
1. Formes bilinéaires. Formes quadratiques.
.
1.1. Définitions. Soit E un espace vectoriel sur K (K = R ou C).
Une forme bilinéaire sur E est une application ϕ : E×E → K linéaire

par rapport à chacune des deux variables.
Une forme bilinéaire ϕ est symétrique si ϕ(x, y) = ϕ(y, x) pour tout

x, y ∈ E. Si ϕ(x, y) = −ϕ(y, x) pour tous x, y ∈ E, la forme est dite
anti-symétrique (ou alternée).

Chaque forme bilinéaire s’écrit comme la somme d’une forme symétrique
et d’une forme anti-symétrique: ϕ = ϕ+ + ϕ−, où

ϕ+(x, y) = 1
2(ϕ(x, y) + ϕ(y, x)) et ϕ−(x, y) = 1

2(ϕ(x, y)− ϕ(y, x)).
Pour une forme bilinéaire symétrique on définit la forme quadratique

associée qϕ : E → K: qϕ(x) = ϕ(x, x).
La forme bilinéaire symétrique est déterminée par la forme quadratique

associée: ϕ(x, y) = 1
4 [qϕ(x+ y)− qϕ(x− y)] (”identité de polarisation”).

.
Exemples. 1. Si f et g sont deux formes linéaires, ϕ(x, y) = f(x)g(y) est

une forme bilinéaire.
2. Si ϕ1, ..., ϕk sont des formes bilinéaires et a1, ...ak des scalaires,
a1ϕ1 + ...+ akϕk est une forme bilinéaire.
3. Soit E l’espace des matrices k × n; alors ϕ(A,B) = tr(tAB) est une

forme bilinéaire symétrique.
4. Soit E = C([a, b],K) l’espace des fonctions continues sur [a, b], soit

p ∈ C([a, b],K). Alors ϕ(f, g) =
∫ b
a f(t)g(t)p(t)dt est une forme bilinéaire

symétrique.
.
1.2. Expression en coordonnées. On suppose que dim E = n <∞.
Soit B = (e1, ..., en) une base de E, x =

∑n
1 xiei, y =

∑n
1 yiei.

Alors ϕ(x, y) =
∑n

i,j=1 xiyjϕ(ei, ej) =
∑n

i,j=1 aijxiyj où aij = ϕ(ei, ej).
La matrice A = (aij) = (ϕ(ei, ej)) est la matrice de la forme bilinéaire

ϕ dans la base B .
La forme ϕ est symétrique si et seulement si sa matrice (dans n’importe

quelle base) est symétrique: aij = aji ou tA = A. Si ϕ est symétrique, la
forme quadratique associée s’écrit: qϕ(x) =

∑n
i,j=1 aijxixj .

Soit X la colonne des composantes du vecteur x: tX = (x1, ..., xn). Alors
on peut écrire ϕ à l’aide de la multiplication matricielle: ϕ(x, y) =t XAY .

.
1.3. Changement de base (changement linéaire de coordonnées).
Soit B′ = (e′1, ..., e

′
n) une autre base de E, soit X ′ et Y ′ les colonnes des

coordonnées des vecteurs x et y dans la base B′.
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On a X = PX ′ et Y = PY ′, où P est la matrice de passage de B à
B′. Alors ϕ(x, y) =t XAY =t X ′tPAPY ′ =t X ′A′Y ′ où A′ =t PAP est la
matrice de la forme ϕ dans la base B′.

(Noter que si A est symétrique, A′ l’est aussi.)
1.4. On appelle rang d’une forme bilinéaire le rang de sa matrice (il ne

dépend pas du choix de la base). On dit que la forme est non-dégénérée
si son rang est égal à la dimension de E.

Pour une forme ϕ symétrique son noyau est défini par
Ker ϕ = {x ∈ E : ∀y ∈ E,ϕ(x, y) = 0}.
Le noyau de ϕ est le noyau de (l’application linéaire définie par) la ma-

trice de ϕ. On a: rang (ϕ) + dim (Ker ϕ) = dim (E).
Lemme. Caractérisation du noyau en termes de la forme quadratique:
x ∈ Ker (ϕ) si et seulement si qϕ(x+ y) = qϕ(y) pour tout y ∈ E.
.
1.5. Equivalence des formes.
Deux formes bilinéaires ϕ et ψ sont dites équivalentes si il existe un

isomorphisme f : E → E tel que ψ(x, y) = ϕ(f(x), f(y)).
Si dim(E) < ∞, les formes ϕ et ψ sont équivalentes si leurs matrices A

et B sont liées par B =t PAP avec P inversible (autrement dit, si on peut
trouver deux bases dans lequelles ϕ et ψ ont la même matrice).

1.6. Soit ϕ une forme bilinéaire symetrique. Les vecteurs x et y sont
orthogonaux si ϕ(x, y) = 0. Une base est dite orthogonale si ses vecteurs
sont deux à deux orthogonaux.

Dans une base orthogonale la forme s’écrit ϕ(x, y) =
∑n

1 aixiyi, et sa
matrice est diagonale. La forme quadratique associée devient alors une
combinaison linéaire de carrés: q(x) =

∑n
1 aix

2
i .

Le rang de ϕ (ou de q) est le nombre de coefficients ai non-nuls. Le
noyau de ϕ est engendré par les vecteurs de base ei pour lesquels ai = 0.

.
1.7. Orthogonalisation de Gauss (réduction en carrés).
L’orthogonalisation de Gauss permet de fabriquer une base orthogonale

pour la forme quadratique qϕ(x) =
∑n

i,j=1 aijxixj par des changements de
coordonnées successives.

Cas 1. Soit a11 6= 0. On écrit
qϕ(x) =

∑n
i,j=1 aijxixj =

a11(x1 + 1
a11

∑n
j=2 a1jxj)2 +

∑n
i,j=2 aijxixj − ( 1

a11

∑n
j=2 a1jxj)2

= a11y
2
1 + q1(x2, ..., xn), où y = x1 + 1

a11

∑n
j=2 a1jxj .

Ensuite il reste à diagonaliser la forme q1(x2, ..., xn) (récurrence).

2



Cas 2. Soit a11 = 0 . Soit a1j 6= 0 et ajj = 0 (si ajj 6= 0, on est dans le
cas 1 avec j à la place de 1). Pour simplifier, soit j = 2.

On écrit
qϕ(x) =

∑n
i,j=1 aijxixj = a12(x1 + 1

a12

∑n
j=3 a2jxj)(x2 + 1

a12

∑n
j=3 a1jxj)

+
∑n

i,j=3 aijxixj − 1
a12

(
∑n

j=3 a1jxj)(
∑n

j=3 a2jxj)
= a12y1y2 + q2(x3, ..., xn).
Ensuite on pose z1 = y1 + y2, z2 = y1 − y2 et on a y1y2 = 1

4(z2
1 − z2

2).
Après cela il reste à diagonaliser la forme q2(x3, ..., xn).
.
1.8. Equivalence des formes quadratiques.
Deux formes quadratiques sont équivalentes si les formes bilinéaires

symétriques associées sont équivalentes; en d’autres termes, q1 et q2 sont
équivalentes si il existe un isomorphisme f : E → E tel que q2(x) = q1(f(x)).

Pour une forme réduit en carrés on écrit
q(x) =

∑k
i=1 aix

2
i avec ai 6= 0, i = 1, ..., k. Donc k est le rang de q.

Equivalence sur C. En posant x̃i =
√
aixi on obtient la forme réduite:

q(x) =
∑k

i=1 x̃
2
i .

Corollaire. Deux formes quadratiques sur C sont équivalentes si et
seulement si elles ont le même rang.

Formes quadratiques sur R. Signature.
On regroupe les coefficients positifs et négatif et on écrit
q(x) =

∑r
i=1 aix

2
i −

∑r+s
i=r+1 aiy

2
i avec ai > 0, i = 1, ..., k.

.
Théorème de Sylvester. Les entiers r et s (le nombre de carrés positif

et négatifs) sont indépendants du choix de la base q−orthogonale.
Le couple (r, s) s’appelle signature de la forme quadratique.
On a r + s = rang(q).
En posant x̃i =

√
aixi on obtient la forme réduite: q(x) =

∑r
i=1 x̃

2
i −∑r+s

i=r+1 x̃
2
i .

Corollaire. Deux formes quadratiques sur R sont équivalentes si et
seulement si elles ont la même signature.

Lemme. Caractérisation ”intrinseque” de la signature. r (respective-
ment, s) est égal à la dimension maximale d’un sous-espace F tel que la
restriction de q (respectivement, de −q) sur F soit définie positive.

.
1.9. La forme quadratique q est dite positive si q(x) ≥ 0 pour tout

x ∈ E (donc, si s = 0).
La forme quadratique q est dite définie positive si q(x) > 0 pour tout

x non-nul (donc, si r = dim(E)).
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En termes matriciels, A est positive si tXAX ≥ 0 pour tout X; A est
définie positive si tXAX > 0 pour tout X 6= 0.

Remarque: pour toute matrice C la matrice A =t CC est positive; tCC
est définie positive si et seulement si C est inversible.

.
Exemple: étude des extréma. Soit f(x1, ..., xn) une fonction de classe C2

dans Rn. Soit 0 = (0, ..., 0) un point critique: ∂f
∂xi

(0) = 0, i = 1, ..., n. On
considère le dévéloppement limité de f en 0 à l’ordre 2:

f(x) = f(0) + 1
2

∑
i,j hi,jxixj + o(‖ x ‖2), où hij = ∂2f

∂xi∂xj
(0).

La forme quadratique H(x) =
∑

i,j hi,jxixj s’appelle la forme Hessienne
de f en 0.

Proposition. (i) Si f admet un minimum local en O, H admet un
minimum en 0 et donc H est positive.

(ii) Si H admet un minimum strict en 0 et donc est définie positive, f
admet un minimum local strict en 0.

.
1.10. Orthogonalisation de Gauss pour les formes définie posi-

tives.
Si qϕ(x) =

∑n
i,j=1 aijxixj est définie positive, on a aii > 0 pour tout

i. Donc dans l’algorithme de Gauss on rencontre uniquement le cas 1 (voir
1.7.). La matrice de changement de variables est à chaque étape triangulaire
(supérieure); la matrice de passage P vers la base orthonormale dans laquelle
q est la somme des carrés est donc triangulaire supérieure: tPAP = In. Soit
C = P−1. On a A =t CC.

Théorème de factorisation triangulaire (Gauss-Cholesky).
Pour toute matrice A symétrique définie positive il existe une unique

matrice C triangulaire supérieure à diagonale positive telle que A =t CC.
.

2. Produit scalaire. Espaces Euclidiens.
2.1. Soit E un R-espace vectoriel. Un produit scalaire sur E est une

forme bilinéaire symétrique définie positive, noté < ., . >.
La norme euclidienne associée est définie par ‖ x ‖2=< x, x >.
L’inégalité de Cauchy-Schwartz | < x, y > | ≤‖ x ‖‖ y ‖ entraine

l’inégalité du triangle ‖ x+ y ‖≤‖ x ‖ + ‖ y ‖.
La distance euclidienne d sur E est définie par d(x, y) =‖ x− y ‖.
Le produit scalaire est déterminé par la norme:
< x, y >= 1

4(‖ x+ y ‖ − ‖ x− y ‖) (”identité de polarisation”).
Exemples: 1. Produit scalaire canonique dans Rn: < x, y >=

∑n
1 xiyi;

la norme est donnée par le ”théorème de Pythagore”: ‖ x ‖2=
∑n

1 x
2
i .
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2. E = C([a, b], R), < f, g >=
∫ b
a f(t)g(t)dt.

Un R-espace vectoriel de dimension finie muni d’un produit scalaire
s’appelle espace euclidien.

2.2. Deux vecteurs x et y sont orthogonaux si < x, y >= 0.
Sous-espace orthogonale. SoitA ⊂ E; l’orthogonal deA est l’ensemble

de vecteurs de E orthogonaux à tous les vecteurs de A:
A⊥ = {x ∈ E : ∀y ∈ A on a < x, y >= 0}.
Il est claire que A⊥ est un sous-espace vectoriel de E.
Deux sous-espaces E1 et E2 sont orthogonaux si tout vecteur de E1

est orthogonal à tout vecteur de E2 (E2 ⊂ E⊥1 ).
Famille orthogonale. Une famille de vecteurs de E est dite orthogo-

nale si les vecteurs de cette famille sont deux à deux orthogonaux.
Une famille de vecteurs de E est dite orthonormale si elle est orthog-

onales et tous ses vecteurs sont de norme 1.
Lemme. Une famille orthogonale sans vecteurs nuls est libre.
Exemple. Dans C([0, 2π]) avec le produit scalaire< f, g >= 1

π

∫ 2π
0 f(t)g(t)dt

la famille ( 1√
2
, cosnx, sinnx)n≥1 est orthonormale.

.
2.3. Coordonnées dans une base orthonormale.
Soit (e1, ..., en) une base orthonormale, soit x =

∑n
1 xiei, y =

∑n
1 yiei.

Alors < x, y >=
∑n

1 xiyi, ‖ x ‖2=
∑n

1 x
2
i (”théorème de Pythagore”) et

xi =< x, ei >.
Coordonnées dans une base orthogonale: < x, y >=

∑n
1 < ei, ei > xiyi

, ‖ x ‖2=
∑n

1 < ei, ei > x2
i et xi = <x,ei>

<ei,ei>
.

.
2.4. Orthogonalisation de Gram-Schmidt.
Soit (v1, ..., vn, ...) une famille libre dans E. On peut construire une

famille orthonormale e1, ..., en, ... telle que V ect(v1, ..., vk) = V ect(e1, ..., ek)
pour tout k ≥ 1. (Autrement dit, ek est une combinaison linéaire de
v1, ..., vk.)

Construction par récurrence:
On pose e1 = v1

‖vi‖ ; ẽk+1 = vk+1 −
∑k

1 < vk+1, ei > ei et ek+1 = ẽk+1

‖ẽk+1‖ .
Corollaire. Tout espace Euclidien admet une base orthonormale. Toute

famille orthonormale peut être complétée en une base orthonormale.
.
2.5. Projection orthogonale.
Soit F ⊂ E un sous-espace de dimention finie.
Soit (e1, ..., en) une base orthonormale de F .
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On définit PF : E → E par PF (x) =
∑n

1 < x, ei > ei. Alors PF est un
projecteur sur F parallèlement à F⊥.

Corollaire. Si F est un sous-espace de dimension finie, F⊥ est un
supplémentaire de F : E = F

⊕
F⊥, somme directe orthogonale. On a aussi

(F⊥)⊥ = F .
Projection orthogonale dans une base quelconque.
Le vecteur y = PF (x) est caractérisé par les conditions y ∈ F et <

y, z >=< x, z > pour tout vecteur z de F .
Soit (e1, ..., en) une base de F .
Posons PF (x) =

∑n
1 uiei; pour déterminer les coeeficients ui on doit

résoudre le système:∑n
1 ui < ei, ej >=< x, ej >, j = 1, ..., n.

La matrice de ce système G = (< ei, ej >) s’appelle matrice de Gram.
Si (ẽ1, ..., ẽn) est une base orthonormale et A = (aij) = (< ẽi, ej >), alors
G =t AA. En particulier, dét G= (dét A)2.

.
2.6. Projection othogonale et meilleur approximation en moyenne

quadratique. Distance à un sous-espace.
Lemme. Soit F est un sous-espace de dimension finie et x ∈ E. Alors

la projection PF (x) réalise la distance minimale entre x et les vecteurs de
F : ‖ x− PF (x) ‖ = min {‖ x− z ‖, z ∈ F}.

Exemple. Ajustement affine.
Soit x1 < x2 < ... < xn et S = (x1, ..., xn).
Soit E l’espace des fonctions définies sur S à valeurs réelles.
Le produit scalaire dans E est défini par < f, g >=

∑n
1 f(xi)g(xi);

Etant donné f , l’ajustement affine par les moindres carrés consite à
déterminer une fonction affine φ(x) = ax + b telle que l’écart ‖ f − φ ‖2=∑n

1 [f(xi)− φ(xi)]2 soit minimal.
La réponse est donnée par la projection orthogonal sur le sous-espace

des fonctions affines. Les coefficients a et b sont les solutions du système
linéaire: < φ, 1 >=< f, 1 >, < φ, x >=< f, x >. Plus explicitement,

na+ (
∑
xi)b =

∑
f(xi),

(
∑
xi)a+ (

∑
x2

i )b =
∑
xif(xi).

Exemple. Meilleur approximation en moyenne quadratique par des polynômes
trigonométriques.

Un polynôme trigonométrique de dégré ≤ n est la somme p(t) = a0 +∑n
i=1(ak cos kt + bk sin kt). Soit f ∈ C([0, 2π]) une fonctionn continue.

On cherche on polynôme trigonométrique p de degré ≤ n tel que l’écart∫ 2π
0 (f(t)− p(t))2dt soit minimal.
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La réponse est donnée par la projection orthogonal dans C([0, 2π]) sur
le sous-espace des polynômes trigonométriques de dégré ≤ n; le produit
scalaire est < f, g >=

∫ 2π
0 f(t)g(t)dt. Les coefficients du polynôme p(t) sont:

a0 = 1
2π

∫ 2π
0 f(t)dt, ak = 1

π

∫ 2π
0 f(t) cos(kt)dt, bk = 1

π

∫ 2π
0 f(t) sin(kt)dt.

.
2.7. Inégalité de Bessel et égalité de Bessel-Parseval.
Théorème. Soit (e1, ..., en, ...) une famille orthonormale et x ∈ E. Alors
(i) pour tout n on a

∑
i = 1n < x, ei >

2≤‖ x ‖2.
(ii)

∑∞
i=1 < x, ei >

2=‖ x ‖2 si et seulement si x appartient à l’adhérence
de l’espace vectoriel engendré par la suite (e1, ..., en, ...).

Exemple: séries de Fourier. Avec le produit scalaire< f, g >= 1
π

∫ 2π
0 f(t)g(t)dt

dans C([0, 2π]) la famille ( 1√
2
, cosnt, sinnt)n≥1 est orthonormale; les com-

binaisons linéaires des ses fonctions - les polynômes trigonométriques - sont
denses dans C([0, 2π]). Soit a0 = 1

2π

∫ 2π
0 f(t)dt, an = 1

π

∫ 2π
0 f(t) cos(nt)dt,

bn = 1
π

∫ 2π
0 f(t) sin(nt)dt. On a l’égalité de Parseval:

1
π

∫ 2π
0 f(t)2dt = 2a2

0 +
∑∞

n=1(a
2
n + b2n).

.
Egalité de Bessel-Parseval dans une ”base” orthogonale.
Si (e1, ..., en, ...) est une famille orthogonale et x appartient à l’adhérence

de l’espace vectoriel engendré par la suite (e1, ..., en, ...), alors
‖ x ‖2=

∑∞
i=1

<x,ei>
2

<ei,ei>
.

.
3. Formes bilinéaires et endomorphismes.

3.1. Soit E un espace Euclidien et B = (e1, ..., en) une base orthonor-
male.

Soit f ∈ L(E), f(ej) =
∑

i ai,jei et A = (aij) la matrice de f .
On définit la forme associée: ϕf (x, y) =< x, f(y) >. La matrice de ϕf

dans la base B est: (< ei, f(ej) >) = (aij) = A. La correspondance entre f
et ϕf est donc une bijection linéaire entre l’espace des endomorphismes et
l’espace des formes bilinéaires.

Si on écrit ψf (x, y) =< f(x), y >, alors la matrice de ψf est la transposée
de A: < f(ei), ej >= aji. Il existe donc un unique endomorphisme f∗ tel
que < x, f(y) >=< f∗(x), y > pour tous x, y ∈ E.

Définition. L’endomorphisme f∗ tel que < x, f(y) >=< f∗(x), y >
s’appelle l’adjoint de f ; sa matrice dans une base orthonormale est la trans-
posée de la matrice de f .

Définition. L’endomorphisme f est dit auto-adjoint ou symétrique
si f∗ = f . L’endomorphisme f est symétrique si et seulement si sa matrice
dans une base orthonormale est symétrique.
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Exemple. Une projection orthogonale est symétrique.
3.2. Propriétés de f∗. L’application f → f∗ est linéaire; (f∗)∗ = f ,

(fg)∗ = g∗f∗ et (f−1)∗ = (f∗)−1.
Lemme. (1) Ker f∗ = (Im f)⊥ et Im f∗ =( Ker f)⊥.
(2) L’orthogonal d’un sous-espace stable par f est stable par f∗.
Corollaire. Si f est symétrique, Ker f = (Im f)⊥ et E est la somme

orthogonale de Ker f et Im f . L’orthogonal d’un sous-espace stable par f
est stable par f .

.
3.3. Diagonalisation des matrices symétriques.
Proposition. Soit f un endomorphisme auto-adjoint. Alors
(i) Toutes les valeurs propres de f sont réelles.
(ii) Les sous-espaces propres de f sont deux à deux orthogonaux.
(iii) f est diagonalisable dans une base orthonormale.
.
Caractérisation min-max des valeurs propres (Rayleigh). Soit f

un endomorphisme auto-adjoint.
On définit la fonction Q(x) = <x,f(x)>

<x,x> dans E − {0}. Alors
(i) Les points critiques de Q sont précisement les vecteurs propres de f .
(ii) max {Q(x), x ∈ E−{0}} (respectivement, min {Q(x), x ∈ E−{0}})

est égal à la valeur propre maximale (respectivement, minimale) de f .
.
3.4. Un endomorphisme symétrique f est dit positif (respectivement,

défini positif) si la forme associée < x, f(y) > est positive (respectivement,
défini positive).

La proposition précédente montre que’un endomorphisme symétrique est
positif (respectivement, défini positive) si et seulement si toutes ses valeurs
propres sont positives (respectivement, stictement positives).

Une matrice symétrique A est dit positive (respectivement, défini pos-
itive) si tXAX ≥ 0 pour tout X ∈ Rn (respectivement, tXAX > 0 pour
tout X non-nul).

Exemple: racine carré d’une matice positive. Soit f un endomorphisme
positif, Πi le projecteur spectral associé à la valeur propre λi, i = 1, ..., k.
On a f =

∑
λiΠi. Posons g =

∑√
λiΠi. Alors g est symétrique positif

et g2 = f . On peut montrer qu’une telle racine carré positive
√
f = g est

unique.
3.5. Diagonalisation d’une forme quadratique dans une base

orthonormale.
Soit q une forme quadratique et soit f un endomorphisme auto-adjoint

tel que q(x) =< x, f(x) >. On a vu que dans une base orthonormale q et f
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ont la même matrice. Donc dans une base orthonormale de vecteurs propres
de f la matrice de q est diagonale et q est une combinaison linéaire de carrés.

Proposition. ”Réduction aux axes principaux”. Pour toute forme
quadratique q il existe une une base orthonormale dans laquelle la matrice de
q est diagonale et q est une combinaison linéaire de carrés: q(x) =

∑n
1 aix

2
i .

Les coefficients ai sont les valeurs propres de l’endomorphisme auto-adjoint
f associé (q(x) =< x, f(x) >).

On peut reformuler ce résultat comme la diagonalisation simultanée de
deux formes quadratiques: la forme q et le produit scalaire < x, x >.

.
4. Transformations orthogonales.

4.1. Soit E un espace Euclidien.
Un endomorphisme U de E est orthogonal (est une isométrie linéaire)

si U préserve le produit scalaire: < Ux,Uy >=< x, y > pour tout x, y ∈ E.
Proposition. Les propriétés suivantes sont équivalentes.
(i) U est orthogonal.
(ii) U préserve la norme: ‖ Ux ‖=‖ x ‖ pour tout x ∈ E.
(iii) U transforme une base orthonormale en base orthonormale.
(iv) U transforme toute base orthonormale en base orthonormale.
Un endomorphisme orthogonal est injectif, donc inversible
(dim E <∞!). Son inverse est aussi orthogonal.
4.2. L’égalité < Ux,Uy >=< x, y > s’écrit aussi
< U∗Ux, y >=< x, y > ce qui est équivalent à U∗U = In. Donc U est

orthogonal si et seulement si U∗U = In, uo encore ssi U−1 = U∗.
Une matrice orthogonale est la matrice d’un endomorphisme orthogo-

nal dans une base orthonormale. Une matrice orthogonale A est caractérisée
par la relation tAA = AtA = In qui signifie que les colonnes de A (aussi
que ses lignes) constituent une base orthonormale par rapport au produit
scalaire canonique dans Rn.

.
4.3. Transformations orthogonales et diagonalisation d’une forme quadra-

tique dans une base orthonormale.
Soit A la matrice d’une forme quadratique q dans une base B; soit P la

matrice de passage de B à une autre base B′. Alors la matrice de la forme q
dans la base B′ est A′ =t PAP . Si les deux bases B et B′ sont orthonormales,
P est orthogonale: tP = P−1 et on a A′ =t PAP = P−1AP . Donc la
matrice d’une forme se transforme comme la matrice d’un endomorphisme
si le changement de coordonnées est orthogonal. Cela montre encore une
fois que la diagonalisation d’une forme quadratique par une transformation
orthogonale demande la recherche des valeurs et des vecteurs propres de A.
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4.4. Symétrie par rapport à un sous-espace. Réflexions.
Soit F un sous-espace de E et E = F

⊕
F⊥ la décomposition orthog-

onale. Pour x ∈ E on écrit x = x1 + x2 avec x1 ∈ F et x2 ∈ F⊥. La
symétrie sF par rapport à F est définie par sF (x) = x1−x2. Une symétrie
par rapport à un hyperplan s’appelle réflexion.

Proposition. Toute transformation orthogonale dans Rn s’écrit comme
un produit d’au plus n réflexions.

4.5. Réduction des endomorphismes orthogonals.
Proposition. Soit U un endomorphisme orthogonal.
(i) Si le sous-espace F est stable par U , alors F⊥ est stable par U .
(ii) Toute valeur propre de U est de module 1.
(iii) E se décompose en somme orthogonale des sous-espaces stables par

U de dimension 1 ou 2.
Transformations orthogonales en petite dimension.
Dimension 1. Ux = x ou Ux = −x.
Dimension 2. a) dét U > 0: U est une rotation.
b) dét U < 0: U est une réflexion.
Dimension 3. a) dét U > 0: U est une rotation autour d’un axe.
b) dét U < 0: U est une réflexion composée avec une rotation autour

d’un axe orthogonal au plan de réflexion.
Remarquer qu’il y a (au moins) une valeur propre réelle.
4.6. Décompositon polaire.
Théorème. Soit f un endomorphisme inversible. Il existe l’unique

endomorphisme orthogonal U et l’unique endomorphisme défini positif S
tels que f = US.

Construction: On pose S =
√
f∗f ; S est défini positif. On définit U par

U = fS−1 et on vérifie que U est orthogonal.
4.7. Orthogonalisation de Gram-Schmidt et la décomposition

orthogonale-triangulaire (décomposition QR).
Théorème. Soit A une matrice inversible. Il existe l’unique matrice or-

thogonale Q et l’unique matrice triangulaire supérieure R avec une diagonale
positive telles que A = QR.

Construction: Soit v1, ..., vn les colonnes de A. Par l’orthogonalisation
de Gram-Schmidt on construit une famille orthonormale dans Rn, e1, ..., en
telle que ek est une combinaison linéaire de v1, ..., vk pour tout k ≥ 1. Donc
vk =

∑k
i=1 rikei (et rk,k > 0). Posons rik = 0 si i > k.

Soit Q la matrice constituée de colonnes e1, ..., en et R = (rik). Alors Q
est orthogonale, R est triangulaire supérieure et la relation vk =

∑k
i=1 rikei

devient A = QR.
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