
Réduction des endomorphismes 2.
.

Trigonalisation
Il est parfois utile (par exemple si un endomorphisme n’est pas diago-

nalisable) de chercher une base dans laquelle sa matrice est triangulaire.
2.1. Lemme. Toute matrice triangulaire supérieure est semblable à

une matrice triangulaire inférieure.
On a vu que les valeurs propres d’une matrice triangulaire sont ses

éléments diagonaux λ1, ..., λn et son polynôme caractéristique est
pA(x) = (−1)nΠn

i=1(x− λi).
2.2. Définition. Un endomorphisme est trigonalisable si il existe une

base dans laquelle sa matrice est triangulaire (supérieure ou inférieure).
2.3. Théorème. Un endomorphisme est trigonalisable dans K si et

seulement si son polynôme caractéristique est scindé dans K.
Plus précisement:
- K = C: tout endomorphisme est trigonalisable dans C.
- K = R: un endomorphisme est trigonalisable dans R si et seulement

si toutes les racines complexes de son polynôme caractéristique sont réelles.
.
2.4. Corollaire. Tout endomorphisme nilpotent est trigonalisable.
.
La trigonalisation dans C permet de calculer rapidement les valeurs pro-

pres des puissances de A:
2.5. Proposition. Soit pA(x) = (−1)nΠn

i=1(x − λi) la factorisation de
pA dans C. Alors pAk(x) = (−1)nΠn

i=1(x− λk
i ).

De manière plus générale, soit q(t) = a0 + a1t + ... + akt
k,

q(A) = a0 + a1A + ... + akA
k. Alors pq(A)(x) = (−1)nΠn

i=1(x− q(λi)).
La démonstration consiste à remarquer que si A est semblable à une

matrice triangulaire T avec les éléments diagonaux λ1, ..., λn, alors q(A)
est semblable à la matrice triangulaire q(T ) avec les éléments diagonaux
q(λ1), ..., q(λn).

2.6. Corollaire. Les valeurs propres réelles de la matrice q(A) sont les
nombres réels dans la liste q(λ1), ..., q(λn).

.
Remarque 1. Les coefficients du polynôme caractéristique
pA(x) = (−1)nxn+c1x

n−1+...+cn−1x+cn = (−1)nΠn
i=1(x−λi) sont liés

avec ses racines par les formules de Vieta: ck = (−1)n−k ∑
1≤i1<...<ik≤n λi1 ...λik .

.
On sait que tr(A) =

∑n
1 λi; on en déduit que tr(Ak) =

∑n
1 λk

i .
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Remarque 2. Les traces des puissances sk = tr(Ak) sont liées avec les
coefficients du polynôme caractéristique

pA(x) = (−1)nxn + c1x
n−1 + ...+ cn−1x+ cn par les formules de Newton:

(−1)nsk + c1sk−1 + ... + ck−1s1 + kck = 0

k = 1, 2, ..., n. Cela permet d’exprimer les ck en termes des sk (ou réciproquement)
par récurrence.

.
Sommes directes.

2.7. Définition. Soit E un espace vectoriel sur K et E1, ..., Ek des
sous-espaces vectoriels de E. La somme E1 + ... + Ek est le sous-espace
formé de tous les vecteurs v = v1 + ... + vk où vi ∈ Ei. La somme est
directe (noté E1

⊕
...

⊕
Ek) si une telle décomposition est unique: si

v = v1 + ... + vk = u1 + ... + uk avec vi ∈ Ei et ui ∈ Ei alors vi = ui,
(i = 1, ..., k).

2.8. Proposition. Les propriétés suivantes sont équivalentes:
1. La somme E1 + ... + Ek est directe.
2. La relation v1 + ... + vk = 0 où vi ∈ Ei entraine v1 = 0 , ... , vk = 0.
3. Soit B1, ... , Bk des bases des sous-espaces E1, ..., Ek. Alors leur

réunion B = B1 ∪ ... ∪ Bk est libre et donc est une base de la somme
E1 + ... + Ek (base adaptée).

4. On a Ei ∩ (E1 + ... + Ei−1) = {0} pour i = 2, ..., n.
5. Soit dim (E) < ∞, alors dim (E1 + ... + Ek) = dimE1 + ...+ dimEk.
.
Noter: la somme de deux sous-espaces E1 et E2 est directe si et seulement

si E1 ∩ E2 = {0}.
Exemple: soit e1, ..., ek des vecteurs non-nuls de E. La somme Ke1 +

...+Kek est directe si et seulement si les vecteurs e1, ..., ek sont linéairement
indépendants. On a E = Ke1

⊕
...

⊕
Kek si et seulement si (e1, ..., ek) est

une base de E.
.
Projecteurs associés à une somme directe.
Soit E = E1

⊕
...

⊕
Ek. Soit Πi la projection sur le sous-espace Ei

parallèlement à la somme des autres sous-espaces: Πi est défini par Πi(v) = v
si v ∈ Ei et Πi(v) = 0 si v ∈ Ej avec j 6= i.

On a les propriétés évidentes:
1. Π1 + .. + Πk = Id.
2. ΠiΠj = 0 si i 6= j.
3. Π2

i = Πi.
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Sous-espaces stables. Décomposition en blocs.
2.9. Définition. Soit f : E → E un endomorphisme. Un sous-espace

F de E est stable ou invariant par f si f(F ) ⊂ F , (donc, si pour tout
v ∈ F on a f(v) ∈ F ).

A noter: Ker(f) et Im(f) sont des sous-espaces stables par f .
2.10. Lemme. Si g commmute avec f , fg = gf , alors Ker(g) et Im(g)

sont des sous-espaces stables par f .
[En particulier, on peut prendre g = a0Id + a1f + ... + akf

k.]
Si F est stable par f , on définit l’endomorphisme unduit fF : F → F

par fF (v) = f(v) si v ∈ F . (Essentiellement, fF est la restriction de f sur
F .) Dans une base de E où les premiers vecteurs forment une base de F la
matrice de f est triangulaire par blocs.

2.11. Corollaire. Le polynôme caractéristique de l’endomorphisme
induit fF divise le polynôme caractéristique de f .

[Cela a comme conséquence que la dimension de l’espace propre Eλ ne
dépasse pas la multiplicité de λ dans le polynôme caractéristique.]

Soit E la somme directe des sous-espaces stables par f , E = E1
⊕

...
⊕

Ek;
soit fi l’endomorphisme induit dans Ei. Alors l’étude de f se réduit à l’étude
de chaque fi séparement: f est une sorte la ”somme direct des blocs” fi.
La matrice de f dans une base adaptée est diagonale par blocs, le i-ème
bloc diagonal étant la matrice de fi. Un des objectifs de la réduction est de
décomposer f en blocs de taille minimum (blocs”indécomposables”).

Remarque. Si E est la somme directe des sous-espaces stables par f ,
E = E1

⊕
...

⊕
Ek, le polynôme caractéristique de f est le produit des

polynômes caractéristiques des endomorphismes fi induits dans Ei (i =
1, ..., k). Donc la décomposition de f en blocs est liée à la factorisation du
polynôme caractéristique de f .
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