
1. Formes bilinéaires. Formes quadratiques.
.
1.1. Définitions. Soit E un espace vectoriel sur K (K = R ou C).
Une forme bilinéaire sur E est une application ϕ : E×E → K linéaire

par rapport à chacune des deux variables.
Une forme bilinéaire ϕ est symétrique si ϕ(x, y) = ϕ(y, x) pour tout

x, y ∈ E. Si ϕ(x, y) = −ϕ(y, x) pour tous x, y ∈ E, la forme est dite
anti-symétrique (ou alternée).

Chaque forme bilinéaire s’écrit comme la somme d’une forme symétrique
et d’une forme anti-symétrique: ϕ = ϕ+ + ϕ−, où

ϕ+(x, y) = 1
2(ϕ(x, y) + ϕ(y, x)) et ϕ−(x, y) = 1

2(ϕ(x, y)− ϕ(y, x)).
.
Pour une forme bilinéaire symétrique on définit la forme quadratique

associée qϕ : E → K: qϕ(x) = ϕ(x, x).
.
La forme bilinéaire symétrique est déterminée par la forme quadratique

associée:
ϕ(x, y) =

1
4
[qϕ(x+ y)− qϕ(x− y)]

(”identité de polarisation”).
.
L’ensemble de toutes les formes bilinéaires (ou de formes symétriques,

ou anti-symétriques, ou quadratiques) est un espace vectoriel sur K: si
ϕ1, ..., ϕk sont des formes bilinéaires et a1, ...ak des scalaires, a1ϕ1+...+akϕk

est une forme bilinéaire.
.
Exemples. 1. Si f et g sont deux formes linéaires, ϕ(x, y) = f(x)g(y) est

une forme bilinéaire.
2. Soit E l’espace des matrices k × n; alors ϕ(A,B) = tr(AB) et

ϕ(A,B) = tr(tAB) sont des formes bilinéaires symétriques.
3. Soit E = C([a, b],K) l’espace des fonctions continues sur [a, b], soit

p ∈ C([a, b],K). Alors ϕ(f, g) =
∫ b
a f(t)g(t)p(t)dt est une forme bilinéaire

symétrique.
4. Le déterminant en dimension 2: ϕ(x, y) = x1y2 − x2y1 - une forme

alternée.
.
1.2. Expression en coordonnées. On suppose que dim E = n <∞.
Soit B = (e1, ..., en) une base de E, x =

∑n
1 xiei, y =

∑n
1 yiei.

Alors ϕ(x, y) =
∑n

i,j=1 xiyjϕ(ei, ej) =
∑n

i,j=1 aijxiyj où aij = ϕ(ei, ej).
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La matrice A = (aij) = (ϕ(ei, ej)) est la matrice de la forme bilinéaire
ϕ dans la base B .

La forme ϕ est symétrique si et seulement si sa matrice (dans n’importe
quelle base) est symétrique: aij = aji, ou tA = A. Si ϕ est symétrique, la
forme quadratique associée s’écrit: qϕ(x) =

∑n
i,j=1 aijxixj .

Soit X la colonne des composantes du vecteur x: tX = (x1, ..., xn). Alors
on peut écrire ϕ à l’aide de la multiplication matricielle:

ϕ(x, y) =t XAY

.
1.3. Changement de base (changement linéaire de coordonnées).
Soit B′ = (e′1, ..., e

′
n) une autre base de E, soit X ′ et Y ′ les colonnes des

coordonnées des vecteurs x et y dans la base B′.
On a X = PX ′ et Y = PY ′, où P est la matrice de passage de B à B′.

Alors ϕ(x, y) =t XAY =t X ′tPAPY ′ =t X ′A′Y ′ où

A′ =t PAP

est la matrice de la forme ϕ dans la base B′.
(Noter que si A est symétrique, A′ l’est aussi.)
Plus généralement, on peut effectuer une substitution linéaire X = CX ′

et Y = CY ′, où X ′ =t (x′1, ..., x
′
k) et C est une matrice n × k. Cela donne

une forme bilinéaire en k variables ϕ′(x′, y′) =t X ′A′Y ′ où A′ =t CAC.
Remarque: Poser X = CX ′ signifie à remplacer les variables x1, ..., xn

par des formes linéaires en x′1, ..., x
′
k.

Si on définit l’application linéaire f : Kk → Kn par f(X ′) = CX, alors
ϕ′(x′, y′) = ϕ(f(x′), f(y′)).

.
1.4. Equivalence des formes. Deux formes bilinéaires ϕ et ϕ′ définies

dans E et E′ sont dites équivalentes si il existe un isomorphisme f : E →
E′ tel que ϕ(x, y) = ϕ′(f(x), f(y)).

Si dim(E) < ∞, les formes ϕ et ψ sont équivalentes si leurs matrices A
et B sont liées par B =t PAP avec P inversible (autrement dit, si on peut
trouver deux bases dans lequelles ϕ et ψ ont la même matrice).

.
1.5. On appelle rang d’une forme bilinéaire le rang de sa matrice (il ne

dépend pas du choix de la base). On dit que la forme est non-dégénérée
si son rang est égal à la dimension de E.

Pour une forme ϕ symétrique son noyau est défini par
Ker ϕ = {x ∈ E : ∀y ∈ E,ϕ(x, y) = 0}.
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Le noyau de ϕ est le noyau de (l’application linéaire définie par) la ma-
trice de ϕ. On a: rang (ϕ) + dim (Ker ϕ) = dim (E).

Lemme. Caractérisation du noyau en termes de la forme quadratique:
x ∈ Ker (ϕ) si et seulement si qϕ(x+ y) = qϕ(y) pour tout y ∈ E.
.
1.6. Soit ϕ une forme bilinéaire symetrique. Les vecteurs x et y sont

orthogonaux si ϕ(x, y) = 0. Une base est dite orthogonale si ses vecteurs
sont deux à deux orthogonaux.

Dans une base orthogonale la forme s’écrit ϕ(x, y) =
∑n

1 aixiyi, et sa
matrice est diagonale. La forme quadratique associée devient alors une
combinaison linéaire de carrés: q(x) =

∑n
1 aix

2
i .

Le rang de ϕ (ou de q) est le nombre de coefficients ai non-nuls. Le
noyau de ϕ est engendré par les vecteurs de base ei pour lesquels ai = 0.

.
1.7. Orthogonalisation de Gauss (réduction en carrés).
L’orthogonalisation de Gauss permet de fabriquer une base orthogonale

pour la forme quadratique qϕ(x) =
∑n

i,j=1 aijxixj par des changements de
coordonnées successives.

.
Cas 1. Il existe i tel que aii 6= 0. Soit a11 6= 0 (quitte à changer la

numérotation). On écrit
qϕ(x) =

∑n
i,j=1 aijxixj =

a11(x1 + 1
a11

∑n
j=2 a1jxj)2 +

∑n
i,j=2 aijxixj − ( 1

a11

∑n
j=2 a1jxj)2

= a11y
2
1 + q1(x2, ..., xn), où y = x1 + 1

a11

∑n
j=2 a1jxj .

Ensuite il reste à diagonaliser la forme q1(x2, ..., xn) (récurrence).
Cas 2. aii = 0 pour tout i . Si a1j = 0 pour tout j, la variable x1

n’apparait pas dans la forme et la récurrence s’applique. Soit a1j 6= 0 Pour
simplifier, soit j = 2.

On écrit
qϕ(x) =

∑n
i,j=1 aijxixj = a12(x1 + 1

a12

∑n
j=3 a2jxj)(x2 + 1

a12

∑n
j=3 a1jxj)

+
∑n

i,j=3 aijxixj − 1
a12

(
∑n

j=3 a1jxj)(
∑n

j=3 a2jxj)
= a12y1y2 + q2(x3, ..., xn).
où y1 = x1 + 1

a12

∑n
j=3 a2jxj et y2 = x2 + 1

a12

∑n
j=3 a1jxj).

Ensuite on pose z1 = y1 + y2, z2 = y1 − y2 et on a y1y2 = 1
4(z2

1 − z2
2).

Après cela il reste à diagonaliser la forme q2(x3, ..., xn).
.
1.8. Equivalence des formes quadratiques.
Deux formes quadratiques sont équivalentes si les formes bilinéaires

symétriques associées sont équivalentes: q1 et q2 sont équivalentes si il existe
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un isomorphisme f : E → E tel que q2(x) = q1(f(x)). Les matrices A1 et
A2 des deux formes sont liées par A2 =t PA1P avec P inversible.

Pour une forme réduit en carrés on écrit
q(x) =

∑k
i=1 aix

2
i avec ai 6= 0, i = 1, ..., k. Donc k est le rang de q.

.
Equivalence sur C. En posant x̃i =

√
aixi on obtient la forme réduite:

q(x) =
∑k

i=1 x̃
2
i .

Corollaire. Deux formes quadratiques sur C sont équivalentes si et
seulement si elles ont le même rang.

.
Formes quadratiques sur R. Signature.
On regroupe les coefficients positifs et négatif et on écrit
q(x) =

∑r
i=1 aix

2
i −

∑r+s
i=r+1 aix

2
i avec ai > 0, i = 1, ..., k et r + s = k.

.
Théorème de Sylvester. Les entiers r et s (le nombre de carrés positif

et négatifs) sont indépendants du choix de la base q−orthogonale.
.
Le couple (r, s) s’appelle signature de la forme quadratique.
On a r + s = rang(q).
•• Démonstration.
Soit q(x) =

∑r
i=1 aix

2
i −

∑k
i=r+1 aix

2
i et q(x) =

∑r′
i=1 biy

2
i −

∑k
i=r′+1 biy

2
i

deux réductions en carrés, avec ai > 0 et bi > 0 dans les bases (e1, ..., en) et
(e′1, ..., e

′
n) respectivement.

Soit E+ = Vect(e1, ..., er) et E− = Vect(e′r′+1, ..., e
′
n). Si x ∈ E+, on a

q(x) > 0 sauf si x = 0. Si x ∈ E−, on a q(x) ≤ 0. Donc E+ ∩ E− = {0}.
Par conséquent, dim(E+) + dim(E−) ≤ dim(E), donc r + n− r′ ≤ n, donc
r ≤ r′. Le même raisonnement donne r′ ≤ r, donc r = r′. ••

En posant x̃i =
√
aixi on obtient la forme réduite:

q(x) =
∑r

i=1 x̃
2
i −

∑r+s
i=r+1 x̃

2
i .

.
Corollaire. Deux formes quadratiques sur R sont équivalentes si et

seulement si elles ont la même signature.
.
1.9. La forme quadratique q est dite positive si q(x) ≥ 0 pour tout

x ∈ E (donc, si s = 0).
La forme quadratique q est dite définie positive si q(x) > 0 pour tout

x non-nul (donc, si r = dim(E)).
.

4



Lemme. Caractérisation ”intrinseque” de la signature. r (respective-
ment, s) est égal à la dimension maximale d’un sous-espace F tel que la
restriction de q (respectivement, de −q) sur F soit définie positive.

.
En termes matriciels, A est positive si tXAX ≥ 0 pour tout X; A est

définie positive si tXAX > 0 pour tout X 6= 0.
Remarque: pour toute matrice C la matrice A =t CC est positive; tCC

est définie positive si et seulement si C est inversible.
. .
1.10. Orthogonalisation de Gauss pour les formes définie posi-

tives.
Si qϕ(x) =

∑n
i,j=1 aijxixj est définie positive, on a aii > 0 pour tout

i. Donc dans l’algorithme de Gauss on rencontre uniquement le cas 1 (voir
1.7.). La matrice de changement de variables est à chaque étape triangulaire
(supérieure); la matrice de passage P vers la base orthonormale dans laquelle
q est la somme des carrés est donc triangulaire supérieure: tPAP = In. Soit
C = P−1. On a A =t CC.

.
Théorème de factorisation triangulaire (Gauss-Cholesky).
Pour toute matrice A symétrique définie positive il existe une unique

matrice C triangulaire supérieure à diagonale positive telle que A =t CC.
.
1.11. Exemple: étude des extréma. Soit f(x1, ..., xn) une fonction

de classe C2 dans Rn. Soit 0 = (0, ..., 0) un point critique: ∂f
∂xi

(0) = 0,
i = 1, ..., n. On considère le dévéloppement limité de f en 0 à l’ordre 2:

f(x) = f(0) + 1
2

∑
i,j hi,jxixj + o(‖ x ‖2), où hij = ∂2f

∂xi∂xj
(0).

La forme quadratique H(x) =
∑

i,j hi,jxixj est la forme Hessienne de f
en 0.

Proposition. (i) Si f admet un minimum local en O, H admet un
minimum en 0 et donc H est positive.

(ii) Si H admet un minimum strict en 0 et donc est définie positive, f
admet un minimum local strict en 0.
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