
Produit vectoriel.
Orientation.
Soit E un R-espace vectoriel de dimension finie.
On dit que deux bases (ordonnées) de E sont de même sens (ou de même

orientation) si la matrice de passage d’une base à l’autre est de déterminant
positif. Cela définit une relation d’équivalence dans l’ensemble des bases et
il y a exactement deux classes d’équivalence, appelées classes d’orientation.
L’orientation de E est, par définition, le choix d’une classe d’orientation;
les bases ordonnées dans cette classe sont des bases directes, les autres sont
dites indirectes.

.
1. Soit E un espace euclidien orienté de dimension 3. On définit le

produit mixte de 3 vecteurs u, v, w de E comme détB(u, v, w), où B =
(e1, e2, e3) une base orthonormale directe. Cette définition ne dépend pas
du choix de la base orthonormale directe B.

Les propriétés du produit mixte sont celles du déterminant.
1. Le produit mixte est linéaire par rapport à chaque variable u, v et w.
2. Le produit mixte est altérné (anti-symétrique).
3. Det(u, v, w) = 0 si et seulement si les vecteurs u, v et w sont coplanaires.
4. détB(e1, e2, e3) = 1.
.
2. Définition. Soit u, v ∈ E. Le produit vectoriel u ∧ v est l’unique

vecteur de E tel que pour tout w ∈ E on a < u ∧ v, w >= détB(u, v, w).
.
Propriétés du produit vectoriel:
1. Le produit vectoriel est bilinéaire: (au1+bu2)∧v = a(u1∧v)+b(u2∧v)
et u ∧ (av1 + bv2) = a(u ∧ v1 + b(u ∧ v2).
2. Le produit vectoriel est anti-symétrique: v ∧ u = −u ∧ v.
3. u ∧ v est orthogonal à u et v.
u ∧ v = 0 si et seulement si u et v sont colinéaires.
On a < u ∧ v, w >=< u, v ∧ w >.
4. Soit B = (e1, e2, e3) une base orthonormale directe. Alors e1∧e2 = e3,

e2 ∧ e3 = e1, e3 ∧ e1 = e2.
5. Soit T une isométrie vectorielle de E. On a
(Tu) ∧ (Tv) = det(T )T (u ∧ v).
6. Si u et v sont orthogonaux, on a ‖ u ∧ v ‖=‖ u ‖‖ v ‖.
En général,

‖ u ∧ v ‖=‖ u ‖‖ v ‖ sin θ

où θ est l’angle de vecteurs u et v
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7. On a
‖ u ∧ v ‖2 + < u, v >2=‖ u ‖2‖ v ‖2

8. Le produit vectoriel n’est pas associatif: le défault d’associativité est
donné par l’identité de Jacobi:

(u ∧ v) ∧ w − u ∧ (v ∧ w) = (u ∧ w) ∧ v
On a aussi (u ∧ v) ∧ w =< u,w > v− < v, w > u
.
3. Aires et volumes.
Soit u, v ∈ E. L’aire du parallelogramme construit sur les vecteurs u et

v est ‖ u ∧ v ‖.
Soit u, v, w ∈ E. Le volume du parallelopipède construit sur les vecteurs

u, v et w est | détB(u, v, w) |=|< u ∧ v, w >|.
.
4. Angles.
Soit E un espace vectoriel euclidien; soit u et v deux vecteurs non-nuls.

L’angle α entre u et v est défini par les conditions

cos α =
< u, v >

‖ u ‖‖ v ‖

et 0 ≤ α ≤ π.
L’angle α de deux doites vectorielles de vecteurs directeurs u et v est

défini par les conditions 0 ≤ α ≤ π/2 et cos α = |<u,v>|
‖u‖‖v‖ .

.
Soit E un espace affine dirigé par E. L’angle de deux doites affines dans

un espace affine dirigé par Eest par définition l’angle entre entre leurs droites
vectorielles directrices.

Cas particulier dim E = 3.
L’angle de deux plans est par définition l’angle de leurs droites normales.
L’angle d’une droite et d’un plan est tel que la somme de cet angle et de

l’angle entre la droite et la la droite normale au plan est π/2.
.
5. Distance à un hyperplan affine.
Soit E un espace affine euclidien dirigé par E, soit H un hyperplan dans

E . Soit A ∈ H et ~n un vecteur unitaire orthogonal à H.
La distance d’un point M ∈ E à H est donnée par

d(M,H) =|< −−→
AM,~n >|

(la longueur de la perpendiculaire à H passant par M).
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Si ~v est un vecteur non-nul orthogonal à H, on a

d(M,H) =
|< −−→

AM,~v >|
‖ ~v ‖

L’équation de H est donc <
−−→
AM,~v >= 0.

Expression en coordonnées dans un repère orthonormé (O; e1, ..., en): soit
~v =

∑
i viei, soit (a1, ..., an) les cordonnées de A et (x1, ..., xn) les coor-

données de M .
Alors l’équation M ∈ H est

∑
i vi(xi − ai) = 0, ou

∑
i vixi − p = 0 (ici

p =
∑

i viai).
La distance

d(M,H) =
∑

i vixi − p√∑
i v

2
i

6. Cas particuliers:
1. Droite dans un plan.
L’équation de la droite ax + by − p = 0;
vecteur normal ~v = ae1 + be2;
distance du point (x, y) à la droite est

ax + by − p√
a2 + b2

2. Plan dans R3.
L’équation du plan ax + by + cz − p = 0;
vecteur normal ~v = ae1 + be2 + ce3;
distance du point (x, y, z) au plan est

ax + by + cz − p√
a2 + b2 + c2

3. Plan dans R3 défini par un point A et deux vecteurs ~u1 et ~u2.
Le point M appartient au plan si et seulement si le vecteur −−→AM est

une combinaison linéaire de ~u1 et ~u2. Le vecteur normal est donné par
~v = ~u1 ∧ ~u2.

4. Plan dans R3 passant par trois points A,B, C.
Le point M appartient au plan si et seulement si le vecteur −−→AM est

une combinaison linéaire de −−→AB et −→AC. Le vecteur normal est donné par
~v = −−→

AB ∧ −→AC.
5. Droite D dans R3 définie par un point A et un vecteur ~u.
Soit M ∈ R3 et B le projeté orthogonale de M sur D. On a
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d(M,D) =‖ −−→BM ‖.
Mais −−→AM ∧ ~u = −−→

BM ∧ ~u donc ‖ −−→BM ‖‖ ~u ‖=‖ −−→AM ∧ ~u ‖ et

d(M,D) =
‖ −−→AM ∧ ~u ‖

‖ ~u ‖

[ L’équation (vectorielle) de la droite D est donc −−→AM ∧ ~u = 0. ]
6. Perpendiculaire commune à deux droites D1 et D2 dans R3; distance

entre deux droites.
Soit Di définie par un point Ai et un vecteur directeur ~ui, i = 1, 2.
Le point courant de la droite Di s’écrit comme Mi = Ai + ai ~ui, ai ∈ R.
La distance entre M1 et M2 est ‖ −−−−→M1M2 ‖.
On a −−−−→M1M2 = −−−→

A1A2 − a1 ~u1 + a2 ~u2 = ~v + ~u, où ~u = −−−→
A1A2 est fixe et

~u− a1 ~u1 + a2 ~u2.
Si les droites sont parallèles (les vecteurs ~u2 et ~u2 colinéaires), la situation

est claire.
Si les vecteurs ~u2 et ~u2 ne sont pas colinéaires, ~u est un vecteur arbitraire

du plan engendré par les vecteurs ~u1 et ~u2. Donc minimiser ‖ −−−−→M1M2 ‖ est
équivalent à effectuer la projection orthogonale du vecteur ~v dans le plan
engendré par les vecteurs ~u1 et ~u2. La solution est unique et correspond au
vecteur −−−−→M1M2 orthogonal à ~u1 et ~u2 - c’est la perpendiculaire commune.

Soit ~w = ~u1 ∧ ~u2. Alors pour la perpendiculaire commune on a
|< −−−−→

M1M2, ~w >|=‖ −−−−→M1M2 ‖‖ ~w ‖.
Mais <

−−−−→
M1M2, ~w >=<

−−−→
A1A2, ~w >, d’où la formule pour la distance

entre deux droites,

d(D1D2) =
|< ~u1 ∧ ~u2,

−−−→
A1A2 |>

‖ ~u1 ∧ ~u2 ‖
7. Coniques .
On considère la courbe Γ dans R2 définie par une équation quadratique:

ax2 + 2bxy + cy2 + dx + ey + f = 0

Par un changement orthogonale des coordonnées (en rédusant la forme
quadratique aux axes principaux) on obtient l’équation

λu2 + µv2 + pu + qv + r = 0.
Ici λ + µ = a + c et λµ = ac− 4b2.
Forme réduite.
Cas ”non-dégénéré”. Si λµ 6= 0, on peut éliminer les termes pu et qv en

ajoutant des constantes à u et v ce qui donne l’équation réduite:

λu2 + µv2 = γ
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1. λµ = ac − 4b2 > 0. Soit λ > 0 (et donc µ > 0); ceci est équivalent à
a > 0. Alors Γ est une ellipse si γ > 0, un point si γ = 0 et vide si γ < 0.

2. λµ = ac − 4b2 < 0. Alors Γ est une hyperbole (à deux branches) si
γ 6= 0, une croix formée de deux droites si γ = 0.

Le centre de Γ dans le cas non-dégénéré est le seul point critique de la
fonction quadratique qui figure dans l’équation; en coordonnées (x, y) il est
donc donné comme la solution du système de deux équations 2ax+2by+d =
0, 2bx + 2cy + e = 0.

.
Cas ”dégénéré”. Soit λµ = 0. Soit λ 6= 0. Alors on peut éliminer le

termes pu en ajoutant une constante à u, ce qui donne l’équation réduite:
λu2 + qv = γ. Si q 6= 0, c’est l’équation d’une parabole.
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