Définition 1. Un endomorphisme $u \in \mathcal{L}(E)$ est dit trigonalisable s'il existe une base de E dans laquelle la matrice de u est triangulaire supérieure. Une telle base est appelée base de trigonalisation de u.

Proposition 1. Soient $\mathcal{B} = (e_1, \dots, e_n)$ une base et E et $u \in \mathcal{L}(E)$. On a équivalence entre :

- (i). la base \mathcal{B} trigonalise l'endomorphisme u,
- (ii). $\forall k \in [1; n]$, le sous-espace $Vect\{e_1, \dots, e_k\}$ est stable par u.

Définition 2. Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est dite trigonalisable (dans $\mathcal{M}_n(\mathbb{K})$) si elle est semblable à une matrice triangulaire supérieure, i.e. il existe $P \in GL_n(\mathbb{K})$ et $T \in \mathcal{M}_n(\mathbb{K})$ triangulaire supérieure telles que $P^{-1}AP = T$.

Proposition 2. Soient $u \in \mathcal{L}(E)$ et \mathcal{B} une base de E. On note $A = \operatorname{Mat}_{\mathcal{B}}(u)$. On a équivalence entre :

- (i). A est trigonalisable (dans $\mathcal{M}_n(\mathbb{K})$),
- (ii). u est trigonalisable.

Définition 3. Un endomorphisme $u \in \mathcal{L}(E)$ est dit nilpotent s'il existe un entier $p \in \mathbb{N}$ tel que $u^p = 0_{\mathcal{L}(E)}$. Le plus petit entier p vérifiant $u^p = 0_{\mathcal{L}(E)}$ est appelé indice de nilpotence de u. Ce vocabulaire se transpose aux matrices carrées.

Théorème 1. Soit $u \in \mathcal{L}(E)$. On a équivalence entre :

- (i). u est nilpotent,
- (ii). il existe une base $\mathcal B$ de E dans laquelle la matrice de u est triangulaire supérieure stricte, i.e. de la forme

$$\begin{pmatrix} 0 & & (*) \\ & \ddots & \\ (0) & & 0 \end{pmatrix}$$

- (iii). le polynôme caractéristique de u est égal à X^n ,
- (iv). il existe $r \in [1; n]$ tel que le polynôme minimal de u est égal à X^r .

Proposition 3. Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est nilpotente si, et seulement si, A est semblable à une matrice triangulaire supérieure stricte.

Corollaire 1. Si u est un endomorphisme nilpotent d'un \mathbb{K} -espace vectoriel E de dimension n, alors $u^n = 0_{\mathcal{L}(E)}$ et l'indice de nilpotence de u est inférieur ou égal à n. Si $A \in \mathcal{M}_n(\mathbb{K})$ est nilpotente, alors $A^n = 0_{\mathcal{M}_n(\mathbb{K})}$ et l'indice de nilpotence de A est inférieur ou égal à n.

Théorème 2. Soit $u \in \mathcal{L}(E)$. On a équivalence entre :

- 1. u est trigonalisable,
- 2. le polynôme caractéristique χ_u de u est scindé sur \mathbb{K} ,
- 3. il existe un polynôme annulateur de u scindé sur K,
- 4. le polynôme minimal Π_u de u est scindé sur \mathbb{K} .

Ce résultat se transpose aux matrices carrées $A \in \mathcal{M}_n(\mathbb{K})$.

Corollaire 2. Si $A \in \mathcal{M}_n(\mathbb{K})$ est trigonalisable, en notant $\lambda_1, \ldots, \lambda_p$ ses valeurs propres deux à deux distinctes, alors il existe $P \in GL_n(\mathbb{K})$ telle que $P^{-1}AP = T$ est diagonale par blocs de la forme

$$T = \begin{pmatrix} T_1 & (0) \\ & \ddots & \\ (0) & & T_n \end{pmatrix}$$

où pour tout $k \in [1; p]$, $T_k = \lambda_k I_{m_k} + N_k$ avec N_k triangulaire supérieure stricte et m_k désigne la multiplicité algébrique de λ_k .

Corollaire 3. Soit $u \in \mathcal{L}(E)$. Si χ_u est scindé sur \mathbb{K} , alors $\operatorname{Tr}(u)$ est la somme des valeurs propres de u comptées avec multiplicité (algébrique) et $\det(u)$ est le produit des valeurs propres comptées avec multiplicité (algébrique), i.e.

$$\operatorname{Tr}(u) = \sum_{\lambda \in \operatorname{Sp}(u)} m_{\lambda}(u) \lambda \quad et \quad \det(u) = \prod_{\lambda \in \operatorname{Sp}(u)} \lambda^{m_{\lambda}(u)}.$$

Proposition 4. Si $u \in \mathcal{L}(E)$ est trigonalisable et F est un sous-espace vectoriel de E non nul stable par u, alors l'endomorphisme induit u_F est trigonalisable.

Soit $u \in \mathcal{L}(E)$ trigonalisable. Comme son polynôme minimal et son polynôme caractéristique sont scindés sur \mathbb{K} , sont unitaires, et possèdent exactement les mêmes racines (à savoir les valeurs propres de u), on peut les écrire sous la forme

$$\pi_u = \prod_{k=1}^r (X - \lambda_k)^{\alpha_k}$$
 et $\chi_u = \prod_{k=1}^r (X - \lambda_k)^{m_k}$

où $\lambda_1, \ldots, \lambda_r \in \mathbb{K}$ sont les valeurs propres distinctes de $u, m_k = m_{\lambda_k}(u)$ désigne la multiplicité algébrique de λ_k et $\alpha_k \in \mathbb{N}^*$ vérifie $\alpha_k \leq m_k$.

Définition 4. Soit $k \in [1; r]$, l'espace vectoriel $F_k = \operatorname{Ker}((u - \lambda_k \operatorname{Id}_E)^{m_k})$ est appelé sous-espace caractéristique de u associé à la valeur propre λ_k . Comme u est trigonalisable, on $a : E = \bigoplus_{k=1}^r F_k$.

Proposition 5. Notons, pour tout $k \in [1; r]$, $G_k = \text{Ker}((u - \lambda_k \operatorname{Id}_E)^{\alpha_k})$. Le sous-espace vectoriel G_k est de dimension m_k et G_k est égal à l'espace caractéristique F_k de u associé à λ_k .