1. Formes bilinéaires. Formes quadratiques.

1.1. Définitions. Soit F un espace vectoriel sur K (K = R ou C).

Une forme bilinéaire sur E est une application ¢ : £ x E — K linéaire
par rapport a chacune des deux variables.

Une forme bilinéaire ¢ est symétrique si p(z,y) = ¢(y,z) pour tout
x,y € E. Si o(x,y) = —p(y,z) pour tous z,y € E, la forme est dite
anti-symétrique (ou alternée).

Chaque forme bilinéaire s’écrit comme la somme d’une forme symétrique
et d’une forme anti-symétrique: ¢ = ¢4 + p_, ol

pr(z,y) = S(p(e,y) + 9y, 2)) et v_(2,9) = 3(p(2,9) — p(y,z)).

Pour une forme bilinéaire symétrique on définit la forme quadratique
associée q, : E — K: gy(z) = p(z,x).

La forme bilinéaire symétrique est déterminée par la forme quadratique

associée: )

p(2,y) = lap(z +y) — gp(z —y)]

(7identité de polarisation”).

L’ensemble de toutes les formes bilinéaires (ou de formes symétriques,
ou anti-symétriques, ou quadratiques) est un espace vectoriel sur K: si
Y1, .-, pr sont des formes bilinéaires et a1, ...ax des scalaires, a1p1+...+arpg
est une forme bilinéaire.

Ezemples. 1. Si f et g sont deux formes linéaires, p(z,y) = f(z)g(y) est
une forme bilinéaire.

2. Soit E l'espace des matrices k x n; alors p(A4,B) = tr(AB) et
©(A, B) = tr(*AB) sont des formes bilinéaires symétriques.

3. Soit E = C([a,b], K) 'espace des fonctions continues sur [a,b], soit
p € C([a,b],K). Alors ¢(f,g9) = f;f(t)g(t)p(t)dt est une forme bilinéaire
symétrique.

4. Le déterminant en dimension 2: ¢(z,y) = x1y2 — z2y1 - une forme
alternée.

1.2. Expression en coordonnées. On suppose que dim E =n < co.
Soit B = (ey, ..., e,) une base de E, x = > T wie;, y = > 1 yie;.
Alors ¢(z,y) = ZZ;‘:1 wz‘ijO(ei, €j) = ZZj:l a;jT;yj OU a;; = v(ei, ej)-



La matrice A = (ai;) = (p(ei, e;)) est la matrice de la forme bilinéaire
@ dans la base B .

La forme ¢ est symétrique si et seulement si sa matrice (dans n’importe
quelle base) est symétrique: a;; = aj;, ou "A = A. Si ¢ est symétrique, la
forme quadratique associée s’écrit: g, (x) = szzl i TiT;.

Soit X la colonne des composantes du vecteur x: ‘X = (z1, ..., z,). Alors
on peut écrire ¢ a ’aide de la multiplication matricielle:

o(z,y) =" XAY

1.3. Changement de base (changement linéaire de coordonnées).

Soit B’ = (€}, ..., e,) une autre base de E, soit X’ et Y’ les colonnes des
coordonnées des vecteurs x et y dans la base B'.

Ona X = PX'et Y = PY’, ol P est la matrice de passage de B & B’.

Alors p(x,y) =t XAY =t X""PAPY’ =t X’ A'Y' ol
A= PAP

est la matrice de la forme ¢ dans la base B'.

(Noter que si A est symétrique, A’ est aussi.)

Plus généralement, on peut effectuer une substitution linéaire X = C X’
et Y =CY’, ot X' = (2, ...,2},) et C est une matrice n x k. Cela donne
une forme bilinéaire en k variables ¢ (z/,y) =t X’A'Y’ ot A’ =t CAC.

Remarque: Poser X = CX' signifie & remplacer les variables 1, ..., z,
par des formes linéaires en 7, ..., ..

Si on définit I’application linéaire f : K¥ — K™ par f(X') = CX, alors
'@ y) = o(f(@), fy))-

1.4. Equivalence des formes. Deux formes bilinéaires ¢ et ¢’ définies
dans F et E’ sont dites équivalentes si il existe un isomorphisme f : £ —
E' tel que p(z,y) = ¢'(f(2), f(y)).

Si dim(F) < oo, les formes ¢ et 1) sont équivalentes si leurs matrices A
et B sont liées par B = PAP avec P inversible (autrement dit, si on peut
trouver deux bases dans lequelles ¢ et ¢ ont la méme matrice).

1.5. On appelle rang d’une forme bilinéaire le rang de sa matrice (il ne
dépend pas du choix de la base). On dit que la forme est non-dégénérée
si son rang est égal a la dimension de FE.

Pour une forme ¢ symétrique son noyau est défini par

Kerp={zx € E:Yy e E,p(z,y) =0}.



Le noyau de ¢ est le noyau de (I’application linéaire définie par) la ma-
trice de ¢. On a: rang (¢) + dim (Ker ¢) = dim (E).

Lemme. Caractérisation du noyau en termes de la forme quadratique:

x € Ker () si et seulement si g, (z + ) = q,(y) pour tout y € E.

1.6. Soit ¢ une forme bilinéaire symetrique. Les vecteurs = et y sont
orthogonaux si ¢(x,y) = 0. Une base est dite orthogonale si ses vecteurs
sont deux a deux orthogonaux.

Dans une base orthogonale la forme s’écrit ¢(z,y) = DT a;x;y;, et sa
matrice est diagonale. La forme quadratique associée devient alors une
combinaison linéaire de carrés: q(z) = 37 a;z?.

Le rang de ¢ (ou de ¢q) est le nombre de coefficients a; non-nuls. Le
noyau de ¢ est engendré par les vecteurs de base e; pour lesquels a; = 0.

1.7. Orthogonalisation de Gauss (réduction en carrés).

L’orthogonalisation de Gauss permet de fabriquer une base orthogonale
pour la forme quadratique g,(z) = >3, aijz;z; par des changements de
coordonnées successives.

Cas 1. 11 existe ¢ tel que a;; # 0. Soit a3 # 0 (quitte a changer la
numérotation). On écrit

Gp () = Z" —1 Qi TiTj =

an(z1 + ;5= S0 g arjr)? + X7, aijTitj — (o Xhp arjj)?

=any? +q(v2,..., 1), ol y = 21 + - o 2?22 a;;.

Ensuite il reste a diagonaliser la forme q; (2, ..., x,) (récurrence).

Cas 2. a; = 0 pour tout i . Si a;; = 0 pour tout j, la variable x;
n’apparait pas dans la forme et la récurrence s’applique. Soit aq; # 0 Pour
simplifier, soit j = 2.

On écrit

Gp(x) = 21y aijaivy = ara(w1 + o= Yy agjwj) (e + 2= Y05 anjaj)

+ 300 g airing — o= (g avag) (X)_g agjx;)

= a12y192 + CI2(IL‘3, vy Tp).

ouy =1+ m > =3 a2jTj et Yo = T2 + ;- m > =3 Q1T ).

Ensuite on pose 21 = y1 +y2, 22 =y1 —y2 et on a y1y2 =

Apres cela il reste a diagonaliser la forme ga(z3, ..., Tp).

(2 = 23).

1.8. Equivalence des formes quadratiques.
Deux formes quadratiques sont équivalentes si les formes bilinéaires
symétriques associées sont équivalentes: q; et g2 sont équivalentes si il existe



un isomorphisme f : E — E tel que g2(z) = ¢1(f(x)). Les matrices A; et
Ay des deux formes sont liées par Ay =! PA; P avec P inversible.
Pour une forme réduit en carrés on écrit

q(x) = Zle a;z? avec a; # 0, i = 1,....,k. Donc k est le rang de q.

Equivalence sur C. En posant Z; = \/a;x; on obtient la forme réduite:
_ vk 2
Corollaire. Deux formes quadratiques sur C sont équivalentes si et
seulement si elles ont le méme rang.

Formes quadratiques sur R. Signature.
On regroupe les coefficients positifs et négatif et on écrit

q(z) =30 a;x? — :iﬁﬂ a;z? avec a; > 0,i=1,...,ketr+s=k.

Théoréme de Sylvester. Les entiers 7 et s (le nombre de carrés positif
et négatifs) sont indépendants du choix de la base g—orthogonale.

Le couple (r, s) s’appelle signature de la forme quadratique.

On a r + s = rang(q).

ee Démonstration.

Soit q(x) = iy aiaf — Z?:r—&-l a;z} et g(z) = f,=1 biy; — Zf:r’—l—l biy?
deux réductions en carrés, avec a; > 0 et b; > 0 dans les bases (eq, ..., e,) et

/

(€}, ..., €el,) respectivement.

Soit By = Vect(ey,...,e;) et E_ = Vect(ey, ,...,e,). Six € Ey, ona
g(z) >0saufsiz=0. Siz € E_, on aq(x) <0. Donc Ey NE_ = {0}.
Par conséquent, dim(E) + dim(E_) < dim(E), donc r +n — 1’ < n, donc
r < r'. Le méme raisonnement donne ' < r, donc r = r’. ee

En posant Z; = /a;x; on obtient la forme réduite:

q(r) = =1 @2 - E::f+1 @2

Corollaire. Deux formes quadratiques sur R sont équivalentes si et
seulement si elles ont la méme signature.

1.9. La forme quadratique ¢ est dite positive si ¢(x) > 0 pour tout
x € E (donc, si s =0).

La forme quadratique ¢ est dite définie positive si ¢(z) > 0 pour tout
2 non-nul (donc, si r = dim(FE)).



Lemme. Caractérisation “intrinseque” de la signature. r (respective-
ment, s) est égal a la dimension maximale d’un sous-espace F' tel que la
restriction de ¢ (respectivement, de —q) sur F soit définie positive.

En termes matriciels, A est positive si ‘X AX > 0 pour tout X; A est
définie positive si X AX > 0 pour tout X # 0.

Remarque: pour toute matrice C' la matrice A =¢ C'C est positive; {CC
est définie positive si et seulement si C' est inversible.

1.10. Orthogonalisation de Gauss pour les formes définie posi-
tives.

Sigy(z) = 223‘21 a;jriz; est définie positive, on a a;; > 0 pour tout
i. Donc dans 'algorithme de Gauss on rencontre uniquement le cas 1 (voir
1.7.). La matrice de changement de variables est a chaque étape triangulaire
(supérieure); la matrice de passage P vers la base orthonormale dans laquelle
q est la somme des carrés est donc triangulaire supérieure: ‘PAP = I,,. Soit

C=P 1 OnaA=tCC.

Théoréme de factorisation triangulaire (Gauss-Cholesky).
Pour toute matrice A symétrique définie positive il existe une unique
matrice C' triangulaire supérieure & diagonale positive telle que A =t CC.

1.11. Exemple: étude des extréma. Soit f(zy,...,x,) une fonction
de classe C? dans R". Soit 0 = (0,...,0) un point critique: 8%(0) = 0,
i =1,...,n. On considére le dévéloppement limité de f en 0 a I’ordre 2:

f(@) = F(0) + § X i + oll| & |[2), oit hiy = 524-(0).

La forme quadratique H(x) = >, ; hi jziz; est la forme Hessienne de f
en 0.

Proposition. (i) Si f admet un minimum local en O, H admet un
minimum en 0 et donc H est positive.

(ii) Si H admet un minimum strict en 0 et donc est définie positive, f
admet un minimum local strict en 0.



