
3. Formes bilinéaires et endomorphismes.
3.1. Soit E un espace Euclidien et B = (e1, ..., en) une base orthonor-

male.
Soit f ∈ L(E), f(ej) =

∑
i ai,jei et A = (aij) la matrice de f .

On définit la forme associée: ϕf (x, y) =< x, f(y) >. La matrice de ϕf

dans la base B est: (< ei, f(ej) >) = (aij) = A. La correspondance entre f
et ϕf est donc une bijection linéaire entre l’espace des endomorphismes et
l’espace des formes bilinéaires.

Si on écrit ψf (x, y) =< f(x), y >, alors la matrice de ψf est la transposée
de A: < f(ei), ej >= aji. Il existe donc un unique endomorphisme f∗ tel
que < x, f(y) >=< f∗(x), y > pour tous x, y ∈ E.

Définition. L’endomorphisme f∗ tel que < x, f(y) >=< f∗(x), y >
s’appelle l’adjoint de f ; sa matrice dans une base orthonormale est la trans-
posée de la matrice de f .

Définition. L’endomorphisme f est dit auto-adjoint ou symétrique
si f∗ = f . L’endomorphisme f est symétrique si et seulement si sa matrice
dans une base orthonormale est symétrique.

.
Exemple. Une projection orthogonale est symétrique.
.
3.2. Propriétés de l’adjoint. L’application f → f∗ est linéaire; (f∗)∗ =

f , (fg)∗ = g∗f∗ et (f−1)∗ = (f∗)−1.
Lemme. (1) L’orthogonal d’un sous-espace stable par f est stable par

f∗.
(2) Ker f∗ = (Im f)⊥ et Im f∗ =( Ker f)⊥.
.
Corollaire. Si f est symétrique, alors Ker f = (Im f)⊥ et E est la

somme orthogonale de Ker f et Im f . L’orthogonal d’un sous-espace stable
par f est stable par f .

.
3.3. Diagonalisation des matrices symétriques.
Proposition. Soit f un endomorphisme auto-adjoint. Alors
(i) Toutes les valeurs propres de f sont réelles.
(ii) Les sous-espaces propres de f sont deux à deux orthogonaux.
(iii) f est diagonalisable dans une base orthonormale.
.
3.4. Un endomorphisme symétrique f est dit positif (respectivement,

défini positif) si la forme associée < x, f(y) > est positive (respectivement,
défini positive).
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La proposition précédente montre que’un endomorphisme symétrique est
positif (respectivement, défini positive) si et seulement si toutes ses valeurs
propres sont positives (respectivement, stictement positives).

Une matrice symétrique A est dit positive (respectivement, défini pos-
itive) si tXAX ≥ 0 pour tout X ∈ Rn (respectivement, tXAX > 0 pour
tout X non-nul).

.
Exemple: racine carré d’une matrice positive. Soit f un endomorphisme

positif, Πi le projecteur spectral associé à la valeur propre λi, i = 1, ..., k.
On a f =

∑
λiΠi. Posons g =

∑√
λiΠi. Alors g est symétrique positif et

g2 = f . On montre facilement qu’une telle racine carré positive
√
f = g est

unique.
.
3.5. Diagonalisation d’une forme quadratique dans une base

orthonormale.
Soit q une forme quadratique et soit f un endomorphisme auto-adjoint

tel que q(x) =< x, f(x) >. On a vu que dans une base orthonormale q et f
ont la même matrice. Donc dans une base orthonormale de vecteurs propres
de f la matrice de q est diagonale et q est une combinaison linéaire de carrés.

Proposition. ”Réduction aux axes principaux”. Pour toute forme
quadratique q il existe une une base orthonormale dans laquelle la matrice de
q est diagonale et q est une combinaison linéaire de carrés: q(x) =

∑n
1 aix

2
i .

Les coefficients ai sont les valeurs propres de l’endomorphisme auto-adjoint
f associé (q(x) =< x, f(x) >).

On peut reformuler ce résultat comme la diagonalisation simultanée de
deux formes quadratiques: la forme q et le produit scalaire < x, x >.

.
4. Transformations orthogonales.

4.1. Soit E un espace Euclidien.
Un endomorphisme U de E est orthogonal (est une isométrie linéaire)

si U préserve le produit scalaire: < Ux,Uy >=< x, y > pour tout x, y ∈ E.
.
Proposition. Les propriétés suivantes sont équivalentes.
(i) U est orthogonal.
(ii) U préserve la norme: ‖ Ux ‖=‖ x ‖ pour tout x ∈ E.
(iii) U transforme toute base orthonormale en base orthonormale.
(iv) U transforme une base orthonormale en base orthonormale.
Un endomorphisme orthogonal est injectif, donc inversible
(dim E <∞!). Son inverse est aussi orthogonal.
.
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4.2. L’égalité < Ux,Uy >=< x, y > s’écrit aussi
< U∗Ux, y >=< x, y > ce qui est équivalent à U∗U = In. Donc U est

orthogonal si et seulement si U∗U = In, ou encore ssi U−1 = U∗.
Une matrice orthogonale est la matrice d’un endomorphisme orthogo-

nal dans une base orthonormale. Une matrice orthogonale U est caractérisée
par la relation tUU = U tU = In qui signifie que les colonnes de A (aussi
que ses lignes) constituent une base orthonormale par rapport au produit
scalaire canonique dans Rn.

.
4.3. Transformations orthogonales et diagonalisation d’une forme quadra-

tique dans une base orthonormale.
Soit A la matrice d’une forme quadratique q dans une base B; soit P la

matrice de passage de B à une autre base B′. Alors la matrice de la forme q
dans la base B′ est A′ =t PAP . Si les deux bases B et B′ sont orthonormales,
P est orthogonale: tP = P−1 et on a A′ =t PAP = P−1AP . Donc la
matrice d’une forme se transforme comme la matrice d’un endomorphisme
si le changement de coordonnées est orthogonal. Cela montre encore une
fois que la diagonalisation d’une forme quadratique par une transformation
orthogonale demande la recherche des valeurs et des vecteurs propres de A.

.
4.4. Symétrie par rapport à un sous-espace. Réflexions.
Soit F un sous-espace de E et E = F

⊕
F⊥ la décomposition orthogo-

nale. Pour x ∈ E on écrit x = x1+x2 avec x1 ∈ F et x2 ∈ F⊥. La symétrie
sF par rapport à F est définie par sF (x) = x1 − x2.

Une symétrie par rapport à un hyperplan s’appelle réflexion. Si F estt
un hyperplan et e le vecteur unitaire orthogonal à F , la reflexion par rapport
au F s’écrit sF (x) = x− 2 < x, e > e.

Proposition. Toute transformation orthogonale dans Rn s’écrit comme
un produit d’au plus n réflexions.

.
4.5. Réduction des endomorphismes orthogonals.
Proposition. Soit U un endomorphisme orthogonal.
(i) Si le sous-espace F est stable par U , alors F⊥ est stable par U .
(ii) Toute valeur propre de U est de module 1.
(iii) E se décompose en somme orthogonale des sous-espaces stables par

U de dimension 1 ou 2.
.
Transformations orthogonales en petite dimension.
Dimension 1. Ux = x ou Ux = −x.
Dimension 2. a) dét U > 0: U est une rotation.
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Sa matrice est U =

(
cos t − sin t
sin t cos t

)
.

b) dét U < 0: U est une réflexion.

Sa matrice est U =

(
cos t sin t

sin t − cos t

)
.

.
Dimension 3. a) dét U > 0: U est une rotation autour d’un axe.
b) dét U < 0: U est une réflexion composée avec une rotation autour de

l’axe orthogonal au plan de réflexion.
Remarquer qu’il y a (au moins) une valeur propre réelle.
.
4.6. Décompositon polaire.
Théorème. Soit f un endomorphisme inversible. Il existe l’unique

endomorphisme orthogonal U et l’unique endomorphisme défini positif S
tels que f = US.

Construction: On pose S =
√
f∗f ; S est défini positif. On définit U

par U = fS−1 et on vérifie que U est orthogonal: U ∗ U = S−1f ∗ fS−1 =
S−1S2S−1 = Id.

.
4.7. Orthogonalisation de Gram-Schmidt et la décomposition

orthogonale-triangulaire (décomposition QR).
Théorème. Soit A une matrice inversible. Il existe l’unique matrice or-

thogonale Q et l’unique matrice triangulaire supérieure R avec une diagonale
positive telles que A = QR.

Construction: La matrice tAA est définie positive. Soit tAA =t RR la
décomposition de Cholesky, où R est triangulaire supérieure. On définit Q
par Q = AR−1 et on vérifie que Q est orthogonal: tQQ =t R−1.tAAR−1

=t R−1.tRRR−1 = Id.
.
La décomposition QR est liée à l’orthogonalisation de Gram-Schmidt.

Soit v1, ..., vn les colonnes de A, e1, ..., en les colonnes de Q et B = R−1 (B
est triangulaire supérieure et (e1, ..., en ) est une base orthonormale).

La relation A = QR est équivalente à Q = AB qui s’écrit en termes des
colonnes de façon suivante:

e1 = b11v1,
e2 = b12v1 + b22v2,
....................................
ek =

∑k
i=1 bikvi

Donc ek est une combinaison linéaire des vecteurs v1, ..., vk pour tout
k ≥ 1.
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