Polynôme minimal.

.

Soit f un endomorphisme de E.

Définition. Un **polynôme minimal** de f est un polynôme annulateur non-nul de degré minimum.

- 1. Proposition. Un polynôme minimal divise tout polynôme annulateur.
- •• Démonstration. Soit b un polynôme minimal et a un polynôme annulateur. La division avec reste donne a=qb+r, donc r=a-qb, donc r est un polynôme annulateur de degré inférieur à celui de b, donc r=0. ••

Par conséquent, il y a un seul polynôme minimal **unitaire** (de coefficient dominant 1), appelé **le** polynôme minimal; il sera noté m_f .

.

En particuler,

le polynôme minimal divise le polynôme caractéristique.

.

Rappelons que, comme pour tout polynôme annulateur, chaque valeur propre de f est racine du polynôme minimal.

.

Exemple: soit f diagonalisable, $\lambda_1, ..., \lambda_k$ les valeurs propres de f deux à deux distinctes. Alors le polynôme $r(x) = (x - \lambda_1)...(x - \lambda_k)$ annule f et en fait r(x) est le polynôme minimal de f.

.

- 2. Critère de diagonalisabilité. Un endomorphisme est diagonalisable si et seulement si son polynôme minimal est scindé à racines simples.
- ullet Démonstration. Si f est diagonalisable, f est annulé par un polynôme q scindé à racines simples; le polynôme minimal divise q et donc est aussi scindé à racines simples. Réciproquement, si le polynôme minimal est scindé à racines simples, la Proposition 3.4 s'applique. ullet

.

- **3. Proposition.** 1. Les racines du polynôme minimal sont exactement les valeurs propres.
- 2. Le polynôme minimal est scindé si et seulement si le polynôme caractéristique est scindé.
- •• Démonstration. 1. Chaque valeur propre est racine de tout polynôme annulateur. De l'autre côté, soit α une racine de m_f ; vu que m_f divise le polynôme caractéristique, α est une racine de p_f , donc une valeur propre.
- 2. Dans les deux cas, être scindé dans R est équivalent aux fait que toutes les valeurs propres sont réelles. ••

Calcul du polynôme minimal I.

Le fait que $m_f(x)=a_0+a_1x+\ldots+a_{l-1}x^{l-1}+x^l$ est le polynôme minimal de f signifie que $a_0Id+a_1f+\ldots+a_{l-1}f^{l-1}+f^l=0$ est la relation linéaire entre les puissances successives Id,f,f^2,\ldots de plus petit degré. Donc on cherche l tel que la famille Id,f,f^2,\ldots,f^{l-1} est libre dans l'espace des endomorphismes, mais $Id,ff^2,\ldots,f^{l-1},f^l$ est liée, donc $f^l=-(a_0Id+a_1f+\ldots+a_{l-1}f^{l-1})$.

Exemple: endomorphisme nilpotent. Soit f un endomorphisme nilpotent; son polynôme caractéristique est $p_f(x) = (-1)^n x^n$ $(n = \dim(E))$ et le polynôme minimal est $m_f(x) = x^k$, où k est l'indice de nilpotence de

.

f.

Calcul du polynôme minimal II. Si on connait la factorisation du polynôme caractéristique $p_f(x) = (-1)^n (x - \lambda_1)^{m_1} ... (x - \lambda_k)^{m_k}$, on sait que le polynôme minimal est de la forme $m_f(x) = (x - \lambda_1)^{l_1} ... (x - \lambda_k)^{l_k}$ avec les exposants l_i tels que $1 \le l_i \le m_i$.

[Cela veut dire que m_f divise p_f et à son tour est divisé par le radical $r(x) = (x - \lambda_1)...(x - \lambda_k).$]

On peut donc esayer tous les candidats $q(x) = (x - \lambda_1)^{l_1}...(x - \lambda_k)^{l_k}$ et parmi ceux qui annule f chosir celui de degré minimun.

.

Utilité du polynôme minimal.

Si un polynôme $q(x) = (x - \lambda_1)^{l_1}...(x - \lambda_k)^{l_k}$ annule f, les sous-espaces caractéristiques sont donnés par $\mathcal{C}_i = Ker((f - \lambda_i Id)^{l_i})$. Pour calculer ces sous-espaces (les projecteurs associés) il est profitable de minimiser les exposants $l_1,...,l_k$.

.

Exemple. Soit dim E = 3 et $p_f(x) = -(x - \lambda)(x - \mu)^2$. Alors on a deux possibilités.

a) Soit $m_f(x) = (x - \lambda)(x - \mu)^2$.

Dans la formule de Bezout $u(x)(x-\lambda)+v(x)(x-\mu)^2=1$ on calcule $v(x)=\alpha$ et $u(x)=-\alpha(x-2\mu+\lambda)$, où $\alpha=(\lambda-\mu)^{-2}$.

Donc

$$\begin{split} \Pi_{\lambda} &= v(f)(f - \mu Id)^2 = \alpha (f - \mu Id)^2 \text{ et} \\ \Pi_{\mu} &= u(f)(f - \lambda Id) = -\alpha (f - 2\mu Id + \lambda Id)(f - \lambda Id). \end{split}$$

.

b) Soit $m_f(x) = (x - \lambda)(x - \mu)$.

Dans la formule de Bezout $u(x)(x-\lambda)+v(x)(x-\mu)=1$ on calcule $v(x)=\alpha$ et $u(x)=-\alpha$, où $\alpha=(\lambda-\mu)^{-1}$.

Donc
$$\Pi_{\lambda} = v(f)(f - \mu Id) = \alpha(f - \mu Id)$$
 et $\Pi_{\mu} = u(f)(f - \lambda Id) = -\alpha(f - \lambda Id)$.

.

4. Lemme. Soit E la somme des sous-espaces stables par f,

 $E=E_1+...+E_k$; soit f_i l'endomorphisme induit dans E_i . Alors pour le polynôme minimal on a $m_f=ppcm(m_{f_1},...,m_{f_k})$.

- •• Démonstration. a) Etant donné que le polynôme $m_f(x)$ annule f, il annule chaque f_i et donc $m_f(x)$ est multiple de chaque m_{f_i} , donc est multiple du $ppcm(m_{f_1}, ..., m_{f_k})$.
- b) Soit $q(x) = ppcm(m_{f_1}, ..., m_{f_k})$; évidemment, q(x) annule chaque f_i . Pour $v \in E$ on écrit $v = v_1 + ... + v_k$, où $v_i \in E_i$. Alors $q(f)v = q(f)v_1 + ... + q(f)v_k = q(f_1)v_1 + ... + q(f_k)v_k = 0$, donc q(x) annule f, donc $ppcm(m_{f_1}, ..., m_{f_k})$ est multiple de $m_f(x)$.
- **5. Corollaire.** Si $m_f(x) = (x \lambda_1)^{l_1} ... (x \lambda_k)^{l_k}$, alors l_i est l'indice de nilpotence de $f_i \lambda_i Id$ dans le sous-espace caractéristique C_i . En particulier, $C_i = Ker(f \lambda_i Id)^{l_i}$.

.

Polynôme minimal d'un vecteur.

Soit f un endomorphisme de E et $v \in E$.

On dit qu'un polynôme q(x) annule v si q(f)v = 0.

Définition. Un **polynôme minimal** de v est un polynôme annulateur de v non-nul de degré minimum.

.

6. Proposition. Un polynôme minimal de v divise tout polynôme annulateur de v.

La démonstration est la même que pour le polynôme minimal de f.

.

Par conséquent, il y a un seul polynôme minimal **unitaire** (de coefficient dominant 1), appelé **le** polynôme minimal de v; il sera noté $m_v(x)$.

.

Sous-espace stable engendré par v.

Soit $E_v = Vect(v, f(v), f^2(v), ..., f^k(v), ...).$

Evidemment, E_v est stable par f.

- 6. Lemme. (i) E_f est le plus petit sous-espace stable par f qui contient
- (ii) Soit k tel que la famille $v, f(v), ..., f^{k-1}(v)$ est libre, mais la famille $v, f(v), ..., f^{k-1}(v), f^k(v)$ est liée. Alors $(v, f(v), ..., f^{k-1}(v))$ est une base de $E_v, f^k(v) = -(a_0v + a_1f(v) + ... + a_{k-1}f^{k-1}(v))$ et le polynôme minimal de v est $m_v(x) = x^k + a_{k-1}x^{k-1} + ... + a_1x + a_0$.

(iii) Soit g l'endomorphisme induit par f dans E_v . Alors $m_q(x) = m_v(x)$.

Endomorphisme cyclique, matrice compagnon.

L'endomorphisme f est dit cyclique si il existe un vecteur v tel que $E_v = E$ (on appelle v vecteur cyclique).

Dans ce cas $(v, f(v), ..., f^{k-1}(v))$ est une base de E et la matrice de f dans cette base est appelée matrice compagnon. Les coefficients $-a_0, ..., -a_{k-1}$ forment la dernière colonne de cette matrice. Son polynôme minimal est $m_f(x) = x^k + a_{k-1}x^{k-1} + \dots + a_1x + a_0$ et est égal (au signe près) à son polynôme caractéristique.

7. Théorème. Le polynôme minimal de f est égal (au signe près) à son polynôme caractéristique si et seulement si f est cyclique: il existe un vecteur v tel que la famille $v, f(v), f^2(v), ..., f^{k-1}(v)$ est une base de E, où $k = \dim E$).

On a aussi un résultat plus fort:

8. Théorème. Pour tout endomorphisme f il existe un vecteur v tel que $m_v(x) = m_f(x)$.

Calcul du polynôme minimal III. Voici une autre méthod pour calculer le polynôme minimal.

On prend un vecteur $v \in E$, on calcule son polynôme minimal $m_v(x)$. Si $E_v = E$, on a $m_F(x) = m_v(x)$. Sinon on prend un autre vecteur w qui n'appartient pas à E_v , on calcule $m_w(x)$ et le $ppcm(m_v, m_w)$.

Si $E_v + E_w = E$, on a $m_f = ppcm(m_v, m_w)$ et on s'arrête; sinon on prend on vecteur qui n'appprtient pas à $E_v + E_w$ et on continue...

Voici quelques résultats supplémentaires (sans démonstration).

9. Théorème. Si deux matrices réelles sont semblables dans C $(A = P^{-1}BP \text{ avec } P \text{ complèxe}), \text{ elles sont semblables dans } \mathbf{R}$ $(A = Q^{-1}BQ \text{ avec } Q \text{ r\'eelle}).$

10. Théorème. Toute matrice est semblable à sa transposée.