1. Formes bilinéaires. Formes quadratiques.

1.1. Définitions. Soit F un espace vectoriel sur K (K = R ou C).

Une forme bilinéaire sur E est une application ¢ : £ x E — K linéaire
par rapport a chacune des deux variables.

Une forme bilinéaire ¢ est symétrique si p(z,y) = ¢(y,z) pour tout
x,y € E. Si o(x,y) = —p(y,z) pour tous z,y € E, la forme est dite
anti-symétrique (ou alternée).

Chaque forme bilinéaire s’écrit comme la somme d’une forme symétrique
et d’une forme anti-symétrique: ¢ = ¢4 + p_, ol

pr(z,y) = S(p(e,y) + 9y, 2)) et v_(2,9) = 3(p(2,9) — p(y,z)).

Pour une forme bilinéaire symétrique on définit la forme quadratique
associée q, : E — K: qy(z) = ¢(x,x).

La forme bilinéaire symétrique est déterminée par la forme quadratique
associée: p(z,y) = tau(z +y) — gp(z — y)] (Videntité de polarisation”).

Ezemples. 1. Si f et g sont deux formes linéaires, p(x,y) = f(x)g(y) est
une forme bilinéaire.

2. Si 1, ..., i sont des formes bilinéaires et a,...ar des scalaires,

a1l + ... + appr est une forme bilinéaire.

3. Soit E l'espace des matrices k x n; alors p(A, B) = tr(*AB) est une
forme bilinéaire symétrique.

4. Soit E = C([a,b], K) l'espace des fonctions continues sur [a, ], soit
p € C([a,b],K). Alors ¢(f,g9) = f;f(t)g(t)p(t)dt est une forme bilinéaire
symétrique.

1.2. Expression en coordonnées. On suppose que dim F = n < co.

Soit B = (ey, ..., ey) une base de E, x = > 1 xie;, y = Y1 Yi€i.

Alors ¢(z,y) = X721 Tiyjp(ei, e5) = 2001 aijTiy; ou aij = (e, e;).

La matrice A = (a;;) = (p(es, e;)) est la matrice de la forme bilinéaire
o dans la base B .

La forme ¢ est symétrique si et seulement si sa matrice (dans n’importe
quelle base) est symétrique: a;; = aj; ou ‘A = A. Si ¢ est symétrique, la
forme quadratique associée s’écrit: g, () = 377 aijziz;.

Soit X la colonne des composantes du vecteur z: *X = (z1, ..., x,). Alors
on peut écrire ¢ & 'aide de la multiplication matricielle: ¢(z,y) =t X AY.

1.3. Changement de base (changement linéaire de coordonnées).
Soit B’ = (€}, ..., e,) une autre base de E, soit X’ et Y’ les colonnes des

coordonnées des vecteurs x et y dans la base B'.



On a X = PX' et Y = PY’, ou P est la matrice de passage de B &
B'. Alors p(z,y) =t XAY =t X"PAPY' =t X'A’Y’ ot A’ =! PAP est la
matrice de la forme ¢ dans la base B’.

(Noter que si A est symétrique, A’ 'est aussi.)

1.4. On appelle rang d’une forme bilinéaire le rang de sa matrice (il ne
dépend pas du choix de la base). On dit que la forme est non-dégénérée
si son rang est égal a la dimension de F.

Pour une forme ¢ symétrique son noyau est défini par

Ker p={zr € E:Vy € E,p(x,y) =0}.

Le noyau de ¢ est le noyau de (I’application linéaire définie par) la ma-
trice de ¢. On a: rang (¢) + dim (Ker ¢) = dim (E).

Lemme. Caractérisation du noyau en termes de la forme quadratique:

x € Ker (¢) si et seulement si g, (z + ) = q,(y) pour tout y € E.

1.5. Equivalence des formes.

Deux formes bilinéaires ¢ et ¥ sont dites équivalentes si il existe un
isomorphisme f : E — FE tel que ¢¥(z,y) = o(f(x), f(y)).

Si dim(F) < oo, les formes ¢ et 1 sont équivalentes si leurs matrices A
et B sont liées par B =! PAP avec P inversible (autrement dit, si on peut
trouver deux bases dans lequelles ¢ et 1) ont la méme matrice).

1.6. Soit ¢ une forme bilinéaire symetrique. Les vecteurs x et y sont
orthogonaux si ¢(z,y) = 0. Une base est dite orthogonale si ses vecteurs
sont deux a deux orthogonaux.

Dans une base orthogonale la forme s’écrit p(x,y) = > 7 a;z;y;, et sa
matrice est diagonale. La forme quadratique associée devient alors une
combinaison linéaire de carrés: q(z) = 37 a;z3.

Le rang de ¢ (ou de q) est le nombre de coefficients a; non-nuls. Le
noyau de ¢ est engendré par les vecteurs de base e; pour lesquels a; = 0.

1.7. Orthogonalisation de Gauss (réduction en carrés).

L’orthogonalisation de Gauss permet de fabriquer une base orthogonale
pour la forme quadratique g,(z) = 327", aijz;z; par des changements de
coordonnées successives.

Cas 1. Soit a1; # 0. On écrit

Qo () = D20 5= Qi =

aji(zxy + % Z?:z aljxj)Q + Z?JZQ Qi TiTj — (% Z?:g a1jxj)2

_ 2 N _ 1 n
=anyi + qi(x2, ..., Ty), oWy = 71 + a7 2j=2 Q155

Ensuite il reste a diagonaliser la forme q; (2, ..., x,) (récurrence).



Cas 2. Soit a;; =0 . Soit a1; # 0 et aj; =0 (si aj; # 0, on est dans le
cas 1 avec j a la place de 1). Pour simplifier, soit j = 2.

On écrit

Gp(x) = 2oy aijaivy = ara(z1 + o= Yy agjwj) (e + 2= Y05 anja)

+ 300 g airing — o= (g avjag) (X)_g agjx;)

= apy1y2 + q2(x3, ..., Tp).

Ensuite on pose z1 = y1 +y2, 22 =y1 —y2 et on a y1y2 = %(z% — z%)

Apres cela il reste a diagonaliser la forme ga(z3, ..., Tp).

1.8. Equivalence des formes quadratiques.

Deux formes quadratiques sont équivalentes si les formes bilinéaires
symétriques associées sont équivalentes; en d’autres termes, g et go sont
équivalentes si il existe un isomorphisme f : E — E tel que g2(x) = ¢1(f(x)).

Pour une forme réduit en carrés on écrit

q(x) = Zle a;x? avec a; #0,i = 1,...,k. Donc k est le rang de q.

Equivalence sur C. En posant Z; = y/a;x; on obtient la forme réduite:

ka2
q(x) = >y T -

Corollaire. Deux formes quadratiques sur C sont équivalentes si et
seulement si elles ont le méme rang.

Formes quadratiques sur R. Signature.

On regroupe les coefficients positifs et négatif et on écrit

2 + 2 -
q(z) = Yi_y aiw; — 33100 ayf avec a; > 0,0 =1,.., k.

Théoréme de Sylvester. Les entiers r et s (le nombre de carrés positif
et négatifs) sont indépendants du choix de la base g—orthogonale.

Le couple (r, s) s’appelle signature de la forme quadratique.

On a r + s = rang(q).

En posant #; = \/a;x; on obtient la forme réduite: q(z) = S _; 77 —
St

Corollaire. Deux formes quadratiques sur R sont équivalentes si et
seulement si elles ont la méme signature.

Lemme. Caractérisation "intrinseque” de la signature. r (respective-
ment, s) est égal a la dimension maximale d’un sous-espace F' tel que la
restriction de ¢ (respectivement, de —q) sur F' soit définie positive.

1.9. La forme quadratique ¢ est dite positive si ¢(z) > 0 pour tout
x € E (donc, si s =0).

La forme quadratique ¢ est dite définie positive si g(x) > 0 pour tout
2 non-nul (donc, si r = dim(FE)).



En termes matriciels, A est positive si ‘X AX > 0 pour tout X; A est
définie positive si ‘X AX > 0 pour tout X # 0.

Remarque: pour toute matrice C' la matrice A =¢ C'C est positive; {CC
est définie positive si et seulement si C' est inversible.

Ezxemple: étude des extréma. Soit f(z1,...,z,) une fonction de classe C?
dans R™. Soit 0 = (0,...,0) un point critique: %(0) =0,i=1,...,n. On
considere le dévéloppement limité de f en 0 a l'ordre 2:

f(x) = f(0) + § X5 j hijwizs + o] @ ||?), ot hij = %(0)-

La forme quadratique H(z) = Zi,j hi jx;x; s’appelle la forme Hessienne
de f en 0.

Proposition. (i) Si f admet un minimum local en O, H admet un
minimum en 0 et donc H est positive.

(ii) Si H admet un minimum strict en 0 et donc est définie positive, f
admet un minimum local strict en 0.

1.10. Orthogonalisation de Gauss pour les formes définie posi-
tives.

Sigp(z) = ZZj:l a;;x;x; est définie positive, on a a; > 0 pour tout
i. Donc dans 'algorithme de Gauss on rencontre uniquement le cas 1 (voir
1.7.). La matrice de changement de variables est a chaque étape triangulaire
(supérieure); la matrice de passage P vers la base orthonormale dans laquelle
q est la somme des carrés est donc triangulaire supérieure: ‘PAP = I,,. Soit
C=P'. OnaA=tCC.

Théoréme de factorisation triangulaire (Gauss-Cholesky).

Pour toute matrice A symétrique définie positive il existe une unique
matrice C' triangulaire supérieure & diagonale positive telle que A =t CC.

2. Produit scalaire. Espaces Euclidiens.

2.1. Soit F un R-espace vectoriel. Un produit scalaire sur E est une
forme bilinéaire symétrique définie positive, noté < .,. >.

La norme euclidienne associée est définie par || = ||?=< z,z >.

L’inégalité de Cauchy-Schwartz | < z,y > | <|| = ||| v | entraine
I'inégalité du triangle ||z +y [|[<|| = || + || ¥ ||-

La distance euclidienne d sur E est définie par d(z,y) =||x —y ||

Le produit scalaire est déterminé par la norme:

<zy>=z1(lz+y| — | z—y]) ("identité de polarisation”).

Ezemples: 1. Produit scalaire canonique dans R™: < z,y >= Y 7 x;y;;
la norme est donnée par le "théoreme de Pythagore™: || z ||>= 37 22



2. E=C([a,b],R), < f,g >= [0 f(t)g(t)dt.

Un R-espace vectoriel de dimension finie muni d’un produit scalaire
s’appelle espace euclidien.

2.2. Deux vecteurs x et y sont orthogonaux si < z,y >= 0.

Sous-espace orthogonale. Soit A C F; I’orthogonal de A est ’ensemble
de vecteurs de E orthogonaux a tous les vecteurs de A:

At ={reE:Vyc Aona<ux,y>=0}
Il est claire que A+ est un sous-espace vectoriel de E.

Deux sous-espaces E| et Fo sont orthogonaux si tout vecteur de E;
est orthogonal & tout vecteur de Ey (Fy C EY).

Famille orthogonale. Une famille de vecteurs de F est dite orthogo-
nale si les vecteurs de cette famille sont deux a deux orthogonaux.

Une famille de vecteurs de E est dite orthonormale si elle est orthog-
onales et tous ses vecteurs sont de norme 1.
Lemme.

Une famille orthogonale sans vecteurs nuls est libre.
Ezemple. Dans C([0, 27]) avec le produit scalaire < f, g >= L+ [27

= Jo f(t)g(t)dt
la famille (%, cos nx,sin nx)p>1 est orthonormale.

2.3. Coordonnées dans une base orthonormale.

Soit (ey,...,en) une base orthonormale, soit x = Y .| xie;, Yy = Y7 Yi€;.
Alors < z,y >= STz, |« ||>= X7 a?

1 z; ("théoreme de Pythagore”) et
T =< xT,€; >.

Coordonnées dans une base orthogonale: < x,y >= Y1 < e;,¢e; > z;y;
2__ n o 2 L <z.ei>
e IP= 20 <eisei > x; et x; = <€i,€li>'

2.4. Orthogonalisation de Gram-Schmidt.

Soit (vi,...,Vp,...) une famille libre dans E. On peut construire une
famille orthonormale ey, ..., ey, ... telle que Vect(vy,...,v;) = Vect(ey, ..., ex)
pour tout k& > 1. (Autrement dit, e, est une combinaison linéaire de
V1, eery Uk.)

Construction par récurrence:
vl . s _ k k41
On pose e; = m, €htl = Vkt1 — 21 < Ukt1,€i > € et epr = m
Corollaire. Tout espace Euclidien admet une base orthonormale. Toute
famille orthonormale peut étre complétée en une base orthonormale.
2.5. Projection orthogonale.

Soit ' C E un sous-espace de dimention finie.
Soit (eq, ..., ) une base orthonormale de F.



On définit Pr : E — E par Pp(z) = Y1 < z,e; > ;. Alors Pp est un
projecteur sur F parallelement & F-.

Corollaire. Si F est un sous-espace de dimension finie, F+ est un
supplémentaire de F: E = F @ F*, somme directe orthogonale. On a aussi
(FHt =F.

Projection orthogonale dans une base quelconque.

Le vecteur y = Pp(x) est caractérisé par les conditions y € F et <
Y,z >=< x,z > pour tout vecteur z de F'.

Soit (e, ..., €,) une base de F.

Posons Pp(x) = Y 7 uje;; pour déterminer les coeeficients w; on doit
résoudre le systeme:

Tu; <ejej >=<x,e;> j=1,..,n.

La matrice de ce systeme G = (< e;,e; >) s’appelle matrice de Gram.
Si (é1,...,€n) est une base orthonormale et A = (a;5) = (< é;,e; >), alors
G =' AA. En particulier, dét G= (dét A)2.

2.6. Projection othogonale et meilleur approximation en moyenne
quadratique. Distance a un sous-espace.

Lemme. Soit F' est un sous-espace de dimension finie et x € E. Alors
la projection Pp(x) réalise la distance minimale entre z et les vecteurs de
F:|lz—Pp(z)||=min {||z— 2z ||,z € F}.

Exemple. Ajustement affine.

Soit 21 < X9 < ... < Ty et S = (x1,...,Tp).

Soit E l'espace des fonctions définies sur S a valeurs réelles.

Le produit scalaire dans E est défini par < f,g >= Y7 f(x;)g(x;);

Etant donné f, [‘ajustement affine par les moindres carrés consite a
déterminer une fonction affine ¢(z) = az + b telle que I'écart || f — ¢ ||*=
S (z5) — ¢(2:)])? soit minimal.

La réponse est donnée par la projection orthogonal sur le sous-espace
des fonctions affines. Les coefficients a et b sont les solutions du systeme
linéaire: < ¢,1 >=< f,1 >, < ¢,z >=< f,x >. Plus explicitement,

na+ (Dab =3 flay),

(C@i)a+ (Ca)b =3 xif (x:).

Ezxemple. Meilleur approximation en moyenne quadratique par des polynomes
trigonométriques.

Un polynéme trigonométrique de dégré < n est la somme p(t) = ag +
Yoieq(ag coskt + bysinkt). Soit f € C([0,27]) une fonctionn continue.
On cherche on polynome trigonométrique p de degré < n tel que I'écart

ST(f(t) — p(t))2dt soit minimal.



La réponse est donnée par la projection orthogonal dans C([0,27x]) sur
le sous-espace des polynémes trigonométriques de dégré < n; le produit
scalaire est < f,g >= f027r f(t)g(t)dt. Les coefficients du polynéme p(t) sont:
ap = o= [T f(t)dt, a, = L [57 f(t) cos(kt)dt, by, = L [T f(t)sin(kt)dt.

2.7. Inégalité de Bessel et égalité de Bessel-Parseval.

Théoréme. Soit (ey, ..., €y, ...) une famille orthonormale et = € E. Alors

(i) pour tout non a >.i = 1" < x,e; >2<|| = ||

(ii) 3570, < z,e; >2=|| z ||* si et seulement si x appartient & 'adhérence
de l'espace vectoriel engendré par la suite (eq, ..., ep, ...).

Ezemple: séries de Fourier. Avec le produit scalaire < f, g >= % 02” f(t)g(t)dt
dans C([0,27]) la famille (%,cos nt,sinnt),>1 est orthonormale; les com-
binaisons linéaires des ses fonctions - les polynémes trigonométriques - sont
denses dans C([0,27]). Soit ap = 5 2T f()dt, an, = = o7 f(t) cos(nt)dt,
by, =1 02” f(t)sin(nt)dt. On a Iégalité de Parseval:

IS dt = 203 + 724 (af + 07).

Egalité de Bessel-Parseval dans une "base” orthogonale.

Si (eq, ..., €n, ...) est une famille orthogonale et x appartient a I’adhérence
de l'espace vectoriel engendré par la suite (e, ..., ey, ...), alors

| o |P= Yo, Spex?,
3. Formes bilinéaires et endomorphismes.

3.1. Soit E un espace Euclidien et B = (ey, ..., e,) une base orthonor-
male.

Soit f € L(E), f(ej) =>;aijei et A= (ai;) la matrice de f.

On définit la forme associée: ¢r(x,y) =< x, f(y) >. La matrice de ¢y
dans la base B est: (< e;, f(ej) >) = (a;j) = A. La correspondance entre f
et ¢ est donc une bijection linéaire entre I'espace des endomorphismes et
I’espace des formes bilinéaires.

Sion écrit ¢ ¢(x,y) =< f(x),y >, alors la matrice de v; est la transposée
de A: < f(e;),ej >= aj;. 1l existe donc un unique endomorphisme f* tel
que < z, f(y) >=< f*(x),y > pour tous z,y € E.

Définition. L’endomorphisme f* tel que < z, f(y) >=< f*(x),y >
s’appelle I’adjoint de f; sa matrice dans une base orthonormale est la trans-
posée de la matrice de f.

Définition. L’endomorphisme f est dit auto-adjoint ou symétrique
si f* = f. L’endomorphisme [ est symétrique si et seulement si sa matrice
dans une base orthonormale est symétrique.



Ezemple. Une projection orthogonale est symétrique.

3.2. Propriétés de f*. L’application f — f* est linéaire; (f*)* = f,
(fo)* =g fret (f71)=(f)"

Lemme. (1) Ker f* = (Im f)* et Im f* =( Ker f)*.

(2) L’orthogonal d’un sous-espace stable par f est stable par f*.

Corollaire. Si f est symétrique, Ker f = (Im f)* et E est la somme
orthogonale de Ker f et Im f. L’orthogonal d’un sous-espace stable par f
est stable par f.

3.3. Diagonalisation des matrices symétriques.
Proposition. Soit f un endomorphisme auto-adjoint. Alors

(i) Toutes les valeurs propres de f sont réelles.

(ii) Les sous-espaces propres de f sont deux a deux orthogonaux.
(iii) f est diagonalisable dans une base orthonormale.

Caractérisation min-max des valeurs propres (Rayleigh). Soit f
un endomorphisme auto-adjoint.

On définit la fonction Q(x) = % dans F — {0}. Alors
(i) Les points critiques de ) sont précisement les vecteurs propres de f.
(ii) max {Q(z),x € E—{0}} (respectivement, min {Q(z),z € E—{0}})

est égal a la valeur propre maximale (respectivement, minimale) de f.

3.4. Un endomorphisme symétrique f est dit positif (respectivement,
défini positif) si la forme associée < x, f(y) > est positive (respectivement,
défini positive).

La proposition précédente montre que’un endomorphisme symétrique est
positif (respectivement, défini positive) si et seulement si toutes ses valeurs
propres sont positives (respectivement, stictement positives).

Une matrice symétrique A est dit positive (respectivement, défini pos-
itive) si XAX > 0 pour tout X € R" (respectivement, X AX > 0 pour
tout X non-nul).

Exemple: racine carré d’une matice positive. Soit f un endomorphisme
positif, II; le projecteur spectral associé a la valeur propre \;, i = 1,..., k.
On a f = Y NIL;. Posons g = S v/AIL;. Alors g est symétrique positif
et g> = f. On peut montrer qu'une telle racine carré positive \/f = ¢ est
unique.

3.5. Diagonalisation d’une forme quadratique dans une base
orthonormale.

Soit ¢ une forme quadratique et soit f un endomorphisme auto-adjoint
tel que g(x) =< z, f(x) >. On a vu que dans une base orthonormale ¢ et f



ont la méme matrice. Donc dans une base orthonormale de vecteurs propres
de f la matrice de g est diagonale et ¢ est une combinaison linéaire de carrés.

Proposition. 7Réduction aur azres principauzr”. Pour toute forme
quadratique q il existe une une base orthonormale dans laquelle la matrice de
q est diagonale et g est une combinaison linéaire de carrés: q(z) = 37 a;z7.
Les coeflicients a; sont les valeurs propres de ’endomorphisme auto-adjoint
f associé (q(z) =< z, f(z) >).

On peut reformuler ce résultat comme la diagonalisation simultanée de
deuz formes quadratiques: la forme g et le produit scalaire < x,z >.

4. Transformations orthogonales.

4.1. Soit E un espace Euclidien.

Un endomorphisme U de E est orthogonal (est une isométrie linéaire)
si U préserve le produit scalaire: < Uz, Uy >=< x,y > pour tout z,y € F.

Proposition. Les propriétés suivantes sont équivalentes.

(i) U est orthogonal.

(ii) U préserve la norme: || Uz ||=|| x || pour tout =z € E.

(iii) U transforme une base orthonormale en base orthonormale.

(iv) U transforme toute base orthonormale en base orthonormale.

Un endomorphisme orthogonal est injectif, donc inversible

(dim E < oo!). Son inverse est aussi orthogonal.

4.2. L’égalité < Ux, Uy >=< x,y > s’écrit aussi

< U Uzx,y >=< z,y > ce qui est équivalent & U*U = I,. Donc U est
orthogonal si et seulement si U*U = I,,, uo encore ssi U~ = U*,

Une matrice orthogonale est la matrice d’'un endomorphisme orthogo-
nal dans une base orthonormale. Une matrice orthogonale A est caractérisée
par la relation ‘AA = A'A = I, qui signifie que les colonnes de A (aussi
que ses lignes) constituent une base orthonormale par rapport au produit
scalaire canonique dans R™.

4.3. Transformations orthogonales et diagonalisation d’une forme quadra-
tique dans une base orthonormale.

Soit A la matrice d’une forme quadratique ¢ dans une base B; soit P la
matrice de passage de B & une autre base . Alors la matrice de la forme ¢
dans la base B’ est A’ =t PAP. Siles deux bases B et B’ sont orthonormales,
P est orthogonale: ‘P = P~! et on a A’ = PAP = P~'AP. Donc la
matrice d’une forme se transforme comme la matrice d’un endomorphisme
si le changement de coordonnées est orthogonal. Cela montre encore une
fois que la diagonalisation d’une forme quadratique par une transformation
orthogonale demande la recherche des valeurs et des vecteurs propres de A.



4.4. Symétrie par rapport a un sous-espace. Réflexions.

Soit F un sous-espace de E et E = F@ F* la décomposition orthog-
onale. Pour z € F on écrit © = x; + x9 avec x; € F et 9 € F+. La
symétrie sy par rapport a F' est définie par sp(z) = x1 — z2. Une symétrie
par rapport a un hyperplan s’appelle réflexion.

Proposition. Toute transformation orthogonale dans R™ s’écrit comme
un produit d’au plus n réflexions.

4.5. Réduction des endomorphismes orthogonals.

Proposition. Soit U un endomorphisme orthogonal.

(i) Si le sous-espace F est stable par U, alors F' L est stable par U.

(ii) Toute valeur propre de U est de module 1.

(iii) £ se décompose en somme orthogonale des sous-espaces stables par
U de dimension 1 ou 2.

Transformations orthogonales en petite dimension.

Dimension 1. Uz =z ou Ux = —=z.

Dimension 2. a) dét U > 0: U est une rotation.

b) dét U < 0: U est une réflexion.

Dimension 3. a) dét U > 0: U est une rotation autour d’un axe.

b) dét U < 0: U est une réflexion composée avec une rotation autour
d’un axe orthogonal au plan de réflexion.

Remarquer qu’il y a (au moins) une valeur propre réelle.

4.6. Décompositon polaire.

Théoréme. Soit f un endomorphisme inversible. 1l existe 'unique
endomorphisme orthogonal U et I'unique endomorphisme défini positif S
tels que f =US.

Construction: On pose S = +/f*f; S est défini positif. On définit U par
U = fS~! et on vérifie que U est orthogonal.

4.7. Orthogonalisation de Gram-Schmidt et la décomposition
orthogonale-triangulaire (décomposition QR).

Théoréme. Soit A une matrice inversible. Il existe I'unique matrice or-
thogonale () et 'unique matrice triangulaire supérieure R avec une diagonale
positive telles que A = QR.

Construction: Soit vy, ..., v, les colonnes de A. Par 'orthogonalisation
de Gram-Schmidt on construit une famille orthonormale dans R", eq, ..., e,
telle que e est une combinaison linéaire de v, ..., v pour tout k£ > 1. Donc
v = Zle rike; (et i > 0). Posons 7, = 0sii > k.

Soit @ la matrice constituée de colonnes ey, ..., e, et R = (r;). Alors @
est orthogonale, R est triangulaire supérieure et la relation vy = Z§:1 TikCi
devient A = QR.
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