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1 Introduction

Definition 1 On appelle série enticre! de coefficients a,, € C et on note . a,2"™ la série de fonctions

polynomiales
C - C
z = apz".

Remarque 1 On note de la méme fagon la série entiére Y anz2", qui est une série de fonctions, et a
z fizé, la série numérique Y anz™. Seul le contexte permet de savoir de quoi on parle.

Remarque 2 Bien entendu, comme pour toutes les séries, la notation Y anz™ ne présage en aucune
facon de la convergence de la série en question.

Vous avez déja rencontré des séries entieres sans le savoir, comme par exemple > 2", Y 2"/nl, etc.
Definition 2 (Opérations formelles) Soient deux séries entieres Y anz™ et > byz".

e La série somme de Y apz" et Y byz" est Y $,2" avec s, = an + by, quel que soit n € N.
e La série produit de Y anz™ et > bpz™ est Y ppz" avec, quel que soit n € N,

n
Pn = Z agbp—p -
k=0

o La série dérivée de Y anz™ est Y dpz" avec d, = (n+ 1)an4+1 quel que soit n € N.
e Une série primitive de Y a,z" est de la forme > Apz" avec Ay, = an—1/n quel que soit n € N*
(et Ay arbitraire).

Exercice 1 Calculer le produit de la série entiére > 2" avec elle-méme. Calculer la série dérivée de

la série entiére Y 2" /nl.

2 Rayon de convergence

Lemme 1 (Abel) Soit (ap)nen € CN. S'il existe 29 € C tel que la suite compleze (anzy)nen s0it
bornée, alors quel que soit z € C de module |z| < |z0|, la série numérique > a,z" converge absolument.

Démonstration. Si zp = 0 il n’y a rien & démontrer. Si z9 # 0 et |ay2y| < C alors |a,2"| <
C|z/z|™ pour tout z € C. Si |z| < |20| la série géométrique > |z/zo|" converge, et donc par compa-
raison la série a termes réels positifs > |a,2"| converge. O

Corollaire 1 Soit (ap)nen € CN. Sl existe zo € C tel que la série numérique Y anzl converge, alors
la série numérique Y anz" converge absolument quel que soit z € C de module |z| < |z|.

Démonstration. Si une série converge, son terme général tend vers zéro et il est donc borné. [J

Definition 3 On appelle rayon de convergence d’une série entiére y | a,z"

1. Se dit < power series > en anglais, c’est-a-dire série de puissances, comme dans beaucoup d’autres langues.

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont a connaitre
parfaitement.
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e R = +oo si l’ensemble {r € R"; la suite (an™)nen est bornée} (qui contient 0) n’est pas ma-
joré,
o ct s’il est majoré, R := sup{r € RT; la suite (a,r")nen est bornée}.

La série entiere ) z"/n! est un exemple pour lequel le rayon de convergence est infini, nous en
reparlerons.

Remarque 3 L’ensemble {r € R"; la suite (a,r™)pen est bornée} est un intervalle (puisque 0 < s <
r implique 0 < |ans™| < |a,r™|). S’il n’est pas majoré cet ensemble est donc RT tout entier.

Dans I’énoncé ci-dessous, on note pour simplifier sup A € RU {400} la borne supérieure de A si A
est majoré et +0o sinon.

n

Proposition 1 Le rayon de convergence d’une série entiére y | a,z" est donné par

R = sup{r € R"; (a,r")nen converge vers 0} .
Démonstration. Notons I := {r € RT; la suite (a,,r")nen est bornée} et
A= {r e R"; (anr™)nen converge vers 0} .

On a A C I et donc sup A < sup I. Pour montrer que sup A > sup I, prenons r € I. Alors [0,r[C A
(pour la méme raison que dans le lemme d’Abel : si |a,7"| < C et 0 < s < r alors |aps™| < C(s/r)"
tend vers zéro), et donc r < sup A. Ceci étant vrai quel que soit r € I, on en déduit sup I < sup A. O

Exercice 2 Montrer que le rayon de convergence de Y, z" est égal a 1, de méme que celui de Y 2" /n,
ST 2" /02, S n"D" 2 Montrer que le rayon de convergence de S n™z" est nul.

Théoréme 1 Si R est le rayon de convergence d’une série entiére > a,z",
o quel que soit z € C tel que |z| < R la série numérique Y a,z" converge absolument,
o quel que soit z € C tel que |z| > R la série numérique ) anz" diverge.

Démonstration. Si |z| < R, soit r €]|z|, R[ : (apm™)nen est bornée et donc la série numérique
> anz™ converge absolument d’apres le lemme d’Abel. Si |z| > R alors la suite (a,2")pen n'est pas
bornée, et par conséquent la la série numérique Y a,z" diverge grossiérement (c’est-a-dire que son
terme général ne tend pas vers zéro). O

Remarque 4 Par contraposition dans le théoréme ci-dessus,
e si Y |anz"| diverge alors |z| > R,
e si Y apz" converge alors |z| < R.

Remarque 5 Le cas des nombres complexes de module exactement égal au rayon de convergence est
indéterminé en général. Par exemple, si |z| = 1 la série numérique Y 2" diverge, tandis que > 2™ /n?
converge. Quant a Y z"/n, elle diverge pour z = 1, et elle converge pour |z| = 1 et z # 1 (ceci se
démontre par transformation d’Abel).

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont a connaltre
parfaitement.
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Definition 4 On appelle disque de convergence d’une série entiére le disque ouvert centré en 0 et
de rayon R, son rayon de convergence. On appelle cercle de convergence? le cercle centré en 0 et de
rayon R.

Proposition 2 (Régle de d’Alembert) Si la suite (ap)nen ne s’annule pas a partir d’un certain
rang N, et si la suite (|ant1/an|)n>n a pour limite £ € [0,400], alors le rayon de convergence de la
série entiére Y a,z" est égal a 1/, avec par convention 1/ + oo =0, 1/0 = +o00.

Démonstration. Puisque

n+1
. Apil12
lim |Z°fle

n—oo

| = =]
anz
pour z # 0, la conclusion découle de la regle de d’Alembert pour les séries numériques : si £|z| < 1 la
série numérique Y | |a,2"| converge et donc |z| < R, tandis que si £|z| > 1 la série numérique » | |a, 2" |
diverge et donc |z| > R; ces implications montrent respectivement que 1/¢ < Ret 1/ > R. O

Pour a,, = 1/n! par exemple, £ = 0 et le rayon de convergence de Y z"/n! est donc bien +oo
comme on I’a dit plus haut. Dans certains cas, on peut conclure méme si la suite (a,)nen @ une infinité
de termes nuls, c’est le cas ci-dessous.

Exercice 3 Montrer en utilisant la régle de d’Alembert pour les séries numériques que le rayon de
convergence de 32" /(n+ 1) est égal a 1.

Proposition 3 (Régle de Cauchy) Sila suite ({/|an|)nen a pour limite £ € [0,400], alors le rayon
de convergence de la série entiére Y anz™ est égal a 1/¢ (avec la convention 1/+00 =0 et 1/0 = 400).

Démonstration. Puisque
lim {/|apz"| = ¢|z]
n—o0

pour z # 0, la conclusion découle de la regle de Cauchy pour les séries numériques (avec le méme
raisonnement que pour la regle de d’Alembert). O

Exercice 4 Montrer o ['aide de la régle de Cauchy que le rayon de convergence de la série entiére
ST 27/ est égal o 1.

La suite ({/|an|)nen n'ayant pas nécessairement de limite, il peut étre utile d’avoir recours au
résultat plus général suivant.

Proposition 4 (Régle de Cauchy-Hadamard) Le rayon de convergence de la série entiere Y anz"

est
_ 1

- Tm(¥/fan])

2. Attention, la remarque ci-dessus montre que ce terme peut préter a confusion : rien ne dit que la série entiere
converge sur le < cercle de convergence >.

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont a connaltre
parfaitement.
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Démonstration. Si 0 < r < R alors il existe C' > 0 tel que |a,r"| < C quel que soit n. Par suite,
/lan|r < V/C et donc en passant a la limite sup (puisque (/C) converge vers 1), lim( {/|a,|) < 1/r.
Ceci étant vrai quel que soit r €]0, R[, on en déduit lim({/]a,|) < 1/R. Pour montrer 'égalité,
raisonnons par I'absurde et supposons que lim( {/]a,|) < 1/R. Soit alors r tel que lim({/]a,|) < 1/r <
1/R. Par définition de la limite sup, ceci implique qu’il existe N € N tel que pour tout n > N,
Yan| < 1/r. Donc (|anr™|)nen est majorée (par 1 pour n > N), ce qui contredit le fait que r soit
strictement supérieur au rayon de convergence R. U

Exercice 5 Montrer o l’aide de la régle de Cauchy-Hadamard que le rayon de convergence de la série
entiere S n™2"" est égal a 1.

Proposition 5 Le rayon de convergence de la somme de deux séries entiéres est supérieur ou égal
au plus petit de leurs rayons de convergence. Il est égal au plus petit des deux s’ils sont différents.

Démonstration. Soient Y a,z" et > b,z" de rayons de convergence respectifs R, et Rp. Si
r < min(R,, Rp) alors la suite ((a, +by)r")nen est bornée comme somme de deux suites bornées. Donc
le rayon de convergence de Y (a, + b,)z" est R > r. Ceci étant vrai quel que soit 7 < min(Rg, Rp),
on en déduit R > min(R,, Rp). Si R, < Ry par exemple, si R, < r < Ry, la suite ((ay + bp)r™)nen est
non bornée comme somme d’une suite bornée et d’une suite non bornée, donc » > R. Ceci étant vrai
quel que soit 7 €] Rg, Rp[, on en déduit R, > R, et donc finalement R = R,. O

Proposition 6 Le rayon de convergence du produit de deux séries entiéres est supérieur ou égal au
plus petit de leurs rayons de convergence.

La démonstration repose sur le résultat suivant concernant les séries numériques.

Lemme 2 Si deux séries numériques Y u, et > v, sont absolument convergentes, la série produit
(produit de Cauchy) > w, définie par

n
Wp = E UkUn—k
k=0

est absolument convergente.

Démonstration. Pour montrer que ) w,, est absolument convergente il suffit de montrer que la
suite des sommes partielles de ) |wy| est majorée. Or

n k

n n k n n—p +00 +oo
Z‘wﬂ = Z Zup“k*p < ZZ‘UPHU’C*])‘ = ZL%‘Z’%‘ < Z’up‘ Z‘/Uq’
k=0 p=0 q=1 p=0 q=0

k=0 | p=0 k=0 p=0

Sous les hypotheses du lemme on montre méme que
“+o00 —+oo —+o0o
S, = (Z) (Z) .
n=0 n=0 n=0
Remarque 6 Le produit de deuz séries convergentes (et mon absolument convergentes) n’est pas

convergent en général : par exemple pour u, = v, = (—1)"/\/n, la série produit est grossierement
divergente.

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont a connaltre
parfaitement.
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Démonstration. [de la proposition 6] Soient > a,z" et > b, 2" de rayons de convergence respec-
tifs Ry et Rp. Si |z| < min(R,, Rp) alors les deux séries numériques Y anz™ et > byz™ sont absolu-
ment convergentes (d’apres le lemme d’Abel), donc la série produit ) ¢,2" est absolument conver-
gente d’apres le lemme 2 ci-dessus. Donc le rayon de convergence de Y ¢, 2™ est supérieur ou égal a
min(R,, Rp). O

Théoréme 2 Le rayon de convergence d’une série entiere et de sa série dérivée sont €gaur.

Démonstration. Soit une série entiere a,,2" de rayon de convergence R, et soit Y d,2" sa série
dérivée, de rayon de convergence R'. Rappelons que d,, = (n + 1)a,41 et considérons

A:={r € R"; la suite (a,r")nen est bornée} ,

D = {r € R"; la suite (d,r")nen est bornée} .
Puisque pour tout n € N et pour tout r € RT,

r
n+1| — 1 |dn’l"n|,

|<1n+17“

onaD C A et donc R < R. Pour montrer I'inégalité opposée, prenons r + h € A avec r € RT et
h > 0. Alors par la formule de Newton on a :

(n+1)r"h < (r+ h)"t,

d’ou )
|dpr™| < h |an+1(r + h)n—H’ )

ce qui montre que r € D et donc r < R'. Or, quel que soit r < R il existe h > 0 tel que r +h € A
(il suffit de prendre h < (R —r)/2), donc r < R' d’apres ce qui précede. On en déduit finalement que
R<R. O
3 Propriétés de la somme

Definition 5 On appelle somme d’une série entiere Y a,z" de rayon de convergence R > 0 la fonction

D(0;R) — C
+oo

z > Zanz",
n=0

ot D(0; R) est le disque ouvert de centre 0 et de rayon R. On restreint parfois cette fonction a
Uintervalle | — R, R[ en considérant la fonction d’une variable réelle

|-R,R[ - C

—+o0
t =Y ant”
n=0

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont a connaltre
parfaitement.
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3.1 Opérations algébriques

Proposition 7 Soient des séries entieres Y anz™ et > byz" de rayons de convergence respectifs Ry

et Ry. Soient s, et p, les coefficients de leur somme et de leur produit. Alors pour tout z € C tel que

|z| < min(R,, Ry) on a
“+o00 “+00 “+o00
E sp2t = E anz" + E bn 2",
n=0 n=0 n=0

n=0

Démonstration. Ces égalités proviennent des résultats sur la somme et le produit de séries
numériques absolument convergentes. Celui sur la somme est immédiat. Démontrons maintenant celui
sur le produit (mentionné plus haut). Soient > u, et > v, deux séries absolument convergentes et
leur série produit Y w, définie par

n
Wy, = Z UgVp—F -
k=0

Le lemme 2 a déja montré que > wy, était absolument convergente. Il s’agit de vérifier que la somme
de la série produit est égale au produit des sommes, c’est-a-dire

Observons tout d’abord que

—+00 —+00 n n

U g v, | = lim g U E v
Z n n n=s00 P q )
n=0 n=0 p=0 q=0

puis raisonnons avec des sommes doubles (notées avec le méme symbole ¥ que les sommes simples) :

n n n
E Wy — E Up E ’Uq = E Up’Uq — E Up’Uq = E upvq s
k=0 p=0 q=0

ptqsn p<n,q<n pt+g=2n+l,p<n,g<n
d’out (faire un dessin)

n

n n
Yowe— (D uwp | ([ Dova || = D0 lwpllvgl = D lupllvgl
k=0 p=0

q=0 p<n,q<n p<n/2,q<n/2

Le membre de droite ci-dessus est la différence entre les termes d’indice n et d’indice n/2 (si n est pair,
(n—1)/2 sinon) d’une suite convergente (comme produit de deux suites convergentes par hypothese).
Donc il tend vers zéro lorsque n tend vers l'infini. [l

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont a connaltre
parfaitement.
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3.2 Continuité

Lemme 3 Une série entiere converge normalement (et donc uniformément) sur tout disque fermé,
et plus généralement sur tout compact, inclus dans son disque de convergence.

Démonstration. Soit une série entiere » | a,z" de rayon de convergence R, et soit r < R. Alors
la série numérique Y a,r™ converge absolument (d’apres le théoreme 1). Comme pour |z| < 7 on a
lanz"| < |anr™|, ceci montre que Y | a,z" converge normalement dans D(0;7), le disque fermé de rayon
r et centré en zéro. On conclut en observant que pour tout compact K inclus dans D(0; R) il existe
r < R tel que K C D(0;7) : en effet, 'application continue z — |z| atteint son maximum sur K. (Si

K est un disque fermé D(zg; 1) il suffit grace a I'inégalité triangulaire de prendre r = |zg| +19.) O

Remarque 7 La convergence uniforme n’a pas lieu sur le disque de convergence lui-méme en général.
Par exemple, la série entiere Y z™ ne converge pas uniformément sur le disque unité, puisque z" ne
tend pas uniformément vers zéro sur le disque unité. Si une série entiére converge uniformément
sur son disque de convergence D(0; R) avec R < +oo alors elle converge méme uniformément sur le
disque fermé D(0; R) (conséquence du critere de Cauchy uniforme et de la continuité des fonctions
polynomiales). S’il existe un point du cercle de convergence C(0; R) d’une série entiére ou celle-ci
converge absolument, alors elle converge normalement sur D(0; R).

Proposition 8 La somme d’une série entiére est continue dans son disque de convergence.

C’est une conséquence du lemme 3 ci-dessus et du théoreme de continuité de la somme d’une série
uniformément convergente de fonctions continues (ici, des fonctions polynomiales).

Corollaire 2 La somme d’une série entiere de rayon de convergence non nul admet un développement
limité & tout ordre au voisinage de zéro. Plus précisément, si S(z) = 312 a,2" alors

S(z) = Zakzk + 0(z"™), z = 0.
k=0

Démonstration. Pour |z| < R (rayon de convergence) on a
n
S(z) = Zakzk + fu(z) 2",
k=0

ou f, est la somme de la série entiere < tronquée > Y amins12™, qui a aussi pour rayon de conver-
gence R et est donc continue en zéro. O

Attention, sauf a savoir que la série entiére converge absolument en un point de son cercle de
convergence, on ne sait rien en général de la continuité de sa somme au bord du disque de convergence.
Cependant, on peut montrer grace a la transformation d’Abel le résultat suivant.

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont a connaltre
parfaitement.
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Théoréme 3 (Abel-Dirichlet) Soit S la somme d’une série entiere y , a,z" de rayon de convergence
R €]0, +o0[. On suppose qu’il existe zy de module R tel que Y anz{ converge. Alors Y anz™ converge
uniformément sur le segment [0, zo], et par conséquent

lim S(tzg) = S(z0) -

Jim (tz0) = S(20)
Démonstration. Sans surprise, on va utiliser la < transformation d’Abel ». Tout d’abord, on
remarque qu’il suffit de savoir traiter le cas R = zy = 1 : en effet, sous les hypotheses du théoreme, la

série entiere Y a,z" définie par a, := a,z{ vérifie ces méme hypotheses avec R = zp = 1; si l'on sait
montrer que Y . a,z" converge uniformément sur le segment [0, 1] et que

}%Zan —Zan7

alors on en déduit les propriétés analogues pour »_ a,2". En oubliant les tildas, on suppose donc
désormais R = zp = 1. Pour montrer que ) _ a,t" converge uniformément sur le segment [0, 1], il s’agit
de montrer que cette série vérifie le critére de Cauchy uniforme. Notons

snp(t) = Z axt", Tnp = Snp(1)-

On a alors

p p
1 k 1 k
Snp(t) = anp 1t ) apapt™F = o "+ (o — o)t

k=2 k=2
p—1

= onpt" P+ ot (1 - 1)
k=1

Soit € > 0. Puisque »_ a, converge, il existe N € N tel que pour tout n > N, pour tout p € N*,
|onp| < €/2. On a donc, pour tout n > N, pour tout p € N*, pour tout ¢ € [0, 1],

p—1
sap() < S(1+ 1L =1) Y "),
k=1

(1—1t) Zt””‘f Hla—wrh <1, vielo1].

Donc [sy,(t)] < € comme on le voulait.
(]

Remarque 8 Il est possible que lim; ~ S(tzo) existe sans que la série ) anzy converge. C’est le cas
par exemple pour a, = (—1)" et zg = 1, puisque

= 1 1
—1)"" = - -, z—1.
nzo( A v T

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont a connaltre
parfaitement.
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3.3 Dérivabilité

n

Proposition 9 La somme d’une série entiére est de classe €°. Plus précisément, si Y a,z" est une

série entiére de rayon de convergence R €]0,+00] alors la fonction
f:]-RR — C
x — Zanx”,
n=0
est de classe €°°.

Démonstration. On commence par démontrer qu’elle est de classe €' puis on raisonne par
récurrence. D’apres le théoreme 2, la série dérivée a pour rayon de convergence R, et d’apres le lemme
3, cette série converge normalement sur tout compact de | — R, R[. Donc d’apres le théoréme de
dérivation des séries de fonctions, f est de classe € et pour tout = €] — R, R,

“+o0

f'(z) = Z(n + Daps12™.

n=0

O

Proposition 10 Soient ) anz™ une série entiére de rayon de convergence R €0, +00], f sa somme,
et g la somme de la série dérivée>. Si ¢ : I — C est de classe €' sur Uintervalle I de R et telle que
lo(t)| < R pour tout t € I, alors la fonction f oy est de classe €' sur I et sa dérivée est go p x ¢'.

Démonstration. Si I'on note f,(t) = an(¢(t))", on a f.(t) = na,(p(t))" !, les hypotheses
montrent que les séries de fonctions Y f,, et > f! convergent normalement sur tout compact de 1. O

3.4 Intégration

Proposition 11 Soient > a,z" une série entiére de rayon de convergence R €]0,4+00| et f sa somme.
Quel que soit le segment [a,b] C] — R, R[ on a

b +oo  p
/a f(H)dt = RZ:O/G "t .

Démonstration. C’est une conséquence du théoreme d’intégration des séries de fonctions car
> ant™ converge uniformément sur le segment [a, b]. (]

Proposition 12 Soient > a,z" une série entiére de rayon de convergence R €]0,4+00| et f sa somme.
Alors les primitives de f sur ] — R, R[ sont les sommes des séries primitives de Y a,z".

3. qui coincide avec f’ sur | — R, R[ d’apres la proposition précédente

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont a connaltre
parfaitement.
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4 Exponentielle complexe

Rappelons que le rayon de convergence de la série entiere ano 2" /n! est infini, ce qui implique
qu’elle converge absolument uniformément sur tout compact de C. Pour tout z € C, on définit

+oo prs
exp(z) = Z ok
n=0 '

On voit que exp(0) = 1, et d’apres la proposition 10, la fonction ¢ — exp(t) est dérivable sur R, de
dérivée égale a elle-méme. Autrement dit, la fonction u = exp|p est solution du probleme

dont on sait que I'unique solution est la fonction exponentielle réelle z — e, définie sur R par

n
e’ = lim (14—{) .
n

n—oo

Par suite, on a pour tout x € R,

n
n! n—00 n

=X AL
exp(x) = E — = lim <1—|—7> =e".
n=0

Désormais, on note indifféremment exp(z) ou e®. La fonction exponentielle complexe est continue sur

C.

4.1 Propriétés algébriques

Proposition 13 1. Pour tout z € C,
e* = e”.

2. Quels que soient z1, 23 € C,
el T2 — %1 g%2

3. Pour tout z € C,

|ez’ — eRez .

Démonstration. 1) On utilise le fait que la conjugaison et la sommation d’une série commutent,
et que

400
el e = an(zl, 22) y
n=0
ol n k k
2% 2D
Pn(21, 22) i= *1' 2 = j(zl + 29)"

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont a connaltre
parfaitement.
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d’apres la formule du binome.
3) D’apres 1) et 2), quel que soit z € C,

z2+z

z’2:eze7:ezez:e ,

e
d’ou
|ez| — eRez‘

O

Remarque 9 On a utilisé ci-dessus le fait que e** = (e%)? lorsque x est réel (en l'occurrence pour
xr =z +T), mais cette formule est vraie aussi pour les nombres complezes. Plus généralement, on a

VzeC,VYmeZ, e™ = (e*)".

Ceci se démontre par récurrence a l'aide de 2) (on commence par les entiers naturels, et on remarque
que e=* = ()71 se déduit de 2) et du fait que ¢® = 1). Attention toutefois a ne pas généraliser cette
formule de facon abusive(comme on va le (re)voir ci-aprés, €™ est différent de (€*™)* = 1 lorsque
z € R\Z!).

Théoréme 4 La fonction exp définit un morphisme surjectif du groupe additif C sur le groupe mul-
tiplicatif C*.

Démonstration. La propriété de morphisme découle de la proposition 13 2) et du fait que e = 1.
Pour démontrer sa surjectivité, nous allons utiliser des arguments d’analyse. Fixons zy € C\R™ (le cas
des réels strictement négatifs sera traité apres coup) et considérons la fonction (affine) f: ¢ € [0,1] —
f(t) =1 —1t+tz. Elle est a valeurs dans le segment d’extrémités zy et 1, qui ne contient pas zéro
puisqu’on a supposé z ¢ R™. On peut donc définir

g: [0,1] — C
toeog(t)= fy La.

Elle est de classe €, de dérivée f'/f, et expo(—g) aussi, de dérivée —expo(—g) x f'/f (d’apres la
proposition 10). Par suite, la fonction f x expo(—g) est de classe € et dérivée identiquement nulle
sur le segment [0, 1]. Donc, d’apres le théoreme des accroissements finis, cette fonction est constante.
L’égalité
£(0) x €790 = f(1) x e 9

donne zy = 9. Ce résultat d’applique en particulier & i : il existe w € C tel que i = e¥ (pour
Iinstant, on n’est pas censé savoir que w = im/2 convient!), d’ott —1 = e?*. Si 29 € R™*, alors il existe
x € R tel que —zp = e (d’apres ce que 'on sait sur 'exponentielle réelle, mais un complexe fourni
par le résultat précédent nous suffirait), et donc zg = e®+2¥. O

4.2 Nombres complexes de module 1

D’apres la proposition 13-3), on a |e*| = 1 si et seulement si z € iR. Comme d’apres le théoréme
4 tout nombre complexe a un antécédent par exp, ’ensemble U des nombres complexes de module 1

est exactement ‘
U= {e?; 6 eR}.

Cet ensemble est un groupe multiplicatif.

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont a connaltre
parfaitement.
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Théoréme 5 La fonction u: 0 € R — e est un morphisme continu surjectif du groupe additif R sur
U. Son noyau est de la forme aZ avec a € R. On définit le nombre © par

Ker u = 277Z.

Démonstration. La continuité et la surjectivité se déduisent de celle de Iexponentielle (par
composition avec la fonction linéaire 6 — i6). Le noyau de u est donc un sous-groupe fermé de (R, +).
1l est distinct de R et non réduit & {0} (car i = ¢ implique 1 = ¢*® mais 40 # 0). 1l est par
conséquence de la forme aZ, a € R d’apres le résultat montré ci-apres. O

Proposition 14 Un sous-groupe de (R, +) est soit dense soit de la forme aZ, a € R.

Démonstration. Soit G un sous-groupe de (R, +). Commengons par éliminer le cas on G = {0}, qui
est évidemment de la forme aZ avec a = 0. Sinon, ’ensemble G "R est non vide et minoré. Notons
a € R sa borne inférieure. L’alternative annoncée dépend de la valeur de a. Nous allons montrer que
si a = 0 alors GG est dense, tandis que si a > 0 alors G = aZ.

Supposons a = 0. Il s’agit de montrer que dans tout intervalle |z, y[ il y au moins un élément de
G. Soient donc des réels z, y avec z < y. Puisque y —x > 0 et 0 = inf(G NR1*), il existe g € G tel
que 0 < g < y — z (sinon y — z serait un minorant de G N R™* strictement plus grand que sa borne
inférieure). Soit alors k = F(x/g). On a par définition

kg<z<(k+l)g<z+g<y.

Donc (k + 1)g est un élément de GN|x, y[.

Supposons maintenant a > 0. On remarque tout d’abord que a doit appartenir a G. Sinon il
existerait des éléments g et h de G tels que a < h < g < 2a (en invoquant & nouveau la définition de
la borne inférieure), d’ot1 0 < g — h < a, ce qui contredirait le fait que a est un minorant de G NR**.
(noter que g — h € G). Par suite, a € G et donc aZ C G puisque G est un groupe. Il reste & montrer
que tout élément de G appartient a aZ. Soit donc g € G, et soit k = E(g/a). Alors par définition
ka < g < (k+ 1)a, ou encore 0 < g — ka < a. Comme g — ka € G, il doit étre nul sous peine de
contredire le fait que a est un minorant de G N R™*.

O

Le fait que le noyau de u soit 277 signifie I’équivalence

e =1 o 0ec2mz]

Le nombre réel —1 appartient a U\{1} et son carré vaut 1. On en déduit

e = -1 & 067['4‘271’2‘

Le nombre imaginaire i appartient & U\{1, —1} et vérifie i* = 1. On en déduit

e =i & fGel+2rl

Il est également utile d’avoir en téte 1’équivalence

1
2l =1 & -=7%
z

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont a connaltre
parfaitement.
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4.3 Fonctions trigonométriques et hyperboliques

Pour tout z € C on définit les fonctions cosinus, sinus, cosinus hyperbolique (noté cosh ou ch),
sinus hyperbolique (noté sinh ou sh) par :

j —i oo 2n

eZZ+e (74 n z
cos(z) = = Z (—1) ok
n=0

i - +00 2n+1

) el? _ g—i2 N 2
sin(z) = ——5— =) (-1) 2n+1)!
n=0
_ +0o0 om
e +e”? z
cosh(z) = =
|
2 ot (2n)
- oo 2n41
e* —e”” z
inh(z) = —— = .
sinh(z) 2 — (20 +1)!
En particulier, pour tout x € R on a
eiT | oiT , +oo (71)19 22k it _ =i , +oo (71)19 22k+1
_ _ 1T _ : _ _ 1T _
COST = ———— = Re(e'") = Z TR sing = ———— = Im(e'") = Z RO
k=0 k=0
- oo k .2k x —x oo 2k+1
e’ +e " (-D)*zx . e’ —e x
oS 2 kz—o (2k)! . 2 — (2k + 1)!

Les fonctions cos, sin, cosh, sinh sont de classe € sur R d’apres la proposition 9. Les fonctions cos
et sin sont 27-périodiques d’apres le théoreme 5. De plus, 7/2 est le plus petit réel positif annulant
COS.

Identités remarquables

cos?z +sinz =1 cosh?z — sinh?z = 1
cos’ = —sin, sin’ = cos cosh’ = sinh, sinh’ = cosh
cos(a + b) = cosacosb —sinasinb cosh(a 4+ b) = cosh a cosh b + sinh a sinh b
sin(a + b) = sinacosb + cosasinb sinh(a 4 b) = sinh a cosh b + cosh a sinh b
cos(z + ) = —cosz, cos(n/2 — z) =sinz | cosh(z + im) = —cosh z, cos(in/2 + z) = isinh z
sin(z +7) = —sinz, sin(n/2 — z) = cosz | sinh(z + iw) = —sinh 2, sinh(ir/2 + z) = icosh z

On définit aussi les fonctions tangente, cotangente :

COS 2z

sin 2
tanz = —— pour z ¢ w/2 +7Z, cotanz =
oS 2z

=t 2 — Z
i an(m/2 — z) pour z ¢ 77,

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont a connaltre
parfaitement.
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et tangente hyperbolique (notée tanh ou th) :

L 1,
i pour z ¢ im/2 + inZ
z

tanh z =

5 Fonctions développables en série entiere

Definition 6 On dit qu’une fonction f : U — C définie sur un ouvert U de C contenant 0 est
développable en série entiere en 0 s’l existe une série entiére »_ a,z", de rayon de convergence R > 0
et r €]0, R[ tel que, pour tout z € D(0;7r) N U,

+o0o
flz) = Z anz" .
n=0

On dit qu’elle est développable en série entiere en zg € U si la fonction z — f(z — zg) est développable
en série entiere en 0. Dans ce cas, on appelle développement en série entiere en zg de f la série
> an(z — 20)™ telle que pour z voisin de zy,

“+o0o
f(z) = Zan(z —20)".
n=0

Une fonction développable en série entiere en chaque point d’un ouvert est dite analytique sur cet
ouvert.

Par exemple, la somme d’une série entiere de rayon de convergence R > 0 est développable en
série entiere en 0 (on peut montrer qu’elle est méme développable en série entiere en tout point de son
disque de convergence).

Proposition 15 Soit ' € C(X) une fraction rationnelle de pdles tous non nuls. Alors la fonction
z +— F(2) (définie en dehors des pdles) est développable en série entiere en 0, et le rayon de convergence
de cette série entiére est €gal au minimum des modules des poles de F'.

Démonstration. Grace a la décomposition en éléments simples, il suffit de montrer que toute
fonction F': z +— 1/(z — z9)™ avec n € N et zy # 0 est développable en série entiere en 0, et que la
série entiere correspondante a |zp| comme rayon de convergence. En considérant F:ze 20 F(202) =
1/(z — 1)™, on se ramene au cas zp = 1. Pour ce dernier, on connait explicitement le développement
en série entiere : il est trivial si n = 0 et pour n € N*,

+0o0
1 E+n—1\
1, — = g .
Ve, <1, (1—2)" ( n—1 >Z

k=0

Avant de vérifier ce développement, observons que le rayon de convergence de la série entiére ci-dessus
est bien égal & 1 car les coefficients ay := (k;le) sont tels que agy1/ar = (k+n)/(k+ 1) tend vers 1
lorsque k tend vers 4+o00. Le calcul du développement se fait par récurrence. On connait en effet déja

lecasn=1:

1—2z

1 =
Vz, |z <1, — = sz.
k=0

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont a connaltre
parfaitement.
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Si ’on suppose de développement démontré pour n, alors on remarque que
+oo +o0o oo
1 E+n—1\ . kE+n k+n—1 k E+n\ .

O

Remarque 10 Attention, le développement en série entiére d’une fonction (développable en série
entiére) dépend du point ot il est effectué. Autrement dit, les coefficients a,, du développement en z
dépendent de zy !

Proposition 16 Soit f un fonction développable en série entiere en un point réel xg. Alors son
développement en série entiére est sa série de Taylor en xg, c’est-a-dire

(n) (1
S

Démonstration. Par hypothese, il existe r > 0 et des coefficients a,, tels que
+oo
flz) = Z an(x — x0)", Vo €|y — 1,20 + 7],
n=0

cette série étant uniformément convergente, ainsi que toutes ses dérivées, sur tout compact de Jzg —
r,xo + r[. En dérivant terme a terme, on trouve que

£ (z0) = nlay, .

O

Proposition 17 Soit f une fonction de classe €°° sur un intervalle ouvert I contenant 0. Une
condition nécessaire et suffisante pour que f soit développable en série entiére en 0 est que la suite
(T},) définie par
n
F®)
Tn(z) == f(x) — Z L

k=0

converge simplement vers zéro sur un intervalle ouvert contenant 0 et inclus dans I.

Proposition 18 (Estimations de Cauchy) Soit f une fonction de classe €°° sur | — a,a[ avec
a > 0. On suppose qu’il existe p > 0 et M > 0 tels que pour tout x €] — a,al, pour tout n € N,

|
£ ()] < ]fff' .

Alors f est développable en série entiére en 0.

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont a connaltre
parfaitement.
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Démonstration. L’inégalité de Taylor—Lagrange permet en effet alors de majorer

n+1
T ()| < M1

anrl ’

La suite (T, (z))nen converge donc vers zéro si || < min(a, p). O
Il existe bel et bien des fonctions de classe €*° qui ne sont pas développables en série entiere.
L’exemple classique est la fonction

R — R

{ e V2 gig #£0,

o 0 siz=0,

dont la série de Taylor en 0 est nulle.

Développements en série entiere usuels
Par intégration du développement en série entiere de x — 1/(1 + z), on obtient que la fonction

]-1,400[ — R
x — In(1+x)
est développable en série entiere en 0, et
Ve el —-1,1, In(1 = —z".
x €] [, In(1+x) nZ:O .

Ce développement est vrai aussi en x = 1 car, d’apres le théoréme des séries alternées, la série
—_1)nt+1 . ,
> % 2™ converge uniformément sur [0, 1].

Proposition 19 Pour tout o € R, la fonction

]—1,400[ — R
x = (14 x)”

est développable en série entiére en 0, et

—+00

Ve —1,1[ (+2)° = Za(a—l)..ﬁ!(a—n+1)xn.

n=0

Démonstration. Il s’agit de démontrer que

Tu() = (1 + 2)° — Za(al)..];:!(oszrl)wk

k=0

tend vers zéro lorsque n — +oo. Or d’apres la formule de Taylor avec reste intégral on a

1 n

1-—t¢ ,

T, (z) = 2™ / a-u" ala—1)...(a—n) (1 +tx)* " Tda.
Jo

n!

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont a connaltre
parfaitement.
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On remarque par ailleurs que

1—1t
<1.
1+t —

Ve el —1,1[, vt € [0,1], 0<

Ceci permet de majorer

(a—1)...(a —n !
uvn(x)‘ S ’x‘n—&-l‘a(a ) ' (O/ TI)| / <1+tx)oz—1 dr .
n: 0

Pour en déduire que la suite (T),(x))nen converge vers zéro il < suffit > de remarquer que pour x €]—1, 1]

la série

Z ’:L,‘TL+1 ‘a(a B 1) cee (a - n)|
n!
converge (utiliser par exemple la régle de d’Alembert pour les séries numériques), ce qui impose & son

terme général de tendre vers zéro. O

Par intégration des développements en série entiere de
= 1/14+2%, 2= 1/\/ 1 —-22), 2= 1/(1—2°%), z— 1//(1 + 22),

on obtient que les fonctions arctan, arcsin, argth, argsh sont développables en série entiere en 0 et

~— (="
arctan = Z S L pPntl
2n+1
n=0
+oo 2n41
. (2n)!  x"
Aresin = D o2 2n 1 1

n=0

Vo el —1,1], N
X1

argth = E g2l
o 2n+1
+oo 2n+1
(2n)! =z
_ n
aresh = 3 ()" a0t 2051

n=0

6 Séries entieres et équations différentielles
Le développement en série entiere fournit un moyen de calculer les solutions d’équations différentielles.
Exemple 1 Si ¢ est une solution développable en série entiere en 0 de ’équation du second ordre
401 — )" —4tu +u =0,
alors les coefficients a,, de son développement en 0 doivent vérifier

VYneN,(n+2)(n+ a2 =(1/2—n)(1/2 —n —1)ay,,

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont a connaltre

parfaitement.
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d’ou
ala—1)...(a —2n+1)
e (2)! "
ala—1)...(a—2p)
G2p+1 = 2p+ 1) -

Grice a la proposition 19 pour a = 1/2 en déduit que

Vi+it+yv1—t Vvi+t—v1-1t
o(t) = ao 5 + a1 5 .

Exercice 6 Chercher les solutions développables en série entiére en 0 de
dtu" + 20 —u=0.
Exprimer les restrictions de ces fonctions a R™ et a R™* a l’aide de fonctions usuelles.

Par ailleurs, il est parfois possible de recourir a la théorie des équations différentielles pour
démontrer qu'une fonction est développable en série entiere.

Exemple 2 Soit o € R. La fonction

f+]1-1,1 —- R
t — cos(aarcsint)

est solution du probleme de Cauchy
(1 -t —t/ +a*u=0, u(0) =1, «'(0) =0.

Par le calcul, on trouve effectivement une unique solution développable en série entiére a ce probléme,
dont le développement en série enticre a un rayon de convergence égal a 1 car ses coefficients vérifient
la relation de récurrence :

Vn € N, (n+1)(n+2)ans2 = (n* —a?)ay, .

La régle de d’Alembert montre que les deux séries numériques S agpt?P et S agyr1t?PT1 convergent
g q q P p+ 9
pour |t| < 1.) La somme de > ant™ coincide nécessairement avec f, d’aprés l'unicité dans le théoréme

énoncé ci-dessous.

Théoréme 6 (Cauchy-Lipschitz pour les équations linéaires du second ordre) Soient a, b,
¢ des fonctions continues sur un intervalle ouvert non vide I et a wvaleurs réelles. Soient tg € 1,
ug € R, u; € R. Alors le probléme de Cauchy

(P) W'+ a(t)u’ + b(t)u = c(t), u(to) = uo, u'(to) =u1,
admet une unique solution ¢ € €%(I;R).

Nous 'admettrons.

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont a connaltre
parfaitement.
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Remarque 11 Une fonction p € €%(I;R) est solution de (P) si et seulement si la fonction ® : t —
(o(t), o' ()T, qui appartient a €1 (I;R?), est solution du probléme

(S) U" = A()U +C(t), Ulty) = U,

Alt) = < l?(t) i(t) ) O = ( c?t) > o= < Z(l) > '

Attention, lorsque les matrices A(t) ne commutent pas entre elles (ce qui est le cas ici lorsque a et b
ne sont pas constantes), il n’y a pas de formule générale de résolution de (S).

NB: Le sens des termes en rouge, les énoncés en bleu et les démonstrations en violet sont a connaltre
parfaitement.



