Réduction des endomorphismes.

1. Sommes directes.

1.1. Définition. Soit E un espace vectoriel sur K, (K = R ou C). Soit
FE1q, ..., B ses sous-espaces vectoriels. La somme FE; + ... + Ej est le sous-
espace formé de tous les vecteurs v = vy + ... + vy ou v; € E;. La somme
est directe (noté F1 @ ... Ej) si une telle décomposition est unique: si
v =+ ..+v = uy + ..+ up avec v; € E; et u; € E; alors v; = u;,
(i=1,..,k).

1.2. Lemme. Les propriétés 1.-5. suivantes sont équivalentes:

1. La somme FE; + ... + E}, est directe.

2. La relation vi + ... + v = 0 o v; € E; entraine vy =0, ... , v, = 0.

3. Pour tout iona E;N(E1+...+ Ei—1 + Eiy1 + ... + Ey) = {0}.

4. Soit By, ... , By des bases des sous-espaces Ef, ..., E. Alors leur réunion
B = B1U...U By est libre et donc est une base de la somme F; + ... + Ej (base
adaptée).

5. Soit dim (E) < oo, alors dim (Ey + ... + Ey) = dimE,; + ...+ dimFE}.

Noter: la somme de deux sous-espaces E; et Fs est directe ssi E1NEy = {0}.

FEzxzemple:  soit eq,...,e; des vecteurs non-nuls de F. La somme Ke; +
... + Key, est directe si et seulement si les vecteurs ey, ..., ex sont linéairement
indépendants. On a E = Ke; @ ... P Key, si et seulement si (e, ..., e) est une
base de F.

2. Sous-espaces stables. Décomposition en blocs.

2.1. Définition. Soit f : E — E un endomorphisme. Un sous-espace F' de
E est stable ou invariant par f si f(F) C F, (donc, si pour tout v € F on a
f(v) € F).

A noter: Ker(f) et Im(f) sont des sous-espaces stables par f.

2.2. Lemme. Si g commmute avec f, fg = gf, alors Ker(g) et Im(g) sont
des sous-espaces stables par f.

[En particulier, on peut prendre g = agld + aif + ... + ar f*]

Si F' est stable par f, on définit ’endomorphisme unduit fr : FF — F par
fr(v) = f(v) si v € F. Dans une base de E ou les premiers vecteurs forment
une base de F' la matrice de f est triangulaire par blocs.

Soit E la somme directe des sous-espaces stables par f, E = F1 @ ... P F;
soit f; endomorphisme induit dans F;. Alors I’étude de f se réduit a I’étude
de chaque f; séparement: f est une sorte la ”somme directe” des f;. La matrice
de f dans une base adaptée est diagonale par blocs, le i-eme bloc diagonal étant
la matrice de f;. Un des objectifs de la réduction est de décomposer f en blocs
de taille minimum (blocs” indécomposables”).

3. Vecteurs propres, valeurs propres, diagonalisation

3.1. Définition: Un vecteur propre de f est vecteur non-nul v tel
que f(v) est colinéaire & v: f(v) = Av; le coefficient de proportionalité X est la



valeur propre associée. Un scalaire A\ est une valeur propre de f s’il existe
un vecteur non-nul v tel que f(v) = .

3.2. Définition. Soit A € K. Le sous-espace

E\, = Ker(f — Ald) = {v € E : f(v) = A} s’appelle ’espace propre
associé a \. (Noter que Ey = Ker (f)).

Ezxemples: 1. Une homothétie f = AId: tous les vecteurs non-nuls de E sont
des vecteurs propres de valeur propre A, E = FE).

2. Projecteurs. Soit f un projecteur; alors E =Ker(f) @Im(f) et Ker(f) =
EQ, Im(f) = El.

3.3. Définition: Un endomorphisme est diagonalisable s’il admet une
base des vecteurs propres.

La matrice de ’endomorphisme dans une base de vecteurs propres est diag-
onale, avec les valeurs propres sur la diagonale principale.

3.4. Proposition. Des vecteurs propres associés a des valeurs propres deux
a deux distinctes sont linéairement indépendants.

3.5. Corollaire. Les espaces propres associés a des valeurs propres deux a
deux distinctes sont en somme directe.

3.6. Corollaire. Un endomorphisme est diagonalisable si et seulement
si F est la somme de ses espaces propres. Si dim(F) < oo, un endomorphisme
est diagonalisable si et seulement si la somme des dimensions de ses espaces
propres est égale a dim(E).

3.7. Corollaire. Soit n =dim(E) < co. Alors f admets au plus n valeurs
propres et si f admet exactement n valeurs propres (deux & deux distinctes), f
est diagonalisable.

3.8. Similitude. Définition. Deux endomorphismes f : £ — FE et
g : B/ — E’ sont semblables si il existe un isomorphisme ¢ : E — E’ tel que
of = g (donc f = ¢ 'gp).

Si f(v) = Av alors g(p(v)) = Ap(v), donc les endomorphismes semblables
ont les mémes valeurs propres et leurs espaces propres sont liés par :

EA(f) = ¢(Ex(g))-

Deux matrices carrées A et B sont semblables s’il existe une matrice in-
versible P telle que PA = BP (donc A = P~1BP).

Remarque: Deux endomorphismes sont semblables si et seulement si leurs
matrices (dans n’importe quelles bases) sont semblables.

4. A la recherche des vecteurs propres: polynéme caractéristique.

Soit dim(F) = n < co.

On remarque que A est une valeur propre si et seulement si f — AId n’est pas
injectif (Ker(f —AI) # {0}). En dimension finie cette condition est équivalente
a dét (f — M d) = 0. Cest I"équation caractéristique pour les valeurs propres.

4.1. Définition. Le déterminant py(z) = dét (f—xId) s’appelle polynéme
caractéristique de f: c’est est un polynome en x de degré n.

Les valeurs propres sont donc les racines du polynome caractéristique.

[Parfois on définit le polynoéme caractéristique comme dét(zld—f) = (=1)"p¢(z).]



Similitude. Soit f et g deux endomorphismes semblables: g = ¢~ fp. Vu
que dét (¢~ fo —ald) = dét (=1 (f —xld)p) = dét (f —xId), les endomor-
phismes semblables ont le méme polynéme caractéristique.

Si la matrice de f dans une base B est diagonale, Mp(f) = diag(A1, ..., A\n),
alors py(x) = (—1)"I7_, (x — A;).

Donc une condition nécessaire pour que f soit diagonalisable est que py soit
scindé (vérifiée automatiquement si K = C). Voici une condition suffisante:

4.2. Proposition. Si py admet n racines distinctes (donc py est scindé a
racines simples), f est diagonalisable.

Exemples: 1. Si f = ald, une homothétie, alors py(z) = (=1)"(z — a)™.

Sig=f+ald, alors py(z) = ps(x —a).

2. Si f une projection, py(x) = (—1)"z*(z — 1)"~*, ot k =dim (Ker f).

4.3. Endomorphisme cyclique et matrice ”compagnon”. Un endo-
morphisme f est cyclique s'il existe un vecteur v tel que (v, f(v), ..., =1 (v))
est une base de E. On pose eg = v , e1 = f(x) ,.., en_1 = f* D (v). Dans
cette base f agit comme: f(eg) = e1, f(e1) = ea ,..., flen—2) = en_1, et
f(en—1) = ageo+ ... + an—1€,—1. La matrice de f s’appelle matrice compagnon.
Alors p¢(z) = (—=1)" (2" — ap_12"" ! — ... — a1z — ap).

4.4. Définition. Un endomorphisme est nilpotent s’il existe k tel que
f* = 0. La valeur minimal de k s’appelle 'indice de nilpotence de f.

4.5. Proposition. Un endomorphisme est nilpotent si et seulement si il a
le méme polynéme caractéristique que I’endomorphisme nul: py(z) = (—1)"2".

4.6. Corollaire. Un endomorphisme nilpotent non-nul n’est pas diagonal-
isable.

Structure du polynéme caractéristique. Soit A la matrice de f dans
une base, py(z) =dét (A —zl,) = (—1)"2" + 12" 1 + ... + 12 + Cp.

4.7. Lemme. 1. Les coefficients cq, ..., ¢, sont des polyndémes en éléments
matriciels a;; de A; ci est un polynéme homogene de degré k.

2. ¢; = (=1)"trace(A) = (—1)"trace(f)

3. ¢, = dét(A) = dét(f).

4. ¢}, est invariant par similitude: ¢, est le méme pour A et P~1AP.

5. Les coefficients ¢ sont des fonctions symétriques élémentaires des valeurs
propres: si ps(z) = (=1)"z"+c12" 4. +ep1z+en, = (=1 (—=A1)...(z—=\y,)
alors ¢; = (=1)" " L(A\1 + ... + \n),

Cp = Al---)\na

Ck = (*1)n7k Zl§i1<...<ik§n Aiy - Ay, -

Sous-espaces stables. Soit F' un sous-espace stable par f; dans une base
adaptée la matrice de f est triangulaire par blocs.

4.8. Lemme. Le déterminant d’une matrice triangulaire par blocs est le
produit des déterminants des blocs diagonaux.

4.9. Corollaire. Le polynome caractéristique de I’endomorphisme induit
fr divise le polynéme caractéristique de f.

4.10. Corollaire. La dimension de ’espace propre F) ne dépasse pas la
multiplicité de A\ dans le polynéme caractéristique.



4.11. Corollaire. Un endomorphisme est diagonalisable si et seulement
si py est scindé et la dimension de chaque espace propre E) est égale a la
multiplicité de .

Remarque. Si E est la somme directe des sous-espaces stables par f, E =
Ei ... Ey, le polyndme caractéristique de f est le produit des polynémes
caractéristiques des endomorphismes f; induits dans E; (i = 1,..., k).

5. Polynoémes annulateurs.

Soit q € K], q¢(x) = ag + a1z + ... + axz®. Soit f un endomorphisme de E.

On note q(f) = apld + ar f + ... + ar f*.

5.1. Définition. On dit qu'un polynéme ¢(x) est un polynéme annula-
teur de f si ¢(f) =0 (on dit aussi que ¢ annule f ou que f annule ).

Remarque: Si q(f) = 0 et A est une valeur propre de f, alors ¢(\) = 0:
chaque valeur propre de f est une racine de tout polynéme annulateur.

Remarque: si agld + a1 f + ... + apf¥ =0 et ag # 0, alors f est inversible :
flardd+ ...+ apfF1) = —apld, et f~' = —(ayId+ ... + ap f*~1) /ao.

Ezemple: soit f diagonalisable, Aq,..., \; ses valeurs propres deux a deux
distinctes et g(z) = (x — A1)...(x — Ag). Alors ¢(f) = 0. A fortiori, pour le
polynéme caractéristique py(z) = (—1)"(x —A1)™ ...(x—Ag)™, onaps(f) =0.

Remarque: on peut déterminer g(z) = (z — A1)...(x — Ag) & partir de py sans

calculer les valeurs propres: +q = —24 .
prop q pgcd(py,p})

Le lemme suivant (”lemme des noyaux”) nous permettra de décomposer F
en somme directe des sous-espaces stables.

5.2. Lemme des noyaux. Soit pi,...,pr des polynomes deux a deux
premiers entre eux et p(x) = p1(x)...pr(z). Alors

Ker(p(f)) = Ker(pi(f)) ED - @D Ker(pi(f)).

5.3. Proposition. Un endomorphisme est diagonalisable si et seulement si
il est annulé par un polynome scindé a racines simples.

5.4. Corollaire. L’endomorphisme induit dans un sous-espace stable par
un endomorphisme diagonalisable est diagonalisable.

5.5. Corollaire. Deux endomorphismes diagonalisables qui commutent
sont diagonalisables simultanément: il existe une base commune de vecteurs
propres.

Remarque. L’endomorphisme f est diagonalisable si et seulement si il est

annulé par le polynéme q = pgcdg}% et g est scindé. (Dans ce cas ¢ sera égal,
f:Pg

au signe pres, au polyndme minimal de f.)
5.6. Théoréme (Cayley - Hamilton). Tout endomorphisme f est annulé
par son polynéme caractéristique: ps(f) = 0.

6. Trigonalisation.
6.1. Définition. Un endomorphisme est trigonalisable s’il existe une base
dans laquelle sa matrice est triangulaire (supérieure ou inférieure).



Si la matrice de f est triangulaire avec les éléments A1, ..., A, sur la diagonale
principale, alors p¢(z) = (—1)"(x—A1)...(x—\,,). Donc Ay, ..., A, sont les valeurs
propres de f (comptées avec leurs multiplicités).

6.2. Proposition. Un endomorphisme est trigonalisable si et seulement si
son polynome caractéristique est scindé.

En particulier, tout endomorphisme est trigonalisable sur C.

6.3. Corollaire. Tout endomorphisme nilpotent est trigonalisable.

Soit ¢(z) un polyndme. Si la matrice de f est triangulaire avec les éléments
AL, .-y A sur la diagonale principale, la matrice de ¢(f) est aussi triangulaire
avec les éléments (A1), ...,q(A,) sur la diagonale principale, qui sont donc les
valeurs propres de ¢g(f).

6.4. Corollaire. Soit Ay, ..., A, la liste des valeurs propres complexes de f
(comptées avec leurs multiplicités). Alors g(A1), ..., ¢(A,) est la liste des valeurs
propres (complexes) de g(f).

En particulier, tr(f*) = > 7 Ak,

Remarque: Les traces des puissances s, = tr(f*) sont liées avec les coeffi-
cients du polynome caractéristique py(z) = (—1)"z" 4+ 12" '+ ...+ 1z +cp
par les formules de Newton:

(=1)"sg + c18k—1 + ... + Ck—151 + ke, =0

k=1,2,...,n. Cela permet d’exprimer les ¢, en termes des s (ou réciproquement)
par récurrence. [Rappelons que ¢, = (—1)"~* D i<iy<.. <ip<n i Aig ]

7. Sous-espaces caractéristiques.

7.1. Définition. Soit A une valeur propre de multiplicité m. Le sous-espace
Cn = Ker(f—X)™ s’appelle le sous-espace caractéristique associé a la valeur
propre A. Noter que Cy est stable par f et contient ’espace propre associé a A.

Le lemme des noyaux donne le corollaire:

7.2. Corollaire. Les espaces caractéristiques associés a des valeurs propres
deux a deux distinctes sont en somme directe.

7.3. Lemme. La dimension de C) est égale a la multiplicité de .

En combinant le théoreme de Cayley-Hamilton avec le lemme des noyaux on
obtient:

7.4. Corollaire. Si le polynome caractéristique de f est scindé, E se
décompose en somme directe des sous-espaces caractéristiques de f: E = @, C;.

7.5. Projecteurs spectraux. Soit £ = &, C;. Soit II; la projection sur le
sous-espace caractéristique C; parallelement a la somme des autres sous-espaces
caractéristiques. On appelle II; projecteur spectral.

Pour calculer II; on écrit py(x) = (x — A;)™ig(x) ol g(x) est premier avec
(x — \;) (ce qui est équivalent & g(A;) # 0). Par la formule de Bézout, on peut
trouver des polynomes r(z) et s(x) tels que (x — X\;)™ir(x) 4+ g(x)s(x) = 1.

[On peut s’arranger pour que deg (s) < m; et deg (r) < deg(q)].

7.6. Lemme. II; = q(f)s(f).



Remarques. 1) Les projecteurs II; commutent entre eux et avec f. La somme
des IT; est l'identité.

2) Si II est un projecteur et IIf = fII, alors Ker(IT) et Im(II) sont des
sous-espaces supplémentaires stables par f.

3) Si E)\ # Cy, alors E\ n’admet pas de sous-espace supplémentaire stable
par f.

4) Si f est diagonalisable, on peut écrire f =", \;II;

Ezemple. Soit dim E =3 et ps(z) = —(z — \)(z — p)?. Alors

1=a(r—p)?+ap—A—x)(x—N),otta = (A\—p)~2. Donc Iy = a(f—puld)?
et I, = —a(f — 2p — N)Id)(f — M\d).

Etude de f dans les sous-espaces caractéristiques.

Supposons que le polynéme caractéristique de f est scindé.

Soit f; 'endomorphisme induit dans C;. On a (f; — \;Id)™ = 0, donc
fi =XiId+mn,, ou n]* =0, donc n; est nilpotent.

En utilisant cette décomposition, définissons deux endomorphismes, d et n:
si v € C;, on pose d(v) = A\v et n(v) = n;(v). Donc f =d + n.

En utilisant les projecteurs spectraux, on écrit d = Y, A\, II; et n = f —d.

En résumé, f = d+n ou d est diagonalisable, n est nilpotent et d commute
avec n.

7.7. Théoréme. (Décomposition de Dunford.) Si le polynéme car-
actéristique de f est scindé, f se décompose en somme f = d + n ou d est
diagonalisable, n est nilpotent et d commute avec n. Une telle décomposition
est unique.

Remarque. 1) On a ps(x) = pa(z).

2) f est diagonalisable si et seulement si n = 0.

8. Polynéme minimal.

En dimension finie, il y a toujours des polynémes annulateurs non-nuls: la
suite Id, f, f2, ..., f”2 de n? 4+ 1 endomorphismes est liée parce que la dimension
de I'espace des endomorphismes est n2. La relation agld + ay f + ... + apf* =0
donne un polynéme annulateur.

8.1. Définition. Un polyndéme minimal de f est un polynéme annulateur
non-nul de degré minimum.

8.2. Proposition. Un polynéme minimal divise tout polynome annulateur.

Par conséquent, il y a un seul polynéme minimal unitaire (de coefficient
dominant 1), appelé le polynéme minimal, noté 7. En particuler, le polynéme
minimal divise le polynome caractéristique.

Sipp(x) = (—1)"(@—A1)™...(@— )™ alors mp(z) = (2= A1) (2= M)
avec 1 <1I; < m;. En général, on a

8.3. Proposition. 1. Les racines du polynéme minimal sont exactement
les valeurs propres.

2. Le polynéome minimal est scindé si et seulement si le polynome car-
actéristique est scindé.

8.4. Critére de diagonalisabilité. Un endomorphisme est diagonalisable
si et seulement si son polynome minimal est scindé a racines simples.



8.5. Lemme. Soit F la somme directe des sous-espaces stables,

E=E .. Ey; soit f; 'endomorphisme induit dans F;. Alors

Tp = ppem( Ty, ..y Tf)-

FEzemple: soit f un endomorphisme nilpotent; son polynéme caractéristique
est py(x) = (—1)"2™ (n =dim(E)) et le polynéme minimal est 7(z) = z*, ot
k est I'indice de nilpotence de f.

8.6. Corollaire. Si ms(z) = (x — A1)"...(x — Ap)'*, alors [; est I'indice de
nilpotence de f; — A\;Id dans le sous-espace caractéristique C;.

En particulier, C; = Ker(f — A\ Id)%.

8.7. Théoréme. my(x) = £py(z) si et seulement si f est cyclique (4.3).

Calcul du polynéme minimal: on cherche [ tel que la famille Id, f, 2, ..., f=!
est libre dans I’espace des endomorphismes, mais Id, ff2, ..., f'=1, f' est liée,
donc agld +ayf+ ... +a_1f"~" + fL = 0. Alors

() = ao + a1z + ... + g1zt + 2t

9. Blocs de Jordan.

Un bloc de Jordan pour f est un sous-espace stable muni d’une base e, ..., e
telle que f(e1) = Aex +ea, . . ., flex—1) = Nex—1 + ex , f(ex) = Aex. Noter
que le sous-espace en question est contenu dans le sous-espace caractéristique
Cy. La matrice de f dans cette base s’appelle aussi bloc de Jordan.

9.1. Théoréme. Si p; est scindé, f admet la décomposition en somme
directe des blocs de Jordan.

En particulier, tout endomorphisme sur C peut étre réduit a la forme de
Jordan.

Critére de similitude. La liste des blocs de Jordan dans la décomposition
est completement déterminée par f. Plus précisement, soit jir le nombre de
blocs de Jordan de dimension k dans le sous-espace caractéritisque Cy. Soit
lk = dim (Ker (f — )\Id)k Alors jkz = 2lk — lk+1 — lkfl.

Remarque. La taille maximal des blocs associés a la valeur propre A est égal
a la multiplicité de A dans .

9.2. Théoréme. Deux matrices sont semblables sur C si et seulement si
elles ont la méme liste des blocs de Jordan.

9.3. Théoreme. Si deux matrices réelles sont semblables sur C

(A= P~'BP avec P complexe), elles sont semblables sur R

(A =Q 'BQ avec Q réelle).

9.4. Corollaire. Toute matrice est semblable a sa transposée.



