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1 Introduction

Definition 1 On appelle série entière 1 de coefficients an ∈ C et on note
∑
anz

n la série de fonctions
polynomiales

C → C
z 7→ anz

n .

Remarque 1 On note de la même façon la série entière
∑
anz

n, qui est une série de fonctions, et à
z fixé, la série numérique

∑
anz

n. Seul le contexte permet de savoir de quoi on parle.

Remarque 2 Bien entendu, comme pour toutes les séries, la notation
∑
anz

n ne présage en aucune
façon de la convergence de la série en question.

Vous avez déjà rencontré des séries entières sans le savoir, comme par exemple
∑
zn,

∑
zn/n!, etc.

Definition 2 (Opérations formelles) Soient deux séries entières
∑
anz

n et
∑
bnz

n.
• La série somme de

∑
anz

n et
∑
bnz

n est
∑
snz

n avec sn = an + bn quel que soit n ∈ N.
• La série produit de

∑
anz

n et
∑
bnz

n est
∑
pnz

n avec, quel que soit n ∈ N,

pn =
n∑
k=0

akbn−k .

• La série dérivée de
∑
anz

n est
∑
dnz

n avec dn = (n+ 1)an+1 quel que soit n ∈ N.
• Une série primitive de

∑
anz

n est de la forme
∑
Anz

n avec An = an−1/n quel que soit n ∈ N∗
(et A0 arbitraire).

Exercice 1 Calculer le produit de la série entière
∑
zn avec elle-même. Calculer la série dérivée de

la série entière
∑
zn/n!.

2 Rayon de convergence

Lemme 1 (Abel) Soit (an)n∈N ∈ CN. S’il existe z0 ∈ C tel que la suite complexe (anz
n
0 )n∈N soit

bornée, alors quel que soit z ∈ C de module |z| < |z0|, la série numérique
∑
anz

n converge absolument.

Démonstration. Si z0 = 0 il n’y a rien à démontrer. Si z0 6= 0 et |anzn0 | ≤ C alors |anzn| ≤
C|z/z0|n pour tout z ∈ C. Si |z| < |z0| la série géométrique

∑
|z/z0|n converge, et donc par compa-

raison la série à termes réels positifs
∑
|anzn| converge. �

Corollaire 1 Soit (an)n∈N ∈ CN. S’il existe z0 ∈ C tel que la série numérique
∑
anz

n
0 converge, alors

la série numérique
∑
anz

n converge absolument quel que soit z ∈ C de module |z| < |z0|.

Démonstration. Si une série converge, son terme général tend vers zéro et il est donc borné. �

Definition 3 On appelle rayon de convergence d’une série entière
∑
anz

n

1. Se dit � power series � en anglais, c’est-à-dire série de puissances, comme dans beaucoup d’autres langues.

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont à connâıtre
parfaitement.
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• R = +∞ si l’ensemble {r ∈ R+ ; la suite (anr
n)n∈N est bornée} (qui contient 0) n’est pas ma-

joré,
• et s’il est majoré, R := sup{r ∈ R+ ; la suite (anr

n)n∈N est bornée}.

La série entière
∑
zn/n! est un exemple pour lequel le rayon de convergence est infini, nous en

reparlerons.

Remarque 3 L’ensemble {r ∈ R+ ; la suite (anr
n)n∈N est bornée} est un intervalle (puisque 0 ≤ s ≤

r implique 0 ≤ |ansn| ≤ |anrn|). S’il n’est pas majoré cet ensemble est donc R+ tout entier.

Dans l’énoncé ci-dessous, on note pour simplifier supA ∈ R∪{+∞} la borne supérieure de A si A
est majoré et +∞ sinon.

Proposition 1 Le rayon de convergence d’une série entière
∑
anz

n est donné par

R = sup{r ∈ R+ ; (anr
n)n∈N converge vers 0} .

Démonstration. Notons I := {r ∈ R+ ; la suite (anr
n)n∈N est bornée} et

A := {r ∈ R+ ; (anr
n)n∈N converge vers 0} .

On a A ⊂ I et donc supA ≤ sup I. Pour montrer que supA ≥ sup I, prenons r ∈ I. Alors [0, r[⊂ A
(pour la même raison que dans le lemme d’Abel : si |anrn| ≤ C et 0 ≤ s < r alors |ansn| ≤ C(s/r)n

tend vers zéro), et donc r ≤ supA. Ceci étant vrai quel que soit r ∈ I, on en déduit sup I ≤ supA. �

Exercice 2 Montrer que le rayon de convergence de
∑
zn est égal à 1, de même que celui de

∑
zn/n,∑

zn/n2,
∑
n(−1)

n
zn. Montrer que le rayon de convergence de

∑
nnzn est nul.

Théorème 1 Si R est le rayon de convergence d’une série entière
∑
anz

n,
• quel que soit z ∈ C tel que |z| < R la série numérique

∑
anz

n converge absolument,
• quel que soit z ∈ C tel que |z| > R la série numérique

∑
anz

n diverge.

Démonstration. Si |z| < R, soit r ∈]|z|, R[ : (anr
n)n∈N est bornée et donc la série numérique∑

anz
n converge absolument d’après le lemme d’Abel. Si |z| > R alors la suite (anz

n)n∈N n’est pas
bornée, et par conséquent la la série numérique

∑
anz

n diverge grossièrement (c’est-à-dire que son
terme général ne tend pas vers zéro). �

Remarque 4 Par contraposition dans le théorème ci-dessus,
• si

∑
|anzn| diverge alors |z| ≥ R,

• si
∑
anz

n converge alors |z| ≤ R.

Remarque 5 Le cas des nombres complexes de module exactement égal au rayon de convergence est
indéterminé en général. Par exemple, si |z| = 1 la série numérique

∑
zn diverge, tandis que

∑
zn/n2

converge. Quant à
∑
zn/n, elle diverge pour z = 1, et elle converge pour |z| = 1 et z 6= 1 (ceci se

démontre par transformation d’Abel).

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont à connâıtre
parfaitement.
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Definition 4 On appelle disque de convergence d’une série entière le disque ouvert centré en 0 et
de rayon R, son rayon de convergence. On appelle cercle de convergence 2 le cercle centré en 0 et de
rayon R.

Proposition 2 (Règle de d’Alembert) Si la suite (an)n∈N ne s’annule pas à partir d’un certain
rang N , et si la suite (|an+1/an|)n≥N a pour limite ` ∈ [0,+∞], alors le rayon de convergence de la
série entière

∑
anz

n est égal à 1/`, avec par convention 1/+∞ = 0, 1/0 = +∞.

Démonstration. Puisque

lim
n→∞

∣∣∣∣an+1z
n+1

anzn

∣∣∣∣ = `|z|

pour z 6= 0, la conclusion découle de la règle de d’Alembert pour les séries numériques : si `|z| < 1 la
série numérique

∑
|anzn| converge et donc |z| ≤ R, tandis que si `|z| > 1 la série numérique

∑
|anzn|

diverge et donc |z| ≥ R ; ces implications montrent respectivement que 1/` ≤ R et 1/` ≥ R. �
Pour an = 1/n! par exemple, ` = 0 et le rayon de convergence de

∑
zn/n! est donc bien +∞

comme on l’a dit plus haut. Dans certains cas, on peut conclure même si la suite (an)n∈N a une infinité
de termes nuls, c’est le cas ci-dessous.

Exercice 3 Montrer en utilisant la règle de d’Alembert pour les séries numériques que le rayon de
convergence de

∑
zn

2
/(n+ 1) est égal à 1.

Proposition 3 (Règle de Cauchy) Si la suite ( n
√
|an|)n∈N a pour limite ` ∈ [0,+∞], alors le rayon

de convergence de la série entière
∑
anz

n est égal à 1/` (avec la convention 1/+∞ = 0 et 1/0 = +∞).

Démonstration. Puisque
lim
n→∞

n
√
|anzn| = `|z|

pour z 6= 0, la conclusion découle de la règle de Cauchy pour les séries numériques (avec le même
raisonnement que pour la règle de d’Alembert). �

Exercice 4 Montrer à l’aide de la règle de Cauchy que le rayon de convergence de la série entière∑
zn/nlnn est égal à 1.

La suite ( n
√
|an|)n∈N n’ayant pas nécessairement de limite, il peut être utile d’avoir recours au

résultat plus général suivant.

Proposition 4 (Règle de Cauchy-Hadamard) Le rayon de convergence de la série entière
∑
anz

n

est

R =
1

lim( n
√
|an|)

.

2. Attention, la remarque ci-dessus montre que ce terme peut prêter à confusion : rien ne dit que la série entière
converge sur le � cercle de convergence �.

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont à connâıtre
parfaitement.
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Démonstration. Si 0 < r < R alors il existe C > 0 tel que |anrn| ≤ C quel que soit n. Par suite,
n
√
|an|r ≤ n

√
C et donc en passant à la limite sup (puisque ( n

√
C) converge vers 1), lim( n

√
|an|) ≤ 1/r.

Ceci étant vrai quel que soit r ∈]0, R[, on en déduit lim( n
√
|an|) ≤ 1/R. Pour montrer l’égalité,

raisonnons par l’absurde et supposons que lim( n
√
|an|) < 1/R. Soit alors r tel que lim( n

√
|an|) < 1/r <

1/R. Par définition de la limite sup, ceci implique qu’il existe N ∈ N tel que pour tout n ≥ N ,
n
√
|an| < 1/r. Donc (|anrn|)n∈N est majorée (par 1 pour n ≥ N), ce qui contredit le fait que r soit

strictement supérieur au rayon de convergence R. �

Exercice 5 Montrer à l’aide de la règle de Cauchy-Hadamard que le rayon de convergence de la série
entière

∑
nnzn

2
est égal à 1.

Proposition 5 Le rayon de convergence de la somme de deux séries entières est supérieur ou égal
au plus petit de leurs rayons de convergence. Il est égal au plus petit des deux s’ils sont différents.

Démonstration. Soient
∑
anz

n et
∑
bnz

n de rayons de convergence respectifs Ra et Rb. Si
r < min(Ra, Rb) alors la suite ((an+bn)rn)n∈N est bornée comme somme de deux suites bornées. Donc
le rayon de convergence de

∑
(an + bn)zn est R ≥ r. Ceci étant vrai quel que soit r < min(Ra, Rb),

on en déduit R ≥ min(Ra, Rb). Si Ra < Rb par exemple, si Ra < r < Rb, la suite ((an + bn)rn)n∈N est
non bornée comme somme d’une suite bornée et d’une suite non bornée, donc r ≥ R. Ceci étant vrai
quel que soit r ∈]Ra, Rb[, on en déduit Ra ≥ R, et donc finalement R = Ra. �

Proposition 6 Le rayon de convergence du produit de deux séries entières est supérieur ou égal au
plus petit de leurs rayons de convergence.

La démonstration repose sur le résultat suivant concernant les séries numériques.

Lemme 2 Si deux séries numériques
∑
un et

∑
vn sont absolument convergentes, la série produit

(produit de Cauchy)
∑
wn définie par

wn =
n∑
k=0

ukvn−k

est absolument convergente.

Démonstration. Pour montrer que
∑
wn est absolument convergente il suffit de montrer que la

suite des sommes partielles de
∑
|wn| est majorée. Or

n∑
k=0

|wk| =

n∑
k=0

∣∣∣∣∣∣
k∑
p=0

upvk−p

∣∣∣∣∣∣ ≤
n∑
k=0

k∑
p=0

|up||vk−p| =
n∑
p=0

|up|
n−p∑
q=1

|vq| ≤

+∞∑
p=0

|up|

+∞∑
q=0

|vq|

 .

�
Sous les hypothèses du lemme on montre même que

+∞∑
n=0

wn =

(
+∞∑
n=0

un

)(
+∞∑
n=0

vn

)
.

Remarque 6 Le produit de deux séries convergentes (et non absolument convergentes) n’est pas
convergent en général : par exemple pour un = vn = (−1)n/

√
n, la série produit est grossièrement

divergente.

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont à connâıtre
parfaitement.
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Démonstration. [de la proposition 6] Soient
∑
anz

n et
∑
bnz

n de rayons de convergence respec-
tifs Ra et Rb. Si |z| < min(Ra, Rb) alors les deux séries numériques

∑
anz

n et
∑
bnz

n sont absolu-
ment convergentes (d’après le lemme d’Abel), donc la série produit

∑
cnz

n est absolument conver-
gente d’après le lemme 2 ci-dessus. Donc le rayon de convergence de

∑
cnz

n est supérieur ou égal à
min(Ra, Rb). �

Théorème 2 Le rayon de convergence d’une série entière et de sa série dérivée sont égaux.

Démonstration. Soit une série entière
∑
anz

n de rayon de convergence R, et soit
∑
dnz

n sa série
dérivée, de rayon de convergence R′. Rappelons que dn = (n+ 1)an+1 et considérons

A := {r ∈ R+ ; la suite (anr
n)n∈N est bornée} ,

D := {r ∈ R+ ; la suite (dnr
n)n∈N est bornée} .

Puisque pour tout n ∈ N et pour tout r ∈ R+,

|an+1r
n+1| = r

n+ 1
|dnrn| ,

on a D ⊂ A et donc R′ ≤ R. Pour montrer l’inégalité opposée, prenons r + h ∈ A avec r ∈ R+ et
h > 0. Alors par la formule de Newton on a :

(n+ 1)rnh ≤ (r + h)n+1 ,

d’où

|dnrn| ≤
1

h
|an+1(r + h)n+1| ,

ce qui montre que r ∈ D et donc r ≤ R′. Or, quel que soit r < R il existe h > 0 tel que r + h ∈ A
(il suffit de prendre h ≤ (R− r)/2), donc r ≤ R′ d’après ce qui précède. On en déduit finalement que
R ≤ R′. �

3 Propriétés de la somme

Definition 5 On appelle somme d’une série entière
∑
anz

n de rayon de convergence R > 0 la fonction

D(0;R) → C

z 7→
+∞∑
n=0

anz
n ,

où D(0;R) est le disque ouvert de centre 0 et de rayon R. On restreint parfois cette fonction à
l’intervalle ]−R,R[ en considérant la fonction d’une variable réelle

]−R,R[ → C

t 7→
+∞∑
n=0

ant
n .

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont à connâıtre
parfaitement.
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3.1 Opérations algébriques

Proposition 7 Soient des séries entières
∑
anz

n et
∑
bnz

n de rayons de convergence respectifs Ra
et Rb. Soient sn et pn les coefficients de leur somme et de leur produit. Alors pour tout z ∈ C tel que
|z| < min(Ra, Rb) on a

+∞∑
n=0

snz
n =

+∞∑
n=0

anz
n +

+∞∑
n=0

bnz
n ,

+∞∑
n=0

pnz
n =

(
+∞∑
n=0

anz
n

) (
+∞∑
n=0

bnz
n

)
.

Démonstration. Ces égalités proviennent des résultats sur la somme et le produit de séries
numériques absolument convergentes. Celui sur la somme est immédiat. Démontrons maintenant celui
sur le produit (mentionné plus haut). Soient

∑
un et

∑
vn deux séries absolument convergentes et

leur série produit
∑
wn définie par

wn =
n∑
k=0

ukvn−k .

Le lemme 2 a déjà montré que
∑
wn était absolument convergente. Il s’agit de vérifier que la somme

de la série produit est égale au produit des sommes, c’est-à-dire

+∞∑
n=0

wn =

(
+∞∑
n=0

un

)(
+∞∑
n=0

vn

)
.

Observons tout d’abord que(
+∞∑
n=0

un

)(
+∞∑
n=0

vn

)
= lim

n→∞

 n∑
p=0

up

 n∑
q=0

vq

 ,

puis raisonnons avec des sommes doubles (notées avec le même symbole Σ que les sommes simples) :

n∑
k=0

wk −

 n∑
p=0

up

 n∑
q=0

vq

 =
∑
p+q≤n

upvq −
∑

p≤n,q≤n
upvq =

∑
p+q≥n+1,p≤n,q≤n

upvq ,

d’où (faire un dessin)∣∣∣∣∣∣
n∑
k=0

wk −

 n∑
p=0

up

 n∑
q=0

vq

∣∣∣∣∣∣ ≤
∑

p≤n,q≤n
|up||vq| −

∑
p≤n/2,q≤n/2

|up||vq| .

Le membre de droite ci-dessus est la différence entre les termes d’indice n et d’indice n/2 (si n est pair,
(n− 1)/2 sinon) d’une suite convergente (comme produit de deux suites convergentes par hypothèse).
Donc il tend vers zéro lorsque n tend vers l’infini. �

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont à connâıtre
parfaitement.
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3.2 Continuité

Lemme 3 Une série entière converge normalement (et donc uniformément) sur tout disque fermé,
et plus généralement sur tout compact, inclus dans son disque de convergence.

Démonstration. Soit une série entière
∑
anz

n de rayon de convergence R, et soit r < R. Alors
la série numérique

∑
anr

n converge absolument (d’après le théorème 1). Comme pour |z| ≤ r on a
|anzn| ≤ |anrn|, ceci montre que

∑
anz

n converge normalement dans D(0; r), le disque fermé de rayon
r et centré en zéro. On conclut en observant que pour tout compact K inclus dans D(0;R) il existe
r < R tel que K ⊂ D(0; r) : en effet, l’application continue z 7→ |z| atteint son maximum sur K. (Si
K est un disque fermé D(z0; r0) il suffit grâce à l’inégalité triangulaire de prendre r = |z0|+ r0.) �

Remarque 7 La convergence uniforme n’a pas lieu sur le disque de convergence lui-même en général.
Par exemple, la série entière

∑
zn ne converge pas uniformément sur le disque unité, puisque zn ne

tend pas uniformément vers zéro sur le disque unité. Si une série entière converge uniformément
sur son disque de convergence D(0;R) avec R < +∞ alors elle converge même uniformément sur le
disque fermé D(0;R) (conséquence du critère de Cauchy uniforme et de la continuité des fonctions
polynomiales). S’il existe un point du cercle de convergence C(0;R) d’une série entière où celle-ci
converge absolument, alors elle converge normalement sur D(0;R).

Proposition 8 La somme d’une série entière est continue dans son disque de convergence.

C’est une conséquence du lemme 3 ci-dessus et du théorème de continuité de la somme d’une série
uniformément convergente de fonctions continues (ici, des fonctions polynomiales).

Corollaire 2 La somme d’une série entière de rayon de convergence non nul admet un développement
limité à tout ordre au voisinage de zéro. Plus précisément, si S(z) =

∑+∞
n=0 anz

n alors

S(z) =

n∑
k=0

akz
k + O(zn+1) , z → 0 .

Démonstration. Pour |z| < R (rayon de convergence) on a

S(z) =

n∑
k=0

akz
k + fn(z) zn+1 ,

où fn est la somme de la série entière � tronquée �
∑

m am+n+1z
m, qui a aussi pour rayon de conver-

gence R et est donc continue en zéro. �
Attention, sauf à savoir que la série entière converge absolument en un point de son cercle de

convergence, on ne sait rien en général de la continuité de sa somme au bord du disque de convergence.
Cependant, on peut montrer grâce à la transformation d’Abel le résultat suivant.

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont à connâıtre
parfaitement.
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Théorème 3 (Abel-Dirichlet) Soit S la somme d’une série entière
∑
anz

n de rayon de convergence
R ∈]0,+∞[. On suppose qu’il existe z0 de module R tel que

∑
anz

n
0 converge. Alors

∑
anz

n converge
uniformément sur le segment [0, z0], et par conséquent

lim
t↗1

S(tz0) = S(z0) .

Démonstration. Sans surprise, on va utiliser la � transformation d’Abel �. Tout d’abord, on
remarque qu’il suffit de savoir traiter le cas R = z0 = 1 : en effet, sous les hypothèses du théorème, la
série entière

∑
ãnz

n définie par ãn := anz
n
0 vérifie ces même hypothèses avec R = z0 = 1 ; si l’on sait

montrer que
∑
ãnz

n converge uniformément sur le segment [0, 1] et que

lim
t↗1

+∞∑
n=0

ãnt
n =

+∞∑
n=0

ãn ,

alors on en déduit les propriétés analogues pour
∑
anz

n. En oubliant les tildas, on suppose donc
désormais R = z0 = 1. Pour montrer que

∑
ant

n converge uniformément sur le segment [0, 1], il s’agit
de montrer que cette série vérifie le critère de Cauchy uniforme. Notons

sn,p(t) =

n+p∑
k=n+1

akt
k , σn,p = sn,p(1) .

On a alors

sn,p(t) = an+1t
n+1 +

p∑
k=2

an+kt
n+k = σn,1t

n+1 +

p∑
k=2

(σn,k − σn,k−1)tn+k

= σn,pt
n+p +

p−1∑
k=1

σn,kt
n+k(1− t) .

Soit ε > 0. Puisque
∑
an converge, il existe N ∈ N tel que pour tout n ≥ N , pour tout p ∈ N∗,

|σn,p| ≤ ε/2. On a donc, pour tout n ≥ N , pour tout p ∈ N∗, pour tout t ∈ [0, 1],

|sn,p(t)| ≤
ε

2
(1 + (1− t)

p−1∑
k=1

tn+k) .

Or

(1− t)
p−1∑
k=1

tn+k = tn+1(1− tp−1) ≤ 1 , ∀t ∈ [0, 1] .

Donc |sn,p(t)| ≤ ε comme on le voulait.
�

Remarque 8 Il est possible que limt↗1 S(tz0) existe sans que la série
∑
anz

n
0 converge. C’est le cas

par exemple pour an = (−1)n et z0 = 1, puisque

+∞∑
n=0

(−1)nzn =
1

1 + z
→ 1

2
, z → 1 .

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont à connâıtre
parfaitement.
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3.3 Dérivabilité

Proposition 9 La somme d’une série entière est de classe C∞. Plus précisément, si
∑
anz

n est une
série entière de rayon de convergence R ∈]0,+∞] alors la fonction

f : ]−R,R[ → C

x 7→
+∞∑
n=0

anx
n ,

est de classe C∞.

Démonstration. On commence par démontrer qu’elle est de classe C 1 puis on raisonne par
récurrence. D’après le théorème 2, la série dérivée a pour rayon de convergence R, et d’après le lemme
3, cette série converge normalement sur tout compact de ] − R,R[. Donc d’après le théorème de
dérivation des séries de fonctions, f est de classe C 1 et pour tout x ∈]−R,R[,

f ′(x) =

+∞∑
n=0

(n+ 1)an+1x
n .

�

Proposition 10 Soient
∑
anz

n une série entière de rayon de convergence R ∈]0,+∞], f sa somme,
et g la somme de la série dérivée 3. Si ϕ : I → C est de classe C 1 sur l’intervalle I de R et telle que
|ϕ(t)| < R pour tout t ∈ I, alors la fonction f ◦ ϕ est de classe C 1 sur I et sa dérivée est g ◦ ϕ× ϕ′.

Démonstration. Si l’on note fn(t) = an(ϕ(t))n, on a f ′n(t) = nan(ϕ(t))n−1, les hypothèses
montrent que les séries de fonctions

∑
fn et

∑
f ′n convergent normalement sur tout compact de I. �

3.4 Intégration

Proposition 11 Soient
∑
anz

n une série entière de rayon de convergence R ∈]0,+∞] et f sa somme.
Quel que soit le segment [a, b] ⊂]−R,R[ on a∫ b

a
f(t)dt =

+∞∑
n=0

∫ b

a
tndt .

Démonstration. C’est une conséquence du théorème d’intégration des séries de fonctions car∑
ant

n converge uniformément sur le segment [a, b]. �

Proposition 12 Soient
∑
anz

n une série entière de rayon de convergence R ∈]0,+∞] et f sa somme.
Alors les primitives de f sur ]−R,R[ sont les sommes des séries primitives de

∑
anz

n.

3. qui cöıncide avec f ′ sur ] −R,R[ d’après la proposition précédente

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont à connâıtre
parfaitement.
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4 Exponentielle complexe

Rappelons que le rayon de convergence de la série entière
∑

n≥0 z
n/n! est infini, ce qui implique

qu’elle converge absolument uniformément sur tout compact de C. Pour tout z ∈ C, on définit

exp(z) =
+∞∑
n=0

zn

n!
.

On voit que exp(0) = 1, et d’après la proposition 10, la fonction t 7→ exp(t) est dérivable sur R, de
dérivée égale à elle-même. Autrement dit, la fonction u = exp|R est solution du problème

u′ = u, u(0) = 1 ,

dont on sait que l’unique solution est la fonction exponentielle réelle x 7→ ex, définie sur R par

ex = lim
n→∞

(
1 +

x

n

)n
.

Par suite, on a pour tout x ∈ R,

exp(x) =
+∞∑
n=0

xn

n!
= lim

n→∞

(
1 +

x

n

)n
= ex .

Désormais, on note indifféremment exp(z) ou ez. La fonction exponentielle complexe est continue sur
C.

4.1 Propriétés algébriques

Proposition 13 1. Pour tout z ∈ C,
ez = ez .

2. Quels que soient z1, z2 ∈ C,
ez1 + z2 = ez1 ez2 .

3. Pour tout z ∈ C,
|ez| = eRez .

Démonstration. 1) On utilise le fait que la conjugaison et la sommation d’une série commutent,
et que

zn = zn

2) D’après le résultat sur la série produit d’une série numérique montré pour la proposition 7, on a

ez1 ez2 =
+∞∑
n=0

pn(z1, z2) ,

où

pn(z1, z2) :=

n∑
k=0

zk1
k!

zn−k2

(n− k)!
=

1

n!
(z1 + z2)

n

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont à connâıtre
parfaitement.
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d’après la formule du binôme.
3) D’après 1) et 2), quel que soit z ∈ C,

|ez|2 = ez ez = ez ez = ez+z ,

d’où
|ez| = eRez .

�

Remarque 9 On a utilisé ci-dessus le fait que e2x = (ex)2 lorsque x est réel (en l’occurrence pour
x = z + x), mais cette formule est vraie aussi pour les nombres complexes. Plus généralement, on a

∀z ∈ C , ∀m ∈ Z , emz = (ez)m .

Ceci se démontre par récurrence à l’aide de 2) (on commence par les entiers naturels, et on remarque
que e−z = (ez)−1 se déduit de 2) et du fait que e0 = 1). Attention toutefois à ne pas généraliser cette
formule de façon abusive(comme on va le (re)voir ci-après, e2iπx est différent de (e2iπ)x = 1 lorsque
x ∈ R\Z !).

Théorème 4 La fonction exp définit un morphisme surjectif du groupe additif C sur le groupe mul-
tiplicatif C∗.

Démonstration. La propriété de morphisme découle de la proposition 13 2) et du fait que e0 = 1.
Pour démontrer sa surjectivité, nous allons utiliser des arguments d’analyse. Fixons z0 ∈ C\R− (le cas
des réels strictement négatifs sera traité après coup) et considérons la fonction (affine) f : t ∈ [0, 1] 7→
f(t) = 1 − t + tz0. Elle est à valeurs dans le segment d’extrémités z0 et 1, qui ne contient pas zéro
puisqu’on a supposé z /∈ R−. On peut donc définir

g : [0, 1] → C
t 7→ g(t) :=

∫ t
0
f ′(t)
f(t) dt .

Elle est de classe C 1, de dérivée f ′/f , et exp ◦(−g) aussi, de dérivée − exp ◦(−g) × f ′/f (d’après la
proposition 10). Par suite, la fonction f × exp ◦(−g) est de classe C 1 et dérivée identiquement nulle
sur le segment [0, 1]. Donc, d’après le théorème des accroissements finis, cette fonction est constante.
L’égalité

f(0)× e−g(0) = f(1)× e−g(1)

donne z0 = eg(1). Ce résultat d’applique en particulier à i : il existe w ∈ C tel que i = ew (pour
l’instant, on n’est pas censé savoir que w = iπ/2 convient !), d’où −1 = e2w. Si z0 ∈ R−∗, alors il existe
x ∈ R tel que −z0 = ex (d’après ce que l’on sait sur l’exponentielle réelle, mais un complexe fourni
par le résultat précédent nous suffirait), et donc z0 = ex+2w. �

4.2 Nombres complexes de module 1

D’après la proposition 13-3), on a |ez| = 1 si et seulement si z ∈ iR. Comme d’après le théorème
4 tout nombre complexe a un antécédent par exp, l’ensemble U des nombres complexes de module 1
est exactement

U = {eiθ ; θ ∈ R} .

Cet ensemble est un groupe multiplicatif.

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont à connâıtre
parfaitement.
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Théorème 5 La fonction u : θ ∈ R 7→ eiθ est un morphisme continu surjectif du groupe additif R sur
U. Son noyau est de la forme aZ avec a ∈ R. On définit le nombre π par

Ker u = 2πZ .

Démonstration. La continuité et la surjectivité se déduisent de celle de l’exponentielle (par
composition avec la fonction linéaire θ 7→ iθ). Le noyau de u est donc un sous-groupe fermé de (R,+).
Il est distinct de R et non réduit à {0} (car i = eiθ implique 1 = e4iθ mais 4θ 6= 0). Il est par
conséquence de la forme aZ, a ∈ R d’après le résultat montré ci-après. �

Proposition 14 Un sous-groupe de (R,+) est soit dense soit de la forme aZ, a ∈ R.

Démonstration. Soit G un sous-groupe de (R,+). Commençons par éliminer le cas où G = {0}, qui
est évidemment de la forme aZ avec a = 0. Sinon, l’ensemble G∩R+∗ est non vide et minoré. Notons
a ∈ R+ sa borne inférieure. L’alternative annoncée dépend de la valeur de a. Nous allons montrer que
si a = 0 alors G est dense, tandis que si a > 0 alors G = aZ.

Supposons a = 0. Il s’agit de montrer que dans tout intervalle ]x, y[ il y au moins un élément de
G. Soient donc des réels x, y avec x < y. Puisque y − x > 0 et 0 = inf(G ∩ R+∗), il existe g ∈ G tel
que 0 < g < y − x (sinon y − x serait un minorant de G ∩ R+∗ strictement plus grand que sa borne
inférieure). Soit alors k = E(x/g). On a par définition

kg ≤ x < (k + 1)g ≤ x+ g < y .

Donc (k + 1)g est un élément de G∩]x, y[.
Supposons maintenant a > 0. On remarque tout d’abord que a doit appartenir à G. Sinon il

existerait des éléments g et h de G tels que a < h < g < 2a (en invoquant à nouveau la définition de
la borne inférieure), d’où 0 < g − h < a, ce qui contredirait le fait que a est un minorant de G ∩R+∗.
(noter que g − h ∈ G). Par suite, a ∈ G et donc aZ ⊂ G puisque G est un groupe. Il reste à montrer
que tout élément de G appartient à aZ. Soit donc g ∈ G, et soit k = E(g/a). Alors par définition
ka ≤ g < (k + 1)a, ou encore 0 ≤ g − ka < a. Comme g − ka ∈ G, il doit être nul sous peine de
contredire le fait que a est un minorant de G ∩ R+∗.

�
Le fait que le noyau de u soit 2πZ signifie l’équivalence

eiθ = 1 ⇔ θ ∈ 2πZ

Le nombre réel −1 appartient à U\{1} et son carré vaut 1. On en déduit

eiθ = −1 ⇔ θ ∈ π + 2πZ

Le nombre imaginaire i appartient à U\{1,−1} et vérifie i4 = 1. On en déduit

eiθ = i ⇔ θ ∈ π
2 + 2πZ

Il est également utile d’avoir en tête l’équivalence

|z| = 1 ⇔ 1

z
= z

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont à connâıtre
parfaitement.
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4.3 Fonctions trigonométriques et hyperboliques

Pour tout z ∈ C on définit les fonctions cosinus, sinus, cosinus hyperbolique (noté cosh ou ch),
sinus hyperbolique (noté sinh ou sh) par :

cos(z) =
eiz + e−iz

2
=

+∞∑
n=0

(−1)n
z2n

(2n)!
.

sin(z) =
eiz − e−iz

2i
=

+∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
.

cosh(z) =
ez + e−z

2
=

+∞∑
n=0

z2n

(2n)!
.

sinh(z) =
ez − e−z

2
=

+∞∑
n=0

z2n+1

(2n+ 1)!
.

En particulier, pour tout x ∈ R on a

cosx =
eix + e−ix

2
= Re(ei x) =

+∞∑
k=0

(−1)k x2k

(2k)!
, sinx =

eix − e−ix

2i
= Im(ei x) =

+∞∑
k=0

(−1)k x2k+1

(2k + 1)!
,

coshx =
ex + e−x

2
=

+∞∑
k=0

(−1)k x2k

(2k)!
, sinhx =

ex − e−x

2
=

+∞∑
k=0

x2k+1

(2k + 1)!
.

Les fonctions cos, sin, cosh, sinh sont de classe C∞ sur R d’après la proposition 9. Les fonctions cos
et sin sont 2π-périodiques d’après le théorème 5. De plus, π/2 est le plus petit réel positif annulant
cos.

Identités remarquables

cos2 x+ sin2 x = 1 cosh2 x− sinh2 x = 1

cos′ = − sin, sin′ = cos cosh′ = sinh, sinh′ = cosh

cos(a+ b) = cos a cos b− sin a sin b cosh(a+ b) = cosh a cosh b+ sinh a sinh b

sin(a+ b) = sin a cos b+ cos a sin b sinh(a+ b) = sinh a cosh b+ cosh a sinh b

cos(z + π) = − cos z, cos(π/2− z) = sin z cosh(z + iπ) = − cosh z, cos(iπ/2 + z) = i sinh z

sin(z + π) = − sin z, sin(π/2− z) = cos z sinh(z + iπ) = − sinh z, sinh(iπ/2 + z) = i cosh z

On définit aussi les fonctions tangente, cotangente :

tan z =
sin z

cos z
pour z /∈ π/2 + πZ , cotanz =

cos z

sin z
= tan(π/2− z) pour z /∈ πZ,

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont à connâıtre
parfaitement.
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et tangente hyperbolique (notée tanh ou th) :

tanh z =
sinh z

cosh z
pour z /∈ iπ/2 + iπZ

5 Fonctions développables en série entière

Definition 6 On dit qu’une fonction f : U → C définie sur un ouvert U de C contenant 0 est
développable en série entière en 0 s’il existe une série entière

∑
anz

n, de rayon de convergence R > 0
et r ∈]0, R[ tel que, pour tout z ∈ D(0; r) ∩ U ,

f(z) =

+∞∑
n=0

anz
n .

On dit qu’elle est développable en série entière en z0 ∈ U si la fonction z 7→ f(z− z0) est développable
en série entière en 0. Dans ce cas, on appelle développement en série entière en z0 de f la série∑
an(z − z0)n telle que pour z voisin de z0,

f(z) =
+∞∑
n=0

an(z − z0)n .

Une fonction développable en série entière en chaque point d’un ouvert est dite analytique sur cet
ouvert.

Par exemple, la somme d’une série entière de rayon de convergence R > 0 est développable en
série entière en 0 (on peut montrer qu’elle est même développable en série entière en tout point de son
disque de convergence).

Proposition 15 Soit F ∈ C(X) une fraction rationnelle de pôles tous non nuls. Alors la fonction
z 7→ F (z) (définie en dehors des pôles) est développable en série entière en 0, et le rayon de convergence
de cette série entière est égal au minimum des modules des pôles de F .

Démonstration. Grâce à la décomposition en éléments simples, il suffit de montrer que toute
fonction F : z 7→ 1/(z − z0)n avec n ∈ N et z0 6= 0 est développable en série entière en 0, et que la
série entière correspondante a |z0| comme rayon de convergence. En considérant F̃ : z 7→ zn0F (z0z) =
1/(z − 1)n, on se ramène au cas z0 = 1. Pour ce dernier, on connâıt explicitement le développement
en série entière : il est trivial si n = 0 et pour n ∈ N∗,

∀z , |z| < 1 ,
1

(1− z)n
=

+∞∑
k=0

(
k + n− 1

n− 1

)
zk .

Avant de vérifier ce développement, observons que le rayon de convergence de la série entière ci-dessus
est bien égal à 1 car les coefficients ak :=

(
k+n−1
n−1

)
sont tels que ak+1/ak = (k+ n)/(k+ 1) tend vers 1

lorsque k tend vers +∞. Le calcul du développement se fait par récurrence. On connâıt en effet déjà
le cas n = 1 :

∀z , |z| < 1 ,
1

1− z
=

+∞∑
k=0

zk .

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont à connâıtre
parfaitement.
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Si l’on suppose de développement démontré pour n, alors on remarque que

1

(1− z)n
=

+∞∑
k=0

(
k + n− 1

n− 1

)
zk =

+∞∑
k=0

((
k + n

n

)
−
(
k + n− 1

n

))
zk = (1− z)

+∞∑
k=0

(
k + n

n

)
zk .

�

Remarque 10 Attention, le développement en série entière d’une fonction (développable en série
entière) dépend du point où il est effectué. Autrement dit, les coefficients an du développement en z0
dépendent de z0 !

Proposition 16 Soit f un fonction développable en série entière en un point réel x0. Alors son
développement en série entière est sa série de Taylor en x0, c’est-à-dire

∑ f (n)(x0)

n!
(x− x0)n .

Démonstration. Par hypothèse, il existe r > 0 et des coefficients an tels que

f(x) =
+∞∑
n=0

an(x− x0)n , ∀x ∈]x0 − r, x0 + r[ ,

cette série étant uniformément convergente, ainsi que toutes ses dérivées, sur tout compact de ]x0 −
r, x0 + r[. En dérivant terme à terme, on trouve que

f (n)(x0) = n!an .

�

Proposition 17 Soit f une fonction de classe C∞ sur un intervalle ouvert I contenant 0. Une
condition nécessaire et suffisante pour que f soit développable en série entière en 0 est que la suite
(Tn) définie par

Tn(x) := f(x)−
n∑
k=0

f (k)(0)

k!
xk

converge simplement vers zéro sur un intervalle ouvert contenant 0 et inclus dans I.

Proposition 18 (Estimations de Cauchy) Soit f une fonction de classe C∞ sur ] − a, a[ avec
a > 0. On suppose qu’il existe ρ > 0 et M ≥ 0 tels que pour tout x ∈]− a, a[, pour tout n ∈ N,

|f (n)(x)| ≤ Mn!

ρn
.

Alors f est développable en série entière en 0.

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont à connâıtre
parfaitement.
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Démonstration. L’inégalité de Taylor–Lagrange permet en effet alors de majorer

|Tn(x)| ≤M |x|
n+1

ρn+1
.

La suite (Tn(x))n∈N converge donc vers zéro si |x| < min(a, ρ). �
Il existe bel et bien des fonctions de classe C∞ qui ne sont pas développables en série entière.

L’exemple classique est la fonction

R → R

x 7→
{

e−1/x
2

si x 6= 0 ,
0 si x = 0 ,

dont la série de Taylor en 0 est nulle.

Développements en série entière usuels
Par intégration du développement en série entière de x 7→ 1/(1 + x), on obtient que la fonction

]− 1,+∞[ → R
x 7→ ln(1 + x)

est développable en série entière en 0, et

∀x ∈]− 1, 1[, ln(1 + x) =
+∞∑
n=0

(−1)n+1

n
xn .

Ce développement est vrai aussi en x = 1 car, d’après le théorème des séries alternées, la série∑ (−1)n+1

n xn converge uniformément sur [0, 1].

Proposition 19 Pour tout α ∈ R, la fonction

]− 1,+∞[ → R
x 7→ (1 + x)α

est développable en série entière en 0, et

∀x ∈]− 1, 1[, (1 + x)α =

+∞∑
n=0

α(α− 1) . . . (α− n+ 1)

n!
xn .

Démonstration. Il s’agit de démontrer que

Tn(x) := (1 + x)α −
n∑
k=0

α(α− 1) . . . (α− k + 1)

k!
xk

tend vers zéro lorsque n→ +∞. Or d’après la formule de Taylor avec reste intégral on a

Tn(x) = xn+1

∫ 1

0

(1− t)n

n!
α(α− 1) . . . (α− n) (1 + tx)α−n−1 dx .

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont à connâıtre
parfaitement.
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On remarque par ailleurs que

∀x ∈]− 1, 1[ , ∀t ∈ [0, 1] , 0 ≤ 1− t
1 + tx

≤ 1 .

Ceci permet de majorer

|Tn(x)| ≤ |x|n+1 |α(α− 1) . . . (α− n)|
n!

∫ 1

0
(1 + tx)α−1 dx .

Pour en déduire que la suite (Tn(x))n∈N converge vers zéro il � suffit� de remarquer que pour x ∈]−1, 1[
la série ∑

|x|n+1 |α(α− 1) . . . (α− n)|
n!

converge (utiliser par exemple la règle de d’Alembert pour les séries numériques), ce qui impose à son
terme général de tendre vers zéro. �

Par intégration des développements en série entière de

x 7→ 1/(1 + x2) , x 7→ 1/
√

(1− x2) , x 7→ 1/(1− x2) , x 7→ 1/
√

(1 + x2) ,

on obtient que les fonctions arctan, arcsin, argth, argsh sont développables en série entière en 0 et

∀x ∈]− 1, 1[,



arctan =

+∞∑
n=0

(−1)n

2n+ 1
x2n+1

arcsin =

+∞∑
n=0

(2n)!

22n(n!)2
x2n+1

2n+ 1

argth =
+∞∑
n=0

1

2n+ 1
x2n+1

argsh =

+∞∑
n=0

(−1)n
(2n)!

22n(n!)2
x2n+1

2n+ 1
.

6 Séries entières et équations différentielles

Le développement en série entière fournit un moyen de calculer les solutions d’équations différentielles.

Exemple 1 Si ϕ est une solution développable en série entière en 0 de l’équation du second ordre

4(1− t2)u′′ − 4tu′ + u = 0 ,

alors les coefficients an de son développement en 0 doivent vérifier

∀n ∈ N , (n+ 2)(n+ 1)an+2 = (1/2− n)(1/2− n− 1)an ,

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont à connâıtre
parfaitement.
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d’où

a2p =
α(α− 1) . . . (α− 2n+ 1)

(2p)!
a0

a2p+1 =
α(α− 1) . . . (α− 2p)

(2p+ 1)!
a1 .

Grâce à la proposition 19 pour α = 1/2 en déduit que

ϕ(t) = a0

√
1 + t+

√
1− t

2
+ a1

√
1 + t−

√
1− t

2
.

Exercice 6 Chercher les solutions développables en série entière en 0 de

4tu′′ + 2u′ − u = 0 .

Exprimer les restrictions de ces fonctions à R+∗ et à R−∗ à l’aide de fonctions usuelles.

Par ailleurs, il est parfois possible de recourir à la théorie des équations différentielles pour
démontrer qu’une fonction est développable en série entière.

Exemple 2 Soit α ∈ R. La fonction

f : ]− 1, 1[ → R
t 7→ cos(αarcsint)

est solution du problème de Cauchy

(1− t2)u′′ − tu′ + α2u = 0 , u(0) = 1 , u′(0) = 0 .

Par le calcul, on trouve effectivement une unique solution développable en série entière à ce problème,
dont le développement en série entière a un rayon de convergence égal à 1 car ses coefficients vérifient
la relation de récurrence :

∀n ∈ N , (n+ 1)(n+ 2)an+2 = (n2 − α2) an .

(La règle de d’Alembert montre que les deux séries numériques
∑
a2pt

2p et
∑
a2p+1t

2p+1 convergent
pour |t| < 1.) La somme de

∑
ant

n cöıncide nécessairement avec f , d’après l’unicité dans le théorème
énoncé ci-dessous.

Théorème 6 (Cauchy-Lipschitz pour les équations linéaires du second ordre) Soient a, b,
c des fonctions continues sur un intervalle ouvert non vide I et à valeurs réelles. Soient t0 ∈ I,
u0 ∈ R, u1 ∈ R. Alors le problème de Cauchy

(P ) u′′ + a(t)u′ + b(t)u = c(t) , u(t0) = u0 , u
′(t0) = u1 ,

admet une unique solution ϕ ∈ C 2(I;R).

Nous l’admettrons.

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont à connâıtre
parfaitement.
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Remarque 11 Une fonction ϕ ∈ C 2(I;R) est solution de (P ) si et seulement si la fonction Φ : t 7→
(ϕ(t), ϕ′(t))T , qui appartient à C 1(I;R2), est solution du problème

(S) U ′′ = A(t)U + C(t) , U(t0) = U0 ,

où

A(t) :=

(
0 1
−b(t) −a(t)

)
, C(t) =

(
0
c(t)

)
, U0 =

(
u0
u1

)
.

Attention, lorsque les matrices A(t) ne commutent pas entre elles (ce qui est le cas ici lorsque a et b
ne sont pas constantes), il n’y a pas de formule générale de résolution de (S).

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont à connâıtre
parfaitement.


