Equations différentielles linéaires aux coefficients constants.
Systéme de n équations d’ordre 1.

dx

pri Ax
oux(t) € K", A € Mp(K), K =R ou C. Une solution est une fonction
¢ : I — K™ définie sur un intervalle I et vérifiant %o (t) = Ap(t).

Propriétés générales.

1.1. L’ensemble des solutions est un espace vectoriel sur K (conséquence
de la linéarité de ’équation). [On verra que sa dimension est n.]

1.2.  Si ¢(t) est une solution et ¢ € R, alors ¢(t + ¢) lest aussi
(conséquence du fait que A est a coefficients constants).

1.3.  Complezification. Soit A une matrice réelle et z(t) une solution
compléze: 7' = Az, (z(t) € C"). Alors la partie réelle x(t) = Re(z(t)) et la
partie imaginaire y(t) = Im(z(t)) de la solution compleéxe sont des solutions
réelles.

Il est donc utile de chercher des le début des solutions complexes.

1.4. Chaque vecteur propre v de A, Av = A\v, engendre une solution
”exponentielle”: ¢(t) = eMv. Si A est diagonalisable, une base de vecteurs
propres donne n solutions de 2’ = Ax linéairement indépendentes (et toute
autre solution sera leur combinaison linéaire).

1.5. Changement de base. Par un changement linéaire des variables,
x = Py, le systéme différentiel 2/ = Ax est transformé en ¢y = By avec
B = P7'AP. Pour simplifier le systéme on cherche & réduire la matrice A
a une forme ”simple”.

Si A est diagonalisable, B = diag(\1, ..., \n), le systéme ' = By est

scindé (séparation des variables complete): yi = Ay1, .. , Y, = AMUn.
Toutes ses solutions sont donnés par y1(t) = c1eM?, ... | yn(t) = cpe*t. [Ici
ci = ¥i(0).]

Si A n’est par diagonalisable, on peut la ramener a la forme de Jordan
(sur C); dans ce cas le systéme se décompose en sous-systemes indépendants
dans chaque bloc de Jordan (séparation des variables partielle).

Dans un bloc de Jordan de dimension k on a le systeme

Y1 = A1, Yo = Ay2 + Y1seee, Y = MYk + U1

La solution générale est y1(t) = c1e™, ya(t) = (c1t + c2)eM, ...,

yr(t) = (c1tP 1+ coth =2 + L+ cp)e. [Ici ¢ = 33(0).]

Conclusion: pour tout yo € C" il existe une solution unique y(t) définie
sur R vérifiant la condition initiale y(0) = yo. En revenant au systéme
7' = Az, on a :



1.6. Théoreme d’existence et d’unicité. Pour tout zy € K™ il
existe une solution unique x(¢) définie sur R a valeurs dans K" vérifiant la
condition initiale z(0) = xo.

1.7. Corollaire. L’espace vectroriel S des solutions de I’équation =’ =
Ax définies sur R est de dimension n. Pour tout tg € R I'application S — K™
qui & une solution ¢ fait correspondre sa valeur () est un isomorphisme.
Les conditions suivantes sont équivalentes:

1) (©1 yeery n) est une base de S;

2) Pour un tg, (¢1(to) ,---, ©n(to)) est une base de K™;

3) Pour tout ¢, (¢1(t) ..., pn(t)) est une base de K".

1.8. Structure des solutions. En réduisant la matrice A a la forme
de Jordan, on déduit que toute composante d’une solution complexe est une
combinaison linéaire de fonctions tPe, ot A est une valeur propre de A et
p < ly; ici ou Iy est la dimension maximal des blocs de Jordan associés a A
(qui est égale a la multiplicité de A dans le polynéme minimal de A).

Toute composante d’une solution réelle est donc une une combinaison
linéaire de termes tPe’ (pour les valeurs propres A réelles) et tPe® cos(ft)
et tPe“ sin(At)), ( pour les valeurs propres A compleéxes, ot A = a + i3), et
p < ly.

1.9. Proposition. Comportement asymptotique des solutions. Les
propriétés suivantes sont équivalentes:
1) Pour toute solution ¢ on a ¢(t) — 0 quand ¢ — oo.
2) Toutes les valeurs propres de A ont une partie réelle strictement
négative.
Equation scalaire d’ordre n.
d" dn1 d
dt—n$ + an,lwm + .o+ alax + apgx = 0(*)
A T’équation (*) on peut associer un systeme différentiel équivalent d’ordre
1 en introduisant de nouvelles inconnues: z1 = z, T2 = 2', z,, = 2D Le

systeme s'écrit ) = x9, ..., ), = Tp, ), = —(apr1 + ... + ap_12,), donc
x' = Ax o x = (z, 2/, 2", ..., 2" 1) et A est la matrice compagnon:
a;i41 = 1, an; = —aj_1 et les autres éléments de A sont nuls.

On sait que le polynéme caractéristique de A est
pa(2) = (=1)"(2" + ap-12""t + ... + a12 + ayp),



et on sait que le polynéme minimal est égal (au signe prés) au polynéme
caractéristique; donc pour chaque valeur propre il y a un seul bloc de Jordan
(les espaces propres sont tous de dimension 1). On en déduit:

1.10. Proposition. Soit pa(z) = (—=1)"(z — A\1)™...(z — A\x)™. Les
fonctions tPieit ot j = 1,...,k et 0 < p; < m; forment une base (compleéxe)
des solutions de ’équation (*).

Toute solution s’écrit donc comme 3% g;(t)et
deg(qj) < m;.

Si les coefficients ag, ..., a,—1 sont réels, une base des solutions reélles est
donnée par les fonctions tPieM! (pour les \; réelles) et tPie®i’ cos(f3;t) et
tPie%i' sin(B;t)) (pour les A; complexes, out \j = aj +if3;) et 0 < p; < m;.

¢ ot ¢j(t) sont des polynomes,

En vu de ce résultat, on n’a pas besoin de passer par la matrice, mais
on peut traiter I’équation (*) directement:

1.11. Lemme. ) est une racine du polynome caractéristique

p(2) = 2" + a,_12"" 1 + ... + a1z + ag de multiplicité m si et seulement
si les "monomes” e, teM ..., tm e vérifient I'équation différentielle (*).

ee Démonstration. Faisons dans I’équation (*) la substitution suivante :
z(t) = u(t)e. On a %(ue”) = (%u + Au)eM = (% + Nuer.

Donc ’équation (*) devient

(% + A)"u + an,1($ + A" w4+ al(% + Nu+ apu =0 (**)

ou, si on développe,

uw™ 4+ b,_qu™ D £ 4 bou = 0.

Pour le polynome caractéristique p(z) = 2" +b,_12" 1+ ...+ b1z + by de
(**) on a p(z) = p(z + A) (facile a vérifier). Donc A est une racine de p(z)
de multiplicité m si et seulement si 0 est une racine de p(z) de multiplicité
m, ce qui veut dire que bg =0, ... by—1 = 0.

L’équation (**) devient w™ 4+ b, u™ D 4 bu™ = 0 et admet
donc des solutions 1,¢, ...,t™~ 1. Reciproquement, si (**) admet des solutions
1,t,..,t™ 1 alors by = 0, ... by, 1 = 0 et 0 est une racine de p(z) de
multiplicité m. ee

Démarche a suivre: pour résoudre I’équation scalaire (*) avec la con-
dition initiale 2(0) = ¢1, 2/(0) = ca, ..., ™~ D(0) = ¢, il faut

1) résoudre 1’équation caractérfistique 2" + 12"+ ... +arz+ap=0
qui se déduit directement de I’équation différentielle (sans passer par la
matrice);

2) écrire la solution comme une combinaison linéaire des solutions de
base explicitées dans la Proposition 1.10 avec des coefficients indéterminés et



calculer les coefficients afin de satisfaire les conditions initiales (cela revient
a résoudre un systeme d’équations linéaires).

Exponentielle d’une matrice.

2.1. Proposition. Soit A € M,(C). La série

o0 An
€A:ZH

0

converge (absolument). La somme de la série
X 4n
tA n
et=» —A

est dérivable par rapport a t et

d
aetA — AetA

2.2. Corollaire Pour v € K" la solution ¢, de I'équation 2/ = Az

vérifiant la condition initiale ¢, (0) = v est donnée par ¢, (t) = et4v.

2.3. Proposition.

1) e*4 est 'unique solution de ’équation différentielle matricielle %U (t) =
AU (t) vérifiant la condition initiale U(0) = Id.

2) Changement de base: ePTIAP — p-leAp,

Cas diagonalisable: si A = diag(\i, ..., \n), et = diag(eM, ..., e ).
Donc pour calculler 'exponentielle il faut passer a une base adaptée.

2.4. Lemme. Si AB + BA, on a e85 = 4B,
En particulier, e? est inversible et (e4)™1 = e=4.
On a donc elt+9)4 = etAesA: g famille {4} est un ”groupe & un

parametre”. En particulier, e/ est inversible et (et4)™! = ¢4,

2.5. Cas général. Soit A =D + N la décomposition de Dunford (ou
de Jordan) et N1 = 0. Alors

et = e PHN = !PT 4 (N + PN2 /2! + .+ NI



Utilisation des projecteurs spectraux. Rappeleons que D = Zle NI,
ou II; est le projecteur spectral sur le sous-espace caractéristique associé a

i, et N = A —D. Alors

k
et'D — Z ez\itHi
=1

On en déduit la structure des éléments de €' en tant que fonctions de ¢.

Remarque. Les colonnes de e sont les solutions du systeme 2/ = Az
vérifiants les conditions initiales particulieres: sa j-eme colonne v; vérifie
1;(0) = ej, le j-eme vecteur canonique.

En fait, e contient autant d’information que n’importe quelle base des
solutions:

2.6. Lemme. Soit (¢1,...,¢,) une base des solutions de ’équation
' = Azx. Soit ®(t) la matrice dont les colonnes sont (1, ..., ). Alors
et = o(t)@(0)~ L.

2.7. Lemme. a) Soit (A1,...,A\,) les valeurs propres de A. Alors

(€M, ...,e ) sont les valeurs propres de el

b) det(e?) = e,
(La démonstration se fait par la trigonalisation.)

Exemple en dimension 2.

Soit le polynome caractéristique pa(z) = 2% + az + b.
Cas 1: racines simples A # p. Alors

I\ = 51 (A — pul) et T, = 15 (A — A). Ensuite
e = Ml + e, = )\%LL[(@A —eM)A — (per — XeM)I.

Cas particulier: a = 0, alors p = —A et on a

e = F(er—eMNA+ LM +e M

Oscillations harmoniques: si a = 0 et en plus b > 0, alors A est imagi-
naire, \ = iw, et e = %sinwA + coswl. De méme,

et = Lsin(wt)A + cos(wt)1.

Cas 2: racine double \. Alors A = A\l + N ou N est nilpotente: N2 = 0.

On a et = eMI+ N).

L’exponentielle et la méthode d’Euler.

2.8. Proposition. e? = lim,, ... (I + A/n)™



Systéme non homogeéne: méthode de la variation des constantes.
On considere I’équation non-homogene:

d—x(t) = Ax(t) + b(t)
dt

2.9.”Principe de superposition”: a) Soit ©’ = Az + by et vy = Ay + bs.
Alors z(t) = z(t) + y(t) vérifie 2/ = Az + (by + ba).

b) Toute solution de l’equation non-homogéne x' = Ax + b(t) est la
somme d’une solution particuliere et d’une solution de I’équation homogeéne
y = Ay.

On cherche la solution z(t) sous la forme z(t) = e!4y(t). On obtient
pour y(t) Péquation ¢/ (t) = e t4b(t), d’oti la

2.10. Formule de Duhamel:

z(t) = ez te(t_s)A s)ds
(t) = () + [ ep(s)a

Dans cette formule z(t) est la somme de deux termes: u(t) = [y e®=*)4b(s)ds
est la solution particuliere de I’équation &’ = Ax + b(t) vérifiant la condition
initiale u(0) = 0 et v(t) = e!4z(0) est la solution de I’équation homogene
vérifiant la condition initiale v(0) = x(0).

2.11. Corollaire: l’existence et 'unicité. Soit b : I — K™ une
fonction continue définie sur un intervalle I. Pour tout xzy € K™ il existe
une solution unique z(t) de I'équation 9 (¢) = Ax(t) + b(t) définie sur I &
valeurs dans K" vérifiant la condition initiale z(0) = xo.

Equation linéaire non homogeéne d’ordre n
On considere I’équation

dn dn—l
%m + an_ldtn 7L+ ..+ aldtx +agxr = f(t)()
2.12. Réduction d’ordre.
Cherchons la solution sous la forme z(t) = wu(t)e*. Notre équation
devient

(W™ + by 1w 4+ 4 by + bouleM = f(t)

(Voir la démonstration du Lemme 1.11 .)
Soit A une racine de 1’équation caractéristique
2" 4 ap 12" 4+ ..+ aiz+ag =0. Alors by = 0.



Posons y(t) = «/(t); il reste & résoudre I’équation d’ordre n — 1:
gy by 1y by = e MF(D)

En itérant cette procédure de réduction d’ordre on arrive a la fin a I’equation
de la forme v'(t) = g(t).

Remarque. On vérifie facilement que le polynéme caractéristique

P(2) = 2"+ b, 12"+ ..+ b1z + by est lieé au polyndme caractéristique
p(2) = 2"+ ap_12" 1+ ... + a1z + ap par p(z) = p(z + A). (Voir Lemme
1.11.)

Ezemple d’ordre 2: ¥ + azx’ +bx = f(t). Soit A une racine de 1’équation
caractéristique: A2 4 aX + b= 0. On pose z(t) = eMu(t), ce qui donne

u”" 4+ A+ a)u’ = e Mf(t), ouy + py = e Mf(t); ici p =2\ + a.

Soit y(t) = e~Ptu(t), alors v/(t) = PNt f(t). Noter que p—A = A +a =
—u, ou u et la deuxieme racine de I’équation caractéristique. Donc on a
v'(t) = e M f(t) et on trouve v(t) par intégration.

2.13. Utilisation de la formule de Duhamel.
A Péquation (*) on peut associer un systeme différentiel équivalent d’ordre
1 en introduisant de nouvelles inconnues: 1 = z, o = 2/, x, = 2" 1. Le

systéme s’écrit &) = x9, ..., )| = Xy, , = —(apx1 + ... + an—12,) + f(t)),
donc x' = Ax 4 b(t) on x =t (z, 2/, 2", ...,z D), b(t) =t (0,...,0, f(t) et A
est la matrice compagnon: a;;+1 = 1, an; = —a;—1 et les autres éléments

de A sont nuls.

On va écrire €' en supposant que I’équation caractéristique a n racines
distinctes Ai,...,A\p. Alors et | .. | ! est une base des solutions de
’équation (*). A partir de cette base on peut fabriquer une solution fonda-
mentale ®(t) de 'équation U’ = AU: ®(t);; = ()01 = A Tlehit Par
conséquent, e/t = ®(¢)®71(0). [Noter que ®(0);; = )\f_l.]

Ensuite on utilise la formule de Duhamel: pour la premiere composante
x(t) du solution vectorielle x(t) on a z(t) = Zj(etA)1jcj—i—f(f(e(t*s)A)lnf(s)ds.
(c1,...cn) est le vecteur des conditions initiales: z(0) = c1, ... ,z" 1(0) = ¢,.

tA

”Quasipolynomes”
Souvant le second membre f(t) dans 'équation (*) est de la forme g(t)et,
ou ¢(t) est un polynome en ¢:

™ 4+, 12D 4+ ayr + apr = q(t)et



Proposition 2.14. Soit ¢(¢) un polynéme de degré k. Si p n’est pas
une racine de I’équation caractéristique, il existe une solution particuliere
(complexe) de la forme u(t) = r(t)e”t, ou 7(t) est un polynéme de degré k.
Si p est une racine de I’équation caractéristique de multiplicité m, il existe
une solution particuliere de la forme u(t) = r(t)ett olt r(¢) est un polynome
de degré k + m.

Remarque: Pour déterminer le polynome r(¢) il suffit de mettre u(t) =
r(t)ett dans I'équation.

ee Démonstration: on procede par récurrence sur le degré de 1’équation.
Soit A une racine du polynéme caractéristique p(z) = 2" + ap_12" 1 + ... +
a1z + ag.

Cherchons la solution sous la forme z(t) = u(t)e; posons y(t) = u'(t).
Notre équation devient

Yy b,y "D 4 by = q(t)e V!

Par 'hypothese de récurrence, il existe une solution de la forme

y(t) = s(t)e=Nt ot le degré de s(t) est k + 1 et | est la multiplicité de
(1 — A) en tant que racine du polynéme

2 by 12" 2 by = (2 b2V L+ b12) )2 = P(2) /2.

On sait que p(z) = p(z + A). (Voir Lemme 1.11.) Il y a deux cas:
a) p— A =0. Vu que v'(t) = s(t), I'intégration donne
u(t) = [ s(t)dt = r(t) ou r(t) est un polynéme de degré k + 1+ 1. On a
x(t) = r(t)et.
Mais la multiplicité [ de 0 = u — A dans p(z)/z = p(z + \)/z est égale a
m — 1 (ici m est la multiplicité de p dans p(z)) et donc k+1+1 =k + m.

b) p— X # 0. Vu que o/(t) = s(t)e Mt Dintégration donne u(t) =
[ s(t)e=Ntdt = r(t)el=Nt o r(t) est un polynéme de degré k + 1. On a
x(t) = r(t)e*. Mais la multiplicité [ de u — A dans p(z + \)/z est la méme
que la multiplicité de p dans p(z): | = m. ee



