
Réduction des endomorphismes.
.

1. Sommes directes.
1.1. Définition. Soit E un espace vectoriel sur K, (K = R ou C). Soit

E1, ..., Ek ses sous-espaces vectoriels. La somme E1 + ... + Ek est le sous-
espace formé de tous les vecteurs v = v1 + ... + vk où vi ∈ Ei. La somme
est directe (noté E1

⊕
...

⊕
Ek) si une telle décomposition est unique: si

v = v1 + ... + vk = u1 + ... + uk avec vi ∈ Ei et ui ∈ Ei alors vi = ui,
(i = 1, ..., k).

1.2. Lemme. Les propriétés 1.-5. suivantes sont équivalentes:
1. La somme E1 + ... + Ek est directe.
2. La relation v1 + ... + vk = 0 où vi ∈ Ei entraine v1 = 0 , ... , vk = 0.
3. Pour tout i on a Ei ∩ (E1 + ... + Ei−1 + Ei+1 + ... + Ek) = {0}.
4. Soit B1, ... , Bk des bases des sous-espaces E1, ..., Ek. Alors leur réunion

B = B1 ∪ ...∪Bk est libre et donc est une base de la somme E1 + ... + Ek (base
adaptée).

5. Soit dim (E) < ∞, alors dim (E1 + ... + Ek) = dimE1 + ...+ dimEk.
Noter: la somme de deux sous-espaces E1 et E2 est directe ssi E1∩E2 = {0}.
Exemple: soit e1, ..., ek des vecteurs non-nuls de E. La somme Ke1 +

... + Kek est directe si et seulement si les vecteurs e1, ..., ek sont linéairement
indépendants. On a E = Ke1

⊕
...

⊕
Kek si et seulement si (e1, ..., ek) est une

base de E.
.

2. Sous-espaces stables. Décomposition en blocs.
2.1. Définition. Soit f : E → E un endomorphisme. Un sous-espace F de

E est stable ou invariant par f si f(F ) ⊂ F , (donc, si pour tout v ∈ F on a
f(v) ∈ F ).

A noter: Ker(f) et Im(f) sont des sous-espaces stables par f .
2.2. Lemme. Si g commmute avec f , fg = gf , alors Ker(g) et Im(g) sont

des sous-espaces stables par f .
[En particulier, on peut prendre g = a0Id + a1f + ... + akfk.]
Si F est stable par f , on définit l’endomorphisme unduit fF : F → F par

fF (v) = f(v) si v ∈ F . Dans une base de E où les premiers vecteurs forment
une base de F la matrice de f est triangulaire par blocs.

Soit E la somme directe des sous-espaces stables par f , E = E1

⊕
...

⊕
Ek;

soit fi l’endomorphisme induit dans Ei. Alors l’étude de f se réduit à l’étude
de chaque fi séparement: f est une sorte la ”somme directe” des fi. La matrice
de f dans une base adaptée est diagonale par blocs, le i-ème bloc diagonal étant
la matrice de fi. Un des objectifs de la réduction est de décomposer f en blocs
de taille minimum (blocs”indécomposables”).

.
3. Vecteurs propres, valeurs propres, diagonalisation

.
3.1. Définition: Un vecteur propre de f est vecteur non-nul v tel

que f(v) est colinéaire à v: f(v) = λv; le coefficient de proportionalité λ est la
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valeur propre associée. Un scalaire λ est une valeur propre de f s’il existe
un vecteur non-nul v tel que f(v) = λv.

3.2. Définition. Soit λ ∈ K. Le sous-espace
Eλ = Ker(f − λId) = {v ∈ E : f(v) = λv} s’appelle l’espace propre

associé à λ. (Noter que E0 = Ker (f)).
Exemples: 1. Une homothétie f = λId: tous les vecteurs non-nuls de E sont

des vecteurs propres de valeur propre λ, E = Eλ.
2. Projecteurs. Soit f un projecteur; alors E =Ker(f)

⊕
Im(f) et Ker(f) =

E0, Im(f) = E1.
3.3. Définition: Un endomorphisme est diagonalisable s’il admet une

base des vecteurs propres.
La matrice de l’endomorphisme dans une base de vecteurs propres est diag-

onale, avec les valeurs propres sur la diagonale principale.
3.4. Proposition. Des vecteurs propres associés à des valeurs propres deux

à deux distinctes sont linéairement indépendants.
3.5. Corollaire. Les espaces propres associés à des valeurs propres deux à

deux distinctes sont en somme directe.
3.6. Corollaire. Un endomorphisme est diagonalisable si et seulement

si E est la somme de ses espaces propres. Si dim(E) < ∞, un endomorphisme
est diagonalisable si et seulement si la somme des dimensions de ses espaces
propres est égale à dim(E).

3.7. Corollaire. Soit n =dim(E) < ∞. Alors f admets au plus n valeurs
propres et si f admet exactement n valeurs propres (deux à deux distinctes), f
est diagonalisable.

3.8. Similitude. Définition. Deux endomorphismes f : E → E et
g : E′ → E′ sont semblables si il existe un isomorphisme ϕ : E → E′ tel que
ϕf = gϕ (donc f = ϕ−1gϕ).

Si f(v) = λv alors g(ϕ(v)) = λϕ(v), donc les endomorphismes semblables
ont les mêmes valeurs propres et leurs espaces propres sont liés par ϕ:

Eλ(f) = ϕ(Eλ(g)).
Deux matrices carrées A et B sont semblables s’il existe une matrice in-

versible P telle que PA = BP (donc A = P−1BP ).
Remarque: Deux endomorphismes sont semblables si et seulement si leurs

matrices (dans n’importe quelles bases) sont semblables.
.

4. A la recherche des vecteurs propres: polynôme caractéristique.
Soit dim(E) = n < ∞.
On remarque que λ est une valeur propre si et seulement si f−λId n’est pas

injectif (Ker(f −λI) 6= {0}). En dimension finie cette condition est équivalente
à dét (f − λId) = 0. C’est l’équation caractéristique pour les valeurs propres.

4.1. Définition. Le déterminant pf (x) = dét (f−xId) s’appelle polynôme
caractéristique de f : c’est est un polynôme en x de degré n.

Les valeurs propres sont donc les racines du polynôme caractéristique.
[Parfois on définit le polynôme caractéristique comme dét(xId−f) = (−1)npf (x).]
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Similitude. Soit f et g deux endomorphismes semblables: g = ϕ−1fϕ. Vu
que dét (ϕ−1fϕ−xId) = dét (ϕ−1(f −xId)ϕ) = dét (f −xId), les endomor-
phismes semblables ont le même polynôme caractéristique.

Si la matrice de f dans une base B est diagonale, MB(f) = diag(λ1, ..., λn),
alors pf (x) = (−1)nΠn

i=1(x− λi).
Donc une condition nécessaire pour que f soit diagonalisable est que pf soit

scindé (vérifiée automatiquement si K = C). Voici une condition suffisante:
4.2. Proposition. Si pf admet n racines distinctes (donc pf est scindé à

racines simples), f est diagonalisable.
Exemples: 1. Si f = aId, une homothétie, alors pf (x) = (−1)n(x− a)n.
Si g = f + aId, alors pg(x) = pf (x− a).
2. Si f une projection, pf (x) = (−1)nxk(x− 1)n−k, où k =dim (Ker f).
4.3. Endomorphisme cyclique et matrice ”compagnon”. Un endo-

morphisme f est cyclique s’il existe un vecteur v tel que (v, f(v), ..., f (n−1)(v))
est une base de E. On pose e0 = v , e1 = f(x) ,..., en−1 = f (n−1)(v). Dans
cette base f agit comme: f(e0) = e1, f(e1) = e2 ,..., f(en−2) = en−1, et
f(en−1) = a0e0 + ... + an−1en−1. La matrice de f s’appelle matrice compagnon.
Alors pf (x) = (−1)n(xn − an−1x

n−1 − ...− a1x− a0).
4.4. Définition. Un endomorphisme est nilpotent s’il existe k tel que

fk = 0. La valeur minimal de k s’appelle l’indice de nilpotence de f .
4.5. Proposition. Un endomorphisme est nilpotent si et seulement si il a

le même polynôme caractéristique que l’endomorphisme nul: pf (x) = (−1)nxn.
4.6. Corollaire. Un endomorphisme nilpotent non-nul n’est pas diagonal-

isable.
.
Structure du polynôme caractéristique. Soit A la matrice de f dans

une base, pf (x) =dét (A− xIn) = (−1)nxn + c1x
n−1 + ... + cn−1x + cn.

4.7. Lemme. 1. Les coefficients c1, ..., cn sont des polynômes en éléments
matriciels aij de A; ck est un polynôme homogène de degré k.

2. c1 = (−1)n−1trace(A) = (−1)n−1trace(f)
3. cn = dét(A) = dét(f).
4. ck est invariant par similitude: ck est le même pour A et P−1AP .
5. Les coefficients ck sont des fonctions symétriques élémentaires des valeurs

propres: si pf (x) = (−1)nxn+c1x
n−1+...+cn−1x+cn = (−1)n(x−λ1)...(x−λn)

alors c1 = (−1)n−1(λ1 + ... + λn),
cn = λ1...λn,
ck = (−1)n−k

∑
1≤i1<...<ik≤n λi1 ...λik

.
.
Sous-espaces stables. Soit F un sous-espace stable par f ; dans une base

adaptée la matrice de f est triangulaire par blocs.
4.8. Lemme. Le déterminant d’une matrice triangulaire par blocs est le

produit des déterminants des blocs diagonaux.
4.9. Corollaire. Le polynôme caractéristique de l’endomorphisme induit

fF divise le polynôme caractéristique de f .
4.10. Corollaire. La dimension de l’espace propre Eλ ne dépasse pas la

multiplicité de λ dans le polynôme caractéristique.
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4.11. Corollaire. Un endomorphisme est diagonalisable si et seulement
si pf est scindé et la dimension de chaque espace propre Eλ est égale à la
multiplicité de λ.

Remarque. Si E est la somme directe des sous-espaces stables par f , E =
E1

⊕
...

⊕
Ek, le polynôme caractéristique de f est le produit des polynômes

caractéristiques des endomorphismes fi induits dans Ei (i = 1, ..., k).
.

5. Polynômes annulateurs.
Soit q ∈ K[x], q(x) = a0 + a1x + ... + akxk. Soit f un endomorphisme de E.
On note q(f) = a0Id + a1f + ... + akfk.
5.1. Définition. On dit qu’un polynôme q(x) est un polynôme annula-

teur de f si q(f) = 0 (on dit aussi que q annule f ou que f annule q).
Remarque: Si q(f) = 0 et λ est une valeur propre de f , alors q(λ) = 0:

chaque valeur propre de f est une racine de tout polynôme annulateur.
Remarque: si a0Id + a1f + ... + akfk = 0 et a0 6= 0, alors f est inversible :

f(a1Id + ... + akfk−1) = −a0Id, et f−1 = −(a1Id + ... + akfk−1)/a0.
Exemple: soit f diagonalisable, λ1, ..., λk ses valeurs propres deux à deux

distinctes et q(x) = (x − λ1)...(x − λk). Alors q(f) = 0. A fortiori, pour le
polynôme caractéristique pf (x) = (−1)n(x−λ1)m1 ...(x−λk)mk , on a pf (f) = 0.

Remarque: on peut déterminer q(x) = (x−λ1)...(x−λk) à partir de pf sans
calculer les valeurs propres: ±q = pf

pgcd(pf ,p′
f
) .

Le lemme suivant (”lemme des noyaux”) nous permettra de décomposer E
en somme directe des sous-espaces stables.

5.2. Lemme des noyaux. Soit p1, ..., pk des polynômes deux à deux
premiers entre eux et p(x) = p1(x)...pk(x). Alors

Ker(p(f)) = Ker(p1(f))
⊕

...
⊕

Ker(pk(f)).

5.3. Proposition. Un endomorphisme est diagonalisable si et seulement si
il est annulé par un polynôme scindé à racines simples.

5.4. Corollaire. L’endomorphisme induit dans un sous-espace stable par
un endomorphisme diagonalisable est diagonalisable.

5.5. Corollaire. Deux endomorphismes diagonalisables qui commutent
sont diagonalisables simultanément: il existe une base commune de vecteurs
propres.

Remarque. L’endomorphisme f est diagonalisable si et seulement si il est
annulé par le polynôme q = pf

pgcd(pf ,p′
f
) et q est scindé. (Dans ce cas q sera égal,

au signe près, au polynôme minimal de f .)
5.6. Théorème (Cayley - Hamilton). Tout endomorphisme f est annulé

par son polynôme caractéristique: pf (f) = 0.
.

6. Trigonalisation.
6.1. Définition. Un endomorphisme est trigonalisable s’il existe une base

dans laquelle sa matrice est triangulaire (supérieure ou inférieure).
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Si la matrice de f est triangulaire avec les éléments λ1, ..., λn sur la diagonale
principale, alors pf (x) = (−1)n(x−λ1)...(x−λn). Donc λ1, ..., λn sont les valeurs
propres de f (comptées avec leurs multiplicités).

6.2. Proposition. Un endomorphisme est trigonalisable si et seulement si
son polynôme caractéristique est scindé.

En particulier, tout endomorphisme est trigonalisable sur C.
6.3. Corollaire. Tout endomorphisme nilpotent est trigonalisable.
Soit q(x) un polynôme. Si la matrice de f est triangulaire avec les éléments

λ1, ..., λn sur la diagonale principale, la matrice de q(f) est aussi triangulaire
avec les éléments q(λ1), ..., q(λn) sur la diagonale principale, qui sont donc les
valeurs propres de q(f).

6.4. Corollaire. Soit λ1, ..., λn la liste des valeurs propres complexes de f
(comptées avec leurs multiplicités). Alors q(λ1), ..., q(λn) est la liste des valeurs
propres (complexes) de q(f).

En particulier, tr(fk) =
∑n

1 λk
i .

Remarque: Les traces des puissances sk = tr(fk) sont liées avec les coeffi-
cients du polynôme caractéristique pf (x) = (−1)nxn + c1x

n−1 + ...+ cn−1x+ cn

par les formules de Newton:

(−1)nsk + c1sk−1 + ... + ck−1s1 + kck = 0

k = 1, 2, ..., n. Cela permet d’exprimer les ck en termes des sk (ou réciproquement)
par récurrence. [Rappelons que ck = (−1)n−k

∑
1≤i1<...<ik≤n λi1 ...λik

.]
.

7. Sous-espaces caractéristiques.
7.1. Définition. Soit λ une valeur propre de multiplicité m. Le sous-espace

Cλ = Ker(f−λ)m s’appelle le sous-espace caractéristique associé à la valeur
propre λ. Noter que Cλ est stable par f et contient l’espace propre associé à λ.

Le lemme des noyaux donne le corollaire:
7.2. Corollaire. Les espaces caractéristiques associés à des valeurs propres

deux à deux distinctes sont en somme directe.
7.3. Lemme. La dimension de Cλ est égale à la multiplicité de λ.
En combinant le théorème de Cayley-Hamilton avec le lemme des noyaux on

obtient:
7.4. Corollaire. Si le polynôme caractéristique de f est scindé, E se

décompose en somme directe des sous-espaces caractéristiques de f : E =
⊕

i Ci.
.
7.5. Projecteurs spectraux. Soit E =

⊕
i Ci. Soit Πi la projection sur le

sous-espace caractéristique Ci parallèlement à la somme des autres sous-espaces
caractéristiques. On appelle Πi projecteur spectral.

Pour calculer Πi on écrit pf (x) = (x − λi)miq(x) où q(x) est premier avec
(x− λi) (ce qui est équivalent à q(λi) 6= 0). Par la formule de Bézout, on peut
trouver des polynômes r(x) et s(x) tels que (x− λi)mir(x) + q(x)s(x) = 1.

[On peut s’arranger pour que deg (s) < mi et deg (r) < deg(q)].
7.6. Lemme. Πi = q(f)s(f).
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Remarques. 1) Les projecteurs Πi commutent entre eux et avec f . La somme
des Πi est l’identité.

2) Si Π est un projecteur et Πf = fΠ, alors Ker(Π) et Im(Π) sont des
sous-espaces supplémentaires stables par f .

3) Si Eλ 6= Cλ, alors Eλ n’admet pas de sous-espace supplémentaire stable
par f .

4) Si f est diagonalisable, on peut écrire f =
∑

i λiΠi

Exemple. Soit dim E = 3 et pf (x) = −(x− λ)(x− µ)2. Alors
1 = a(x−µ)2+a(2µ−λ−x)(x−λ), où a = (λ−µ)−2. Donc Πλ = a(f−µId)2

et Πµ = −a(f − (2µ− λ)Id)(f − λId).
.
Etude de f dans les sous-espaces caractéristiques.
Supposons que le polynôme caractéristique de f est scindé.
Soit fi l’endomorphisme induit dans Ci. On a (fi − λiId)mi = 0, donc

fi = λiId + ni, où nmi
i = 0, donc ni est nilpotent.

En utilisant cette décomposition, définissons deux endomorphismes, d et n:
si v ∈ Ci, on pose d(v) = λiv et n(v) = ni(v). Donc f = d + n.

En utilisant les projecteurs spectraux, on écrit d =
∑

i λiΠi et n = f − d.
En résumé, f = d+n où d est diagonalisable, n est nilpotent et d commute

avec n.
7.7. Théorème. (Décomposition de Dunford.) Si le polynôme car-

actéristique de f est scindé, f se décompose en somme f = d + n où d est
diagonalisable, n est nilpotent et d commute avec n. Une telle décomposition
est unique.

Remarque. 1) On a pf (x) = pd(x).
2) f est diagonalisable si et seulement si n = 0.
.

8. Polynôme minimal.
En dimension finie, il y a toujours des polynômes annulateurs non-nuls: la

suite Id, f, f2, ..., fn2
de n2 + 1 endomorphismes est liée parce que la dimension

de l’espace des endomorphismes est n2. La relation a0Id + a1f + ... + akfk = 0
donne un polynôme annulateur.

8.1. Définition. Un polynôme minimal de f est un polynôme annulateur
non-nul de degré minimum.

8.2. Proposition. Un polynôme minimal divise tout polynôme annulateur.
Par conséquent, il y a un seul polynôme minimal unitaire (de coefficient

dominant 1), appelé le polynôme minimal, noté πf . En particuler, le polynôme
minimal divise le polynôme caractéristique.

Si pf (x) = (−1)n(x−λ1)m1 ...(x−λk)mk alors πf (x) = (x−λ1)l1 ...(x−λk)lk

avec 1 ≤ li ≤ mi. En général, on a
8.3. Proposition. 1. Les racines du polynôme minimal sont exactement

les valeurs propres.
2. Le polynôme minimal est scindé si et seulement si le polynôme car-

actéristique est scindé.
8.4. Critère de diagonalisabilité. Un endomorphisme est diagonalisable

si et seulement si son polynôme minimal est scindé à racines simples.
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8.5. Lemme. Soit E la somme directe des sous-espaces stables,
E = E1

⊕
...

⊕
Ek; soit fi l’endomorphisme induit dans Ei. Alors

πf = ppcm(πf1 , ..., πfk
).

Exemple: soit f un endomorphisme nilpotent; son polynôme caractéristique
est pf (x) = (−1)nxn (n =dim(E)) et le polynôme minimal est πf (x) = xk, où
k est l’indice de nilpotence de f .

8.6. Corollaire. Si πf (x) = (x − λ1)l1 ...(x − λk)lk , alors li est l’indice de
nilpotence de fi − λiId dans le sous-espace caractéristique Ci.

En particulier, Ci = Ker(f − λiId)li .
8.7. Théorème. πf (x) = ±pf (x) si et seulement si f est cyclique (4.3).
Calcul du polynôme minimal: on cherche l tel que la famille Id, f, f2, ..., f l−1

est libre dans l’espace des endomorphismes, mais Id, ff2, ..., f l−1, f l est liée,
donc a0Id + a1f + ... + al−1f

l−1 + f l = 0. Alors
πf (x) = a0 + a1x + ... + al−1x

l−1 + xl.
.

9. Blocs de Jordan.
Un bloc de Jordan pour f est un sous-espace stable muni d’une base e1, ..., ek

telle que f(e1) = λe1 + e2 , . . . , f(ek−1) = λek−1 + ek , f(ek) = λek. Noter
que le sous-espace en question est contenu dans le sous-espace caractéristique
Cλ. La matrice de f dans cette base s’appelle aussi bloc de Jordan.

9.1. Théorème. Si pf est scindé, f admet la décomposition en somme
directe des blocs de Jordan.

En particulier, tout endomorphisme sur C peut être réduit à la forme de
Jordan.

Critère de similitude. La liste des blocs de Jordan dans la décomposition
est complètement déterminée par f . Plus précisement, soit jk le nombre de
blocs de Jordan de dimension k dans le sous-espace caractéritisque Cλ. Soit
lk = dim (Ker (f − λId)k. Alors jk = 2lk − lk+1 − lk−1.

Remarque. La taille maximal des blocs associés à la valeur propre λ est égal
à la multiplicité de λ dans πf .

9.2. Théorème. Deux matrices sont semblables sur C si et seulement si
elles ont la même liste des blocs de Jordan.

9.3. Théorème. Si deux matrices réelles sont semblables sur C
(A = P−1BP avec P complèxe), elles sont semblables sur R
(A = Q−1BQ avec Q réelle).
9.4. Corollaire. Toute matrice est semblable à sa transposée.
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