Définition 1. Soient $u \in \mathcal{L}(E)$ et $P = \sum_{k=0}^{d} a_k X^k \in \mathbb{K}[X]$. On appelle évaluation de P en u ou valeur de P en u l'endomorphisme $P(u) \in \mathcal{L}(E)$ défini par

$$P(u) = \sum_{k=0}^{d} a_k u^k = a_d u^d + \dots + a_1 u + a_0 \operatorname{Id}_E \quad \text{où} \quad u^k = \underbrace{u \circ \dots \circ u}_{k \text{ fois}}.$$

Proposition 1. Soient $u \in \mathcal{L}(E)$, $P, Q \in \mathbb{K}[X]$ et $\lambda \in \mathbb{K}$. Alors

$$(\lambda P + Q)(u) = \lambda P(u) + Q(u)$$
 et $(PQ)(u) = P(u) \circ Q(u)$.

Définition 2. On dit que $v \in \mathcal{L}(E)$ est un polynôme en $u \in \mathcal{L}(E)$ s'il existe $P \in \mathbb{K}[X]$ tel que v = P(u). On note $\mathbb{K}[u]$ l'ensemble des polynômes en u:

$$\mathbb{K}[u] = \{ P(u) \mid P \in \mathbb{K}[X] \}.$$

Proposition 2. Soit $u \in \mathcal{L}(E)$. L'ensemble $\mathbb{K}[u]$ est stable par addition, composition et multiplication par un scalaire. De plus, pour tout $v, w \in \mathbb{K}[u]$, on a $v \circ w = w \circ v$.

Définition 3. On appelle polynôme annulateur de $u \in \mathcal{L}(E)$ tout polynôme $P \in \mathbb{K}[X]$ tel que $P(u) = 0_{\mathcal{L}(E)}$.

Théorème 1. Les valeurs propres de $u \in \mathcal{L}(E)$ figurent parmi les racines dans \mathbb{K} des polynômes annulateurs de u. Autrement dit, si $P \in \mathbb{K}[X]$ est annulateur de u, alors

$$\operatorname{Sp}(u) \subset \{\lambda \in \mathbb{K} \mid P(\lambda) = 0\}.$$

Théorème 2 (Théorème de Cayley-Hamilton). Soient E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et $u \in \mathcal{L}(E)$. Le polynôme caractéristique de u, χ_u , est annulateur de u, i.e. $\chi_u(u) = 0_{\mathcal{L}(E)}$.

Définition 4. Soient $P = \sum_{k=0}^{d} a_k X^k \in \mathbb{K}[X]$ et $A \in \mathcal{M}_n(\mathbb{K})$. On appelle évaluation de P en A (ou valeur de P en A) la matrice

$$P(A) = \sum_{k=0}^{d} a_k A^k = a_d A^d + \dots + a_1 A + a_0 I_n \in \mathcal{M}_n(\mathbb{K}).$$

Proposition 3. Soient $A \in \mathcal{M}_n(\mathbb{K})$, $P, Q \in \mathbb{K}[X]$ et $\lambda \in \mathbb{K}$, alors

$$(\lambda P + Q)(A) = \lambda P(A) + Q(A)$$
 et $(PQ)(A) = P(A)Q(A) = Q(A)P(A)$

Définition 5. On dit que $M \in \mathcal{M}_n(\mathbb{K})$ est un polynôme en $A \in \mathcal{M}_n(\mathbb{K})$ s'il existe $P \in \mathbb{K}[X]$ tel que M = P(A). On note

$$\mathbb{K}[A] = \{ P(A) \mid P \in \mathbb{K}[X] \}$$

l'ensemble des polynômes en A. Cet ensemble est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ stable par multiplication matricielle.

Définition 6. Soit $A \in \mathcal{M}_n(\mathbb{K})$. On appelle polynôme annulateur de A tout polynôme $P \in \mathbb{K}[X]$ vérifiant $P(A) = 0_{\mathcal{M}_n(\mathbb{K})}$.

Proposition 4. Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. Si A et B sont semblables, alors A et B ont les mêmes polynômes annulateurs.

Théorème 3. Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $P \in \mathbb{K}[X]$. Si P est un polynôme annulateur de A, alors le spectre de A est inclus dans l'ensemble des racines de P (dans \mathbb{K}).

Théorème 4 (Théorème de Cayley-Hamilton (version matricielle)). Soit $A \in \mathcal{M}_n(\mathbb{K})$. Le polynôme caractéristique de A, χ_A , est annulateur de A, i.e. $\chi_A(A) = 0_{\mathcal{M}_n(\mathbb{K})}$.

Proposition 5. Soit $u \in \mathcal{L}(E)$. Il existe un unique polynôme $\Pi_u \in \mathbb{K}[X]$ vérifiant :

- (i). Π_u est annulateur de u,
- (ii). Π_u est unitaire,
- (iii). pour tout polynôme $P \in \mathbb{K}[X]$ non nul annulateur de u, $\deg(\Pi_u) \leq \deg(P)$.

Ce polynôme Π_u est appelé polynôme minimal de l'endomorphisme u.

Cet énoncé se transpose aux matrices $A \in \mathcal{M}_n(\mathbb{K})$ permettant de définir le polynôme minimal Π_A .

Corollaire 1. Soit $u \in \mathcal{L}(E)$. Le polynôme minimal de u divise tout polynôme annulateur de u, i.e.

$$\forall P \in \mathbb{K}[X], \quad P(u) = 0_{\mathcal{L}(E)} \Rightarrow \Pi_u \mid P.$$

Théorème 5. Soit $u \in \mathcal{L}(E)$. Les valeurs propres de u sont exactement les racines (dans \mathbb{K}) de son polynôme minimal Π_u . Ce résultat se transpose aux matrices carrées.

Lemme 1 (Lemme des noyaux). Soient $u \in \mathcal{L}(E)$ et $P, Q \in \mathbb{K}[X]$. Si P et Q sont premiers entre eux, alors

$$\operatorname{Ker}((PQ)(u)) = \operatorname{Ker}(P(u)) \oplus \operatorname{Ker}(Q(u)).$$

Corollaire 2. Soient $u \in \mathcal{L}(E)$ et $P_1, \ldots, P_m \in \mathbb{K}[X]$. Si les polynômes P_1, \ldots, P_m sont deux à deux premiers entre eux, alors

$$\operatorname{Ker}\left(\left(\prod_{k=1}^{m} P_{k}\right)(u)\right) = \bigoplus_{k=1}^{m} \operatorname{Ker}(P_{k}(u)).$$

Ce résultat se transpose aux matrices carrées $A \in \mathcal{M}_n(\mathbb{K})$:

$$\operatorname{Ker}\left(\left(\prod_{k=1}^{m} P_{k}\right)(A)\right) = \bigoplus_{k=1}^{m} \operatorname{Ker}(P_{k}(A)).$$

Théorème 6. Soit $u \in \mathcal{L}(E)$. On a équivalence entre :

- (i). u est diagonalisable,
- (ii). il existe un polynôme annulateur de u scindé à racines simples sur \mathbb{K} ,
- (iii). le polynôme minimal de u, Π_u , est scindé à racines simples sur \mathbb{K} .

Ce résultat se transpose aux matrices carrées.

Proposition 6. Soient $u \in \mathcal{L}(E)$ et F un sous-espace vectoriel de E non nul stable par u.

1. Le sous-espace F est stable par tout polynôme en u et

$$\forall P \in \mathbb{K}[X], \quad P(u)_F = P(u_F).$$

2. Le polynôme minimal de u_F divise le polynôme minimal de u_F i.e. $\Pi_{u_F} \mid \Pi_u$.

Théorème 7. Si $u \in \mathcal{L}(E)$ est diagonalisable, et si F est un sous-espace vectoriel de E non nul stable par u, alors l'endomorphisme induit u_F est aussi diagonalisable.

Proposition 7. Soient $u, v \in \mathcal{L}(E)$ diagonalisables. Si u et v commutent, alors il existe une base de E qui diagonalise u et v en même temps. Une telle base est appelée base de codiagonalisation de u et v.

Corollaire 3. Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ deux matrices diagonalisables. Si AB = BA, alors il existe une matrice $P \in GL_n(\mathbb{K})$ telle que $P^{-1}AP$ et $P^{-1}BP$ sont toutes deux diagonales.