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Feuille d’exercices no 5
Séries numériques, intégrales généralisées

Exercice 1. (Séries à termes positifs et critères de comparaison)
Etudier la nature de la série de terme général un dans les différents cas suivants :

(a) ∀n ∈ N, un = e−
√
n

(b) ∀n ∈ N∗, un = n!
nn

(c) ∀n ∈ N∗, un = 1
n1+ 1

n

(d) ∀n ∈ N∗, un =
√
n ln

(
1 + 1

n2

)
(e) ∀n ∈ N∗, un =

(
1− 1

n2

)n
(f) ∀n ∈ N, un = cos

(
πn2

2n2 + 3n+ 1

)

Exercice 2.
Etudier, selon la valeur des paramètres a et b strictement positifs, la nature de la série de terme général

un = an 2
√
n

bn + 2
√
n
.

Exercice 3. (Convergence absolue et critères de comparaison)
Montrer que la série de terme général un converge absolument dans les différents cas suivants :

(a) ∀n ∈ N, un = cos(n)e−n

(b) ∀n ∈ N∗, un = 1
n

(−1
2

)n (c) ∀n ∈ N∗, un = 1 + 2 sin(2n)
n6/5

(d) ∀n ∈ N∗, un = sin
(
π
√
n4 + 1

)
.

Exercice 4.
Montrer la convergence et calculer la valeur des intégrales suivantes :

(a) I1 =
∫ +∞

0
e−at dt, a > 0

(b) I2 =
∫ +∞

−∞

dt

t2 + 1

(c) I3 =
∫ +∞

ln 2

1 + et

e2t − 2et + 1 dt

(d) I4 =
∫ +∞

1

1
t
√
t2 + 1

dt

Exercice 5. (Intégrales généralisées de fonctions positives et critères de comparaison)
Etudier la nature des intégrales suivantes :

(a)
∫ +∞

0

t2

1 + t4
dt

(b)
∫ π

4

0

1√
tan t

dt

(c)
∫ +∞

0
tαe−tdt, α ∈ R

(d)
∫ +∞

0

sh t
tα

dt, α ∈ R

(e)
∫ +∞

0

(t+ 1)1/4 − t1/4

t1/3 dt

(f)
∫ 3π

2

0

t

esin t − 1dt

Exercice 6. (Intégrales de Bertrand)

Soit a et b deux paramètres réels. Discuter selon leurs valeurs la convergence de
∫ +∞

2

1
ta(ln t)bdt.

On pourra :
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1. Lorsque a = 1, calculer explicitement
∫ A

2

1
t(ln t)bdt pour A réel destiné à tendre vers +∞.

2. Lorsque a 6= 1, utiliser les fonctions de référence mentionnées en cours et le critère de comparaison
des intégrales de fonctions positives.

Exercice 7. (Intégrales absolument convergentes)
Montrer que les intégrales suivantes sont absolument convergentes :

(a)
∫ +∞

1

cos t
tα

dt, α > 1

(b)
∫ +∞

1

sin t
tα

dt, α > 1

(c)
∫ 1

0
sin
(1
t

)
dt

(d)
∫ +∞

0

(cos t)(
√
te−2t)

(1 + t)
√
|1− t|

dt

Exercice 8. (Fonction Gamma d’Euler)

On considère la fonction Γ : x 7−→
∫ +∞

0
tx−1e−tdt.

1. Donner le domaine de définition de Γ.
2. Montrer que ∀x ∈]0,+∞[, Γ(x+ 1) = xΓ(x).
3. En déduire la valeur de Γ(n) pour n ∈ N∗.

Exercice 9. (Des erreurs à ne pas commettre)
1. Donner un exemple de fonction continue f : R+ → R+ telle que

lim
x→+∞

f(x) = 0 et
∫ +∞

0
f(x)dx diverge.

2. Donner un exemple de fonction continue f : R+ → R+ telle que f ne tende pas vers 0 à l’infini
mais dont l’intégrale

∫ +∞

0
f(x)dx converge.

Exercice 10. (Comparaison série-intégrale)
1. Soit f : R+ → R+ une fonction continue et décroissante.

(a) Montrer que pour tout n ∈ N,

f(n+ 1) ≤
∫ n+1

n
f(x)dx ≤ f(n).

(b) En déduire que pour tout N ∈ N∗,

∫ N+1

1
f(x)dx ≤

N∑
n=1

f(n) ≤
∫ N

0
f(x)dx.

(c) En déduire que la série
∑
f(n) est de même nature que l’intégrale

∫ +∞

0
f(x)dx.

On peut obtenir un encadrement similaire et la même conclusion dans le cas où f est croissante
sur R+.

2. Exemples.

(a) Etudier la nature de la série
∑ 1
n lnn .

(b) Montrer l’équivalent :
n∑
k=1

√
k ∼
n→+∞

2
3n
√
n.
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Exercice 11. (Une autre comparaison série-intégrale)
Pour tout n ∈ N, on note

un =
∫ (n+1)π

nπ

1
1 + x4 sin2 x

dx, vn =
∫ π

0

1
1 + (nπ)4 sin2 x

dx.

1. Montrer que pour tout n ∈ N, vn = 2
∫ π/2

0

1
1 + (nπ)4 sin2 x

dx.

2. En utilisant le changement de variable t = tan x, calculer vn pour tout n ∈ N.
3. Montrer que pour tout n ∈ N, vn+1 ≤ un ≤ vn.
4. En déduire un équivalent de un quand n→ +∞, puis la nature de la série

∑
un.

5. En déduire la nature de l’intégrale
∫ +∞

0

1
1 + x4 sin2 x

dx.

Exercice 12.
Soit f : R+ → R une fonction de classe C1. On suppose que les intégrales

∫ +∞

0
|f(x)|dx et

∫ +∞

0
(f ′(x))2dx

convergent.

1. Montrer pour tout x ≥ 1 l’identité :

f(x) =
∫ x

x−1
f(t) dt+

∫ x

x−1
(t− x+ 1)f ′(t) dt.

2. Montrer pour tout x ≥ 1 la majoration :

|f(x)| ≤
∫ x

x−1
|f(t)| dt+ 1√

3

(∫ x

x−1
(f ′(t))2 dt

)1/2
.

3. Conclure que f(x) tend vers 0 quand x tend vers +∞.
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