3. Formes bilinéaires et endomorphismes.

3.1. Soit E un espace Euclidien et B = (e, ..., e,) une base orthonor-
male.

Soit f € L(E), f(e;) = >;aije; et A= (ai;) la matrice de f.

On définit la forme associée: yr(x,y) =< z, f(y) >. La matrice de ¢y
dans la base B est: (< e;, f(ej) >) = (a;;) = A. La correspondance entre f
et ¢ est donc une bijection linéaire entre I'espace des endomorphismes et
I’espace des formes bilinéaires.

Sion écrit Y ¢(x,y) =< f(x),y >, alors la matrice de 15 est la transposée
de A: < f(e;),e; >= aj;. 1l existe donc un unique endomorphisme f* tel
que < z, f(y) >=< f*(x),y > pour tous z,y € E.

Définition. L’endomorphisme f* tel que < z, f(y) >=< f*(x),y >
s’appelle I’adjoint de f; sa matrice dans une base orthonormale est la trans-
posée de la matrice de f.

Définition. L’endomorphisme f est dit auto-adjoint ou symétrique
si f* = f. L’endomorphisme f est symétrique si et seulement si sa matrice
dans une base orthonormale est symétrique.

Ezxemple. Une projection orthogonale est symétrique.

3.2. Propriétés de l’adjoint. L’application f — f* est linéaire; (f*)* =
f (o) =g f et (f7) = ()

Lemme. (1) L’orthogonal d’un sous-espace stable par f est stable par
fr.

(2) Ker f* = (Im f)* et Im f* =( Ker f)*.

Corollaire. Si f est symétrique, alors Ker f = (Im f)* et E est la
somme orthogonale de Ker f et Im f. L’orthogonal d’un sous-espace stable
par f est stable par f.

3.3. Diagonalisation des matrices symétriques.
Proposition. Soit f un endomorphisme auto-adjoint. Alors

(i) Toutes les valeurs propres de f sont réelles.

(ii) Les sous-espaces propres de f sont deux a deux orthogonaux.
(iii) f est diagonalisable dans une base orthonormale.

3.4. Un endomorphisme symétrique f est dit positif (respectivement,
défini positif) si la forme associée < x, f(y) > est positive (respectivement,
défini positive).



La proposition précédente montre que’un endomorphisme symétrique est
positif (respectivement, défini positive) si et seulement si toutes ses valeurs
propres sont positives (respectivement, stictement positives).

Une matrice symétrique A est dit positive (respectivement, défini pos-
itive) si {XAX > 0 pour tout X € R" (respectivement, X AX > 0 pour
tout X non-nul).

Ezxemple: racine carré d’une matrice positive. Soit f un endomorphisme
positif, II; le projecteur spectral associé a la valeur propre \;, i = 1,..., k.
On a f =S NII;. Posons g = Y./ N1I;. Alors g est symétrique positif et
¢%> = f. On montre facilement qu’une telle racine carré positive \/f = g est
unique.

3.5. Diagonalisation d’une forme quadratique dans une base
orthonormale.

Soit ¢ une forme quadratique et soit f un endomorphisme auto-adjoint
tel que g(x) =< z, f(x) >. On a vu que dans une base orthonormale ¢q et f
ont la méme matrice. Donc dans une base orthonormale de vecteurs propres
de f la matrice de g est diagonale et ¢ est une combinaison linéaire de carrés.

Proposition. 7Réduction auzr azres principauz”. Pour toute forme
quadratique ¢ il existe une une base orthonormale dans laquelle la matrice de
q est diagonale et g est une combinaison linéaire de carrés: q(z) = 3.7 a;z?.
Les coefficients a; sont les valeurs propres de 'endomorphisme auto-adjoint
f associé (¢(x) =<z, f(z) >).

On peut reformuler ce résultat comme la diagonalisation simultanée de
deuz formes quadratiques: la forme g et le produit scalaire < x,z >.

4. Transformations orthogonales.
4.1. Soit F un espace Euclidien.
Un endomorphisme U de E est orthogonal (est une isométrie linéaire)
si U préserve le produit scalaire: < Uz, Uy >=< x,y > pour tout =,y € E.

Proposition. Les propriétés suivantes sont équivalentes.

(i) U est orthogonal.

(ii) U préserve la norme: || Uz ||=|| x || pour tout =z € E.

(iii) U transforme toute base orthonormale en base orthonormale.
(iv) U transforme une base orthonormale en base orthonormale.
Un endomorphisme orthogonal est injectif, donc inversible

(dim E < oo!). Son inverse est aussi orthogonal.



4.2. L'égalité < Ux, Uy >=< x,y > s’écrit aussi

< U*Ux,y >=< z,y > ce qui est équivalent a U*U = I,. Donc U est
orthogonal si et seulement si U*U = I,,, ou encore ssi U~ = U*.

Une matrice orthogonale est la matrice d’'un endomorphisme orthogo-
nal dans une base orthonormale. Une matrice orthogonale U est caractérisée
par la relation ‘UU = U'U = I,, qui signifie que les colonnes de A (aussi
que ses lignes) constituent une base orthonormale par rapport au produit
scalaire canonique dans R".

4.3. Transformations orthogonales et diagonalisation d’une forme quadra-
tique dans une base orthonormale.

Soit A la matrice d'une forme quadratique ¢ dans une base B; soit P la
matrice de passage de B & une autre base B’. Alors la matrice de la forme ¢
dans la base B’ est A’ =t PAP. Si les deux bases B et B’ sont orthonormales,
P est orthogonale: ‘P = P~! et on a A’ =t PAP = P~'AP. Donc la
matrice d’une forme se transforme comme la matrice d’'un endomorphisme
si le changement de coordonnées est orthogonal. Cela montre encore une
fois que la diagonalisation d’une forme quadratique par une transformation
orthogonale demande la recherche des valeurs et des vecteurs propres de A.

4.4. Symétrie par rapport a un sous-espace. Réflexions.

Soit F' un sous-espace de E et £ = F @ F' la décomposition orthogo-
nale. Pour z € E on écrit x = 21422 avec 21 € F et 9 € FL-. La symétrie
sp par rapport a F' est définie par sp(x) = x1 — 2.

Une symétrie par rapport a un hyperplan s’appelle réflexion. Si F estt
un hyperplan et e le vecteur unitaire orthogonal a F', la reflexion par rapport
au F' s’écrit sp(x) =z —2 < x,e >e.

Proposition. Toute transformation orthogonale dans R™ s’écrit comme
un produit d’au plus n réflexions.

4.5. Réduction des endomorphismes orthogonals.

Proposition. Soit U un endomorphisme orthogonal.

(i) Si le sous-espace F est stable par U, alors F- est stable par U.

(ii) Toute valeur propre de U est de module 1.

(iii) E se décompose en somme orthogonale des sous-espaces stables par
U de dimension 1 ou 2.

Transformations orthogonales en petite dimension.
Dimension 1. Uz =z ou Ux = —x.
Dimension 2. a) dét U > 0: U est une rotation.
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Dimension 3. a) dét U > 0: U est une rotation autour d’'un axe.

b) dét U < 0: U est une réflexion composée avec une rotation autour de
I’axe orthogonal au plan de réflexion.

Remarquer qu’il y a (au moins) une valeur propre réelle.

4.6. Décompositon polaire.

Théoréme. Soit f un endomorphisme inversible. 1l existe 'unique
endomorphisme orthogonal U et I'unique endomorphisme défini positif S
tels que f =US.

Construction: On pose S = /f*f; S est défini positif. On définit U
par U = fS~! et on vérifie que U est orthogonal: U xU = S~ f x fS~! =
S—1825-1 = Id.

4.7. Orthogonalisation de Gram-Schmidt et la décomposition
orthogonale-triangulaire (décomposition QR).

Théoreme. Soit A une matrice inversible. Il existe I'unique matrice or-
thogonale @) et I'unique matrice triangulaire supérieure R avec une diagonale
positive telles que A = QR.

Construction: La matrice ‘AA est définie positive. Soit ‘AA =' RR la
décomposition de Cholesky, ou R est triangulaire supérieure. On définit @
par Q = AR™! et on vérifie que Q est orthogonal: ‘QQ =! R™1'!AAR™!
=! R'RRR™! = Id.

La décomposition QR est liée a I'orthogonalisation de Gram-Schmidt.
Soit v1, ..., v, les colonnes de A, eq, ..., e, les colonnes de Q et B = R~ (B
est triangulaire supérieure et (eq, ..., e, ) est une base orthonormale).

La relation A = QR est équivalente a Q = AB qui s’écrit en termes des
colonnes de facon suivante:

er = biivy,

ez = b1av1 + baava,

er = Sy biv;

Donc e est une combinaison linéaire des vecteurs w1, ..., v pour tout
k> 1.



