
Equations différentielles linéaires aux coefficients constants.
Système de n équations d’ordre 1.

dx
dt

= Ax

où x(t) ∈ Kn, A ∈ Mn(K), K = R ou C. Une solution est une fonction
ϕ : I → Kn définie sur un intervalle I et vérifiant d

dtϕ(t) = Aϕ(t).
Propriétés générales.
1.1. L’ensemble des solutions est un espace vectoriel surK (conséquence

de la linéarité de l’équation). [On verra que sa dimension est n.]
1.2. Si ϕ(t) est une solution et c ∈ R, alors ϕ(t + c) l’est aussi

(conséquence du fait que A est à coefficients constants).
1.3. Complexification. Soit A une matrice réelle et z(t) une solution

complèxe: z′ = Az, (z(t) ∈ Cn). Alors la partie réelle x(t) = Re(z(t)) et la
partie imaginaire y(t) = Im(z(t)) de la solution complèxe sont des solutions
réelles.

Il est donc utile de chercher dès le début des solutions complèxes.
1.4. Chaque vecteur propre v de A, Av = λv, engendre une solution

”exponentielle”: ϕ(t) = eλtv. Si A est diagonalisable, une base de vecteurs
propres donne n solutions de x′ = Ax linéairement indépendentes (et toute
autre solution sera leur combinaison linéaire).

1.5. Changement de base. Par un changement linéaire des variables,
x = Py, le système différentiel x′ = Ax est transformé en y′ = By avec
B = P−1AP . Pour simplifier le système on cherche à réduire la matrice A
à une forme ”simple”.

Si A est diagonalisable, B = diag(λ1, ..., λn), le système y′ = By est
scindé (séparation des variables complète): y′1 = λ1y1, ... , y′n = λ1yn.
Toutes ses solutions sont donnés par y1(t) = c1e

λ1t, ... , yn(t) = cne
λnt. [Ici

ci = yi(0).]
Si A n’est par diagonalisable, on peut la ramener à la forme de Jordan

(sur C); dans ce cas le système se décompose en sous-systèmes indépendants
dans chaque bloc de Jordan (séparation des variables partielle).

Dans un bloc de Jordan de dimension k on a le système
y′1 = λy1, y′2 = λy2 + y1,..., y′k = λyk + yk−1.
La solution générale est y1(t) = c1e

λt, y2(t) = (c1t+ c2)eλt, ... ,
yk(t) = (c1tk−1 + c2t

k−2 + ...+ ck)eλt. [Ici ci = yi(0).]
.
Conclusion: pour tout y0 ∈ Cn il existe une solution unique y(t) définie

sur R vérifiant la condition initiale y(0) = y0. En revenant au système
x′ = Ax, on a :
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1.6. Théorème d’existence et d’unicité. Pour tout x0 ∈ Kn il
existe une solution unique x(t) définie sur R à valeurs dans Kn vérifiant la
condition initiale x(0) = x0.

.
1.7. Corollaire. L’espace vectroriel S des solutions de l’équation x′ =

Ax définies sur R est de dimension n. Pour tout t0 ∈ R l’application S → Kn

qui à une solution ϕ fait correspondre sa valeur ϕ(t0) est un isomorphisme.
Les conditions suivantes sont équivalentes:

1) (ϕ1 ,..., ϕn) est une base de S;
2) Pour un t0, (ϕ1(t0) ,..., ϕn(t0)) est une base de Kn;
3) Pour tout t, (ϕ1(t) ,..., ϕn(t)) est une base de Kn.
.
1.8. Structure des solutions. En réduisant la matrice A à la forme

de Jordan, on déduit que toute composante d’une solution complexe est une
combinaison linéaire de fonctions tpeλt, où λ est une valeur propre de A et
p < lλ; ici où lλ est la dimension maximal des blocs de Jordan associés à λ
(qui est égale à la multiplicité de λ dans le polynôme minimal de A).

Toute composante d’une solution réelle est donc une une combinaison
linéaire de termes tpeλt (pour les valeurs propres λ réelles) et tpeαt cos(βt)
et tpeαt sin(βt)), ( pour les valeurs propres λ complèxes, où λ = α+ iβ), et
p < lλ.

.
1.9. Proposition. Comportement asymptotique des solutions. Les

propriétés suivantes sont équivalentes:
1) Pour toute solution ϕ on a ϕ(t) → 0 quand t→∞.
2) Toutes les valeurs propres de A ont une partie réelle strictement

négative.
Equation scalaire d’ordre n.

dn

dtn
x+ an−1

dn−1

dtn−1
x+ ...+ a1

d

dt
x+ a0x = 0(∗)

A l’équation (*) on peut associer un système différentiel équivalent d’ordre
1 en introduisant de nouvelles inconnues: x1 = x, x2 = x′, xn = x(n−1). Le
système s’écrit x′1 = x2, ..., x′n−1 = xn, x

′
n = −(a0x1 + ... + an−1xn), donc

x′ = Ax où x = (x, x′, x′′, ..., x(n−1)) et A est la matrice compagnon:
ai,i+1 = 1, an,j = −aj−1 et les autres éléments de A sont nuls.
.
On sait que le polynôme caractéristique de A est
pA(z) = (−1)n(zn + an−1z

n−1 + ...+ a1z + a0),
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et on sait que le polynôme minimal est égal (au signe près) au polynôme
caractéristique; donc pour chaque valeur propre il y a un seul bloc de Jordan
(les espaces propres sont tous de dimension 1). On en déduit:

.
1.10. Proposition. Soit pA(z) = (−1)n(z − λ1)m1 ...(z − λk)mk . Les

fonctions tpjeλjt, où j = 1, ..., k et 0 ≤ pj < mj forment une base (complèxe)
des solutions de l’équation (*).

Toute solution s’écrit donc comme
∑k

1 qj(t)e
λjt, où qj(t) sont des polynômes,

deg(qj) < mj .
Si les coefficients a0, ..., an−1 sont réels, une base des solutions reélles est

donnée par les fonctions tpjeλjt (pour les λj réelles) et tpjeαjt cos(βjt) et
tpjeαjt sin(βjt)) (pour les λj complèxes, où λj = αj + iβj) et 0 ≤ pj < mj .

.
En vu de ce résultat, on n’a pas besoin de passer par la matrice, mais

on peut traiter l’équation (*) directement:
1.11. Lemme. λ est une racine du polynôme caractéristique
p(z) = zn + an−1z

n−1 + ... + a1z + a0 de multiplicité m si et seulement
si les ”monômes” eλt, teλt,..., tm−1eλt vérifient l’équation différentielle (*).

•• Démonstration. Faisons dans l’équation (*) la substitution suivante :
x(t) = u(t)eλt. On a d

dt(ue
λt) = ( d

dtu+ λu)eλt = ( d
dt + λ)ueλt.

Donc l’équation (*) devient
( d

dt + λ)nu+ an−1( d
dt + λ)n−1u+ ...+ a1( d

dt + λ)u+ a0u = 0 (**)
ou, si on développe,
u(n) + bn−1u

(n−1) + ...+ b0u = 0.
Pour le polynôme caractéristique p̃(z) = zn + bn−1z

n−1 + ...+ b1z+ b0 de
(**) on a p̃(z) = p(z + λ) (facile à vérifier). Donc λ est une racine de p(z)
de multiplicité m si et seulement si 0 est une racine de p̃(z) de multiplicité
m, ce qui veut dire que b0 = 0, ... bm−1 = 0.

L’équation (**) devient u(n) + bn−1u
(n−1) + ... + bmu

(m) = 0 et admet
donc des solutions 1, t, ..., tm−1. Reciproquement, si (**) admet des solutions
1, t, ..., tm−1, alors b0 = 0, ... bm−1 = 0 et 0 est une racine de p̃(z) de
multiplicité m. ••

Démarche à suivre: pour résoudre l’équation scalaire (*) avec la con-
dition initiale x(0) = c1, x′(0) = c2, ..., x(n−1)(0) = cn il faut

1) résoudre l’équation caractérfistique zn + an−1z
n−1 + ...+ a1z+ a0 = 0

qui se déduit directement de l’équation différentielle (sans passer par la
matrice);

2) écrire la solution comme une combinaison linéaire des solutions de
base explicitées dans la Proposition 1.10 avec des coefficients indéterminés et
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calculer les coefficients afin de satisfaire les conditions initiales (cela revient
à résoudre un système d’équations linéaires).

.
Exponentielle d’une matrice.

.
2.1. Proposition. Soit A ∈Mn(C). La série

eA =
∞∑
0

An

n!

converge (absolument). La somme de la série

etA =
∞∑
0

tn

n!
An

est dérivable par rapport à t et

d

dt
etA = AetA

2.2. Corollaire Pour v ∈ Kn la solution ϕv de l’équation x′ = Ax
vérifiant la condition initiale ϕv(0) = v est donnée par ϕv(t) = etAv.

.
2.3. Proposition.
1) etA est l’unique solution de l’équation différentielle matricielle d

dU(t) =
AU(t) vérifiant la condition initiale U(0) = Id.

2) Changement de base: eP
−1AP = P−1eAP .

.
Cas diagonalisable: si A = diag(λ1, ..., λn), eA = diag(eλ1 , ..., eλn).
Donc pour calculler l’exponentielle il faut passer à une base adaptée.
.
2.4. Lemme. Si AB +BA, on a eA+B = eAeB.
En pârticulier, eA est inversible et (eA)−1 = e−A.
On a donc e(t+s)A = etAesA: la famille {etA} est un ”groupe à un

paramètre”. En particulier, etA est inversible et (etA)−1 = e−tA.
.
2.5. Cas général. Soit A = D +N la décomposition de Dunford (ou

de Jordan) et N l+1 = 0. Alors

etA = etD+tN = etD(I + tN + t2N 2/2! + ...+ tlN l/l!)
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Utilisation des projecteurs spectraux. Rappeleons que D =
∑k

i=1 λiΠi,
où Πi est le projecteur spectral sur le sous-espace caractéristique associé à
λi, et N = A−D. Alors

etD =
k∑

i=1

eλitΠi

On en déduit la structure des éléments de etA en tant que fonctions de t.
Remarque. Les colonnes de etA sont les solutions du système x′ = Ax

vérifiants les conditions initiales particulières: sa j-ème colonne ψj vérifie
ψj(0) = ej , le j-ème vecteur canonique.

En fait, etA contient autant d’information que n’importe quelle base des
solutions:

2.6. Lemme. Soit (ϕ1, ..., ϕn) une base des solutions de l’équation
x′ = Ax. Soit Φ(t) la matrice dont les colonnes sont (ϕ1, ..., ϕn). Alors
etA = Φ(t)Φ(0)−1.

.
2.7. Lemme. a) Soit (λ1, ..., λn) les valeurs propres de A. Alors

(eλ1 , ..., eλn) sont les valeurs propres de eA.
b) det(eA) = etr(A).
(La démonstration se fait par la trigonalisation.)
.
Exemple en dimension 2.
Soit le polynôme caractéristique pA(z) = z2 + az + b.
Cas 1: racines simples λ 6= µ. Alors
Πλ = 1

λ−µ(A− µI) et Πµ = 1
µ−λ(A− λI). Ensuite

eA = eλΠλ + eµΠµ = 1
λ−µ [(eλ − eµ)A− (µeλ − λeµ)I.

.
Cas particulier: a = 0, alors µ = −λ et on a
eA = 1

2λ(eλ − e−λ)A+ 1
2(eλ + e−λ)I.

Oscillations harmoniques: si a = 0 et en plus b > 0, alors λ est imagi-
naire, λ = iω, et eA = 1

ω sinωA+ cosωI. De même,
etA = 1

ω sin(ωt)A+ cos(ωt)I.
.
Cas 2: racine double λ. Alors A = λI+N où N est nilpotente: N2 = 0.
On a eA = eλ(I +N).
.
L’exponentielle et la méthode d’Euler.
.
2.8. Proposition. eA = limn→∞(I +A/n)n.
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Système non homogène: méthode de la variation des constantes.
On considère l’équation non-homogène:

dx
dt

(t) = Ax(t) + b(t)

.
2.9.”Principe de superposition”: a) Soit x′ = Ax + b1 et y′ = Ay + b2.

Alors z(t) = x(t) + y(t) vérifie z′ = Az + (b1 + b2).
b) Toute solution de l’equation non-homogène x′ = Ax + b(t) est la

somme d’une solution particulière et d’une solution de l’équation homogène
y′ = Ay.

On cherche la solution x(t) sous la forme x(t) = etAy(t). On obtient
pour y(t) l’équation y′(t) = e−tAb(t), d’où la

2.10. Formule de Duhamel:

x(t) = etAx(0) +
∫ t

0
e(t−s)Ab(s)ds

Dans cette formule x(t) est la somme de deux termes: u(t) =
∫ t
0 e

(t−s)Ab(s)ds
est la solution particulière de l’équation x′ = Ax+ b(t) vérifiant la condition
initiale u(0) = 0 et v(t) = etAx(0) est la solution de l’équation homogène
vérifiant la condition initiale v(0) = x(0).

2.11. Corollaire: l’existence et l’unicité. Soit b : I → Kn une
fonction continue définie sur un intervalle I. Pour tout x0 ∈ Kn il existe
une solution unique x(t) de l’équation dx

dt (t) = Ax(t) + b(t) définie sur I à
valeurs dans Kn vérifiant la condition initiale x(0) = x0.

.
Equation linéaire non homogène d’ordre n

On considère l’équation

dn

dtn
x+ an−1

dn−1

dtn−1
x+ ...+ a1

d

dt
x+ a0x = f(t)(∗)

2.12. Réduction d’ordre.
Cherchons la solution sous la forme x(t) = u(t)eλt. Notre équation

devient
[u(n) + bn−1u

(n−1) + ...+ b1u
′ + b0u]eλt = f(t)

(Voir la démonstration du Lemme 1.11 .)
Soit λ une racine de l’équation caractéristique
zn + an−1z

n−1 + ...+ a1z + a0 = 0. Alors b0 = 0.
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Posons y(t) = u′(t); il reste à résoudre l’équation d’ordre n− 1:

y(n−1) + bn−1y
(n−2)...+ b1y = e−λtf(t)

En itérant cette procédure de réduction d’ordre on arrive à la fin à l’equation
de la forme v′(t) = g(t).

.
Remarque. On vérifie facilement que le polynôme caractéristique
p̃(z) = zn + bn−1z

n−1 + ...+ b1z+ b0 est lieé au polynôme caractéristique
p(z) = zn + an−1z

n−1 + ... + a1z + a0 par p̃(z) = p(z + λ). (Voir Lemme
1.11.)

.
Exemple d’ordre 2: x′′+ ax′+ bx = f(t). Soit λ une racine de l’équation

caractéristique: λ2 + aλ+ b = 0. On pose x(t) = eλtu(t), ce qui donne
u′′ + (2λ+ a)u′ = e−λtf(t), ou y′ + ρy = e−λtf(t); ici ρ = 2λ+ a.
Soit y(t) = e−ρtv(t), alors v′(t) = e(ρ−λ)tf(t). Noter que ρ−λ = λ+a =

−µ, où µ et la deuxième racine de l’équation caractéristique. Donc on a
v′(t) = e−µtf(t) et on trouve v(t) par intégration.

.
2.13. Utilisation de la formule de Duhamel.
A l’équation (*) on peut associer un système différentiel équivalent d’ordre

1 en introduisant de nouvelles inconnues: x1 = x, x2 = x′, xn = x(n−1). Le
système s’écrit x′1 = x2, ..., x′n−1 = xn, x

′
n = −(a0x1 + ...+ an−1xn) + f(t)),

donc x′ = Ax + b(t) où x =t (x, x′, x′′, ..., x(n−1)), b(t) =t (0, ..., 0, f(t) et A
est la matrice compagnon: ai,i+1 = 1, an,j = −aj−1 et les autres éléments
de A sont nuls.

On va écrire etA en supposant que l’équation caractéristique à n racines
distinctes λ1, ..., λn. Alors eλ1t , ... , eλnt est une base des solutions de
l’équation (*). A partir de cette base on peut fabriquer une solution fonda-
mentale Φ(t) de l’équation U ′ = AU : Φ(t)ij = (eλit)(j−1) = λj−1

i eλit. Par
conséquent, etA = Φ(t)Φ−1(0). [Noter que Φ(0)ij = λj−1

i .]
Ensuite on utilise la formule de Duhamel: pour la première composante

x(t) du solution vectorielle x(t) on a x(t) =
∑

j(e
tA)1jcj+

∫ t
0(e(t−s)A)1nf(s)ds.

(c1, ...cn) est le vecteur des conditions initiales: x(0) = c1, ... ,xn−1(0) = cn.
.
”Quasipolynômes”
Souvant le second membre f(t) dans l’équation (*) est de la forme q(t)eµt,

où q(t) est un polynôme en t:

x(n) + an−1x
(n−1) + ...+ a1x

′ + a0x = q(t)eµt
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Proposition 2.14. Soit q(t) un polynôme de degré k. Si µ n’est pas
une racine de l’équation caractéristique, il existe une solution particulière
(complèxe) de la forme u(t) = r(t)eµt, où r(t) est un polynôme de degré k.
Si µ est une racine de l’équation caractéristique de multiplicité m, il existe
une solution particulière de la forme u(t) = r(t)eµt où r(t) est un polynôme
de degré k +m.

.
Remarque: Pour déterminer le polynôme r(t) il suffit de mettre u(t) =

r(t)eµt dans l’équation.
.
•• Démonstration: on procède par récurrence sur le degré de l’équation.

Soit λ une racine du polynôme caractéristique p(z) = zn + an−1z
n−1 + ...+

a1z + a0.
Cherchons la solution sous la forme x(t) = u(t)eλt; posons y(t) = u′(t).

Notre équation devient

y(n−1) + bn−1y
(n−2)...+ b1y = q(t)e(µ−λ)t

Par l’hypothèse de récurrence, il existe une solution de la forme
y(t) = s(t)e(µ−λ)t, où le degré de s(t) est k + l et l est la multiplicité de

(µ− λ) en tant que racine du polynôme
zn−1 + bn−1z

n−2 + ...+ b1 = (zn + bn−1z
n−1 + ...+ b1z)/z = p̃(z)/z.

.
On sait que p̃(z) = p(z + λ). (Voir Lemme 1.11.) Il y a deux cas:
a) µ− λ = 0. Vu que u′(t) = s(t), l’intégration donne
u(t) =

∫
s(t)dt = r(t) où r(t) est un polynôme de degré k + l + 1. On a

x(t) = r(t)eµ.
Mais la multiplicité l de 0 = µ− λ dans p̃(z)/z = p(z + λ)/z est égale à

m− 1 (ici m est la multiplicité de µ dans p(z)) et donc k + l + 1 = k +m.
.
b) µ − λ 6= 0. Vu que u′(t) = s(t)e(µ−λ)t, l’intégration donne u(t) =∫

s(t)e(µ−λ)tdt = r(t)e(µ−λ)t où r(t) est un polynôme de degré k + l. On a
x(t) = r(t)eµ. Mais la multiplicité l de µ − λ dans p(z + λ)/z est la même
que la multiplicité de µ dans p(z): l = m. ••
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