)) e M4+t = f(2m)e™2™ — £(0) = 0.
Par suite,
n 1
a9 < 2 <) + s
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donc la série Y |e, (f)| converge comme somme de deux séries convergentes. Enfin, d’apres le théoréme
de Dirichlet et puisque f est continue, on a pour tout t € R,

+o00

Z Cn(f)eint = f(t) :

n=—0oo

Attention, la continuité de f est cruciale dans ce théoreme.

4.3 Convergence en moyenne quadratique

Théoréme 4 (Parseval) Soit f : R — C une fonction 2mw-périodique, continue par morceaux. Alors
la suite des sommes partielles (Sp(f))pen de la série de Fourier de f est telle que

lim |[Sp(f) = fll2=0,

p—>—+00
et
. 2 _ < 2 _ |a0(f)|2 1+OO 2 2y _ 2
Jim (15,015 = Y len(NP = =7+ 5 D _(an(NP+[0a(NF) = 115
n=—00 n=1

La démonstration repose sur le résultat d’approximation suivant.

Théoreme 5 Soit f : R — C une fonction 2m-périodique, continue par morceaux. Quel que soite > 0,
il existe un polynome trigonométrique P tel que

If = Plz<e.

Démonstration. On procede en trois étapes.
1) Etant donné £ > 0, il existe une fonction g : R — C, continue 27m-périodique et affine par
morceaur telle que

If—gll2<e.

(Attention, ce serait faux avec la norme oo !) Pour la construire, on commence par < approcher > f par
une fonction ¢ en escalier et 2m-périodique : grace a la continuité uniforme de toute fonction continue
sur un segment, on peut en effet trouver une fonction en escalier 2m-périodique telle que

(Ici, ||flloo signifie max{|f(¢)|; t # ar, k = 0,...,n} si (ax)o<k<n est une subdivision adaptée & f.)
Puis on < régularise > ¢ en posant, si (ag,...,a,) est une subdivision adaptée & ¢ et si a > 0 est
strictement inférieur a la moitié du pas de cette subdivision,

o(t) (t —aj)/a, sit € aj,a;+af,
gt) = 9 (1), sit€laj+a,a541 —al,
o(t) (ajr1 —t)/a, sit€[aj—a,aj].

Le calcul montre que

2
/0 o(t) — g()Pdt < 2an g% -
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Quitte a diminuer «, on peut donc supposer que

lp =gl < 5.

Finalement, on a par I'inégalité triangulaire

[f=gll2<|lf —¢llz + llg—gllz < [f =¥l + lop—9gll2<5 + 5 =c¢.

(Rappelons que |lul|2 < |lu]|co avec notre définition de |Jul|2, la moyenne quadratique de w.)

2) La fonction g étant continue 27-périodique et affine par morceaux, elle est limite uniforme
des sommes partielles de sa série de Fourier (d’apres le théoreme 3). Donc il existe un polynéme
trigonométrique P tel que

lg = Plloc <e.

Finalement, par I'inégalité triangulaire on a

If =Pl <IIf —gll2 + lg = Pllz2 < [If = gll2 + [lg = Plloc < 3¢

O
Démonstration. [Théoreme de Parseval] Soit € > 0. Il existe un polynéme trigonométrique P tel
que
€
IF =Pl <t

Ainsi on a par 'inégalité triangulaire, pour tout p € N,
1Sp(f) = Fll2 < [ISp(f) = Sp(P)ll2 + ISp(P) = Pll2 + [P = fll2 < [Sp(P) — Pll2 + 2[|[P — f]2

d’aprés 'inégalité de Bessel. Or comme P est un polynoéme trigonométrique, il existe py € N tel que
pour tout p > pg, S,(P) = P, d’on
1Sp(f) = fll2 < e.

Ceci prouve la premiere assertion, et implique la deuxieme car

lim [I1Sp(f) = fllo=0 = lim [[Sp(Fll2 = lI/]l2-

p—r+00
O
Exercice 2 Calculer les coefficients de Fourier de la fonction 2m-périodique telle que f(t) = t* pour

t € [—m,m|. En déduire les égalités suivantes, respectivement a l'aide du théoréme de Dirichlet et a
laide du théoreme de Parseval :



