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Partie analyse
Exercice 1. Etudier la continuité de la fonction f : R2 → R définie pour tout (x, y) ∈ R2 par

f(x, y) =


x(1− y) si x ≤ y
y(1− x) si y > x

Soit D1 = {(x, y) ∈ R2, x > y} et D2 = {(x, y) ∈ R2, x < y}. La fonction f est clairement continue sur les

ouverts D1 et D2. De plus on a pour x0 = y0,

lim
(x,y)→(x0,y0), (x,y)∈D1

f(x, y) = lim
(x,y)→(x0,y0) (x,y)∈D2

f(x, y) = f(x0, y0) = x0(1− y0),

donc f est continue sur la droite d’équation x = y. Donc f est continue sur R2.

Exercice 2. Etudier la limite en (0, 0) des trois fonctions suivantes :

f(x, y) =
x2 ln(x2 + 1)

x2 + y2 + 1
, g(x, y) =

[ln(|xy|+ 1)]2

x2 + y2
, h(x, y) =

ln(|x− y|+ 1) + 1

x2 + y2
.

La fonction f est clairement une fonction continue sur R2, on a alors

lim
(x,y)→(0,0)

f(x, y) = f(0, 0) = 0

On a pour tout (x, y) 6= (0, 0),
[ln(|xy|+ 1)]2

x2 + y2
≤ x2y2

x2 + y2
≤ y2,

ceci car ln(t+ 1) ≤ t, pour tout t > −1. Donc

lim
(x,y)→(0,0)

g(x, y) = 0

Enfin pour la fonction h, la limite n’est pas une forme indéterminée et on a

lim
(x,y)→(0,0)

h(x, y) = +∞.

Exercice 3. Notons par C([0, 1], R) l’ensemble des fonctions continues de [0, 1] dans R. On munit C([0, 1], R) de la norme
N∞ : ∀f ∈ C([0, 1], R),

N∞(f) = sup
x∈[0,1]

|f(x)|.

Montrer que l’application Φ : f 7→ Φ(f) définie par pour tout f ∈ C([0, 1], R) et tout x ∈ [0, 1] par

[Φ(f)](x) :=

Z x

0

f(t)dt

est un endomorphisme continue de C([0, 1], R) muni de la norme N∞.

Pour toute fonction f ∈ C([0, 1],R), Φ(f) est une fonction continue sur [0, 1] car c’est l’intégrale d’une fonction

continue. Donc Φ(f) ∈ C([0, 1],R). De plus on a pour toutes fonctions f, g ∈ C([0, 1],R) et λ ∈ R, par linéarité de

l’intégrale,

Φ(f + λg) = Φ(f) + λΦ(g).
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Donc Φ est bien un endomorphisme.

De plus pour toute fonction f ∈ C([0, 1],R), on a

N∞(Φ(f)) = sup
x∈[0,1]

|
∫ x

0

f(t)dt| ≤ N∞(f),

donc Φ est continue.

Partie algèbre

Exercice 4. Soit E un K-espace vectoriel de dimension finie n ≥ 1.

Soient π1, . . . , πn des endomorphismes de E tels que pour tous i 6= j dans {1, . . . , n}, πi 6= 0, π2
i = πi et πi◦πj = 0.

Pour tout i ∈ {1, . . . , n}, on pose Ei = Im(πi).

1. Montrer que E = E1 ⊕ · · · ⊕ En. Que peut-on dire de chaque dim(Ei) ?

Montrons pour commencer que la somme des Ei est directe. Soit donc (x1, . . . , xn) ∈ E1 × · · · ×En tel que

x1 + · · ·+ xn = 0. Par définition de chaque Ei, il existe zi ∈ E tel que πi(zi) = xi.

Soit i0 ∈ {1, . . . , n}. On a alors :

0 = πi0(x1 + · · ·+ xn)

=
n∑

i=1

πi0(πi(zi))

= πi0(πi0(zi0)) (car ∀i 6= i0, πi0 ◦ πi = 0)

= πi0(zi0) (car πi0 ◦ πi0 = πi0)

= xi0 .

Ainsi, la somme des Ei est une somme directe. Par conséquent :

dim(E1 + · · ·+ En) = dim(E1) + · · ·+ dim(En).

De plus, chaque πi est non nul donc pour tout i, dim(Ei) ≥ 1, d’où dim(E1 + · · ·+En) ≥ n. Mais cet espace

est un sous-espace vectoriel de E et ce dernier est de dimension n donc : dim(E1 + · · ·+En) = dim(E). On

peut alors conclure que E =
⊕n

i=1Ei.

En ce qui concerne dim(Ei), nous avons déjà vu que dim(Ei) ≥ 1 pour tout i. Si pour l’un des i nous avions

dim(Ei) > 1 alors nous aurions
∑

dim(Ei) > n ce qui montre que pour tout i, dim(Ei) = 1.

2. Soient a1, . . . , an ∈ K et D = a1π1 + · · ·+ anπn.

Montrer que D est diagonalisable et donner son ensemble de valeurs propres.

Pour tout i entre 1 et n, soit bi un vecteur non nul de Ei (ce qui est possible car Ei 6= {0}). La somme

directe précédente implique que les bi forment une famille libre et donc une base de E. Montrons que, pour

tout i, bi est un vecteur propre de D avec pour valeur propre ai.
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Soit i0 ∈ {1, . . . , n}. Par définition de bi0 et Ei0 , il existe v ∈ E tel que bi0 = πi0(v). On a :

D(bi0) = (
n∑

i=1

aiπi)(πi0(v))

=
n∑

i=1

aiπi(πi0(v))

= ai0πi0(πi0(v))

= ai0πi0(v)

= ai0bi0 .

En conclusion, les bi forment une base de vecteurs propres de D qui est donc diagonalisable et les ai sont

les valeurs propres de D.

Exercice 5. Considérons la matrice deMn(R) suivante :

A =


n+ 1 1 · · · 1

1
. . . . . .

...
...

. . . . . . 1
1 · · · 1 n+ 1

 .

1. Déterminer, sans calculs, un scalaire α tel que rang(A− αIdn) < n.

On remarque que A − nIdn est la matrice dont tous les coefficients sont 1. Toutes ses colonnes sont donc

égales donc rang(A− αIdn) = 1 < n.

2. En utilisant la trace de A, en déterminer toutes ses valeurs propres.

Par ce qui précède et en utilisant le téorème du rang, on peut dire que n est une valeur propres de A et sa

multiplicité est supérieure ou égale à n − 1. On sait que la trace est égale à la somme des valeurs propres

comptées avec leur multiplicité. Ainsi A admet comme "autre" valeur propre (qui peut a priori être n) :

tr(A)− (n− 1)n, c’est-à-dire n(n+ 1)− n(n− 1) = 2n. Ainsi A a pour spectre {n, 2n}.

3. Déterminer le polynôme minimal de A.

Par ce qui précède, dim(En) = n − 1 et dim(E2n) ≥ 1. Ainsi dim(En ⊕ E2n) = n = dim(Rn) ce qui

signifie que A est diagonalisable. On en déduit que le polynôme minimal est scindé à racines simples et donc

mA = (X − n)(X − 2n).

4. Déterminer P,D ∈Mn(R) telles que P soit inversible et D diagonale et P−1AP = D.

On cherche une base de En et une base de E2n.

Dans la matrice A−nIdn, on a les relations suivantes entre les colonnes Ci : C1−C2 = 0, C1−C3 = 0, . . . ,

C1−Cn = 0, d’où les vecteurs suivants dans En : e1− e2, e1− e3, . . . , e1− en, où l’on a noté ei les vecteurs

de la base canonique de Rn. Ces vecteurs sont clairement libres dans En. Ils en forment donc une base.

Dans A− 2nIdn, on remarque que la somme des colonnes est nulle, donc le vecteur b = (1, . . . , 1) appartient

à E2n. Ce dernier étant de dimension 1, on en obtient la base {b}.

3



Soient alors

P =



1 1 · · · · · · 1 1
−1 0 · · · · · · 0 1

0 −1
. . .

...
...

... 0
. . . . . .

...
...

...
...

. . . . . . 0
...

0 0 · · · 0 −1 1


, D =



n 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

...
. . . n 0

0 · · · · · · 0 2n


.

Par ce qui précède, P−1AP = D.

5. Relativement à la base canonique de Rn, déterminer les matrices associées aux projecteurs spectraux de

l’endomorphisme dont A est la matrice.

Notons Πn et Π2n les matrices demandées.

On cherche une relation de Bézout entre X − n et X − 2n (connaissant le polynôme minimal de A). On a :

(X − n)− (X − 2n) = n d’où la relation suivante

1 =
1
n

(X − n) +
−1
n

(X − 2n),

d’où

Πn =
−1
n

(A− 2nIdn) et Π2n =
1
n

(A− nIdn).

6. En déduire, pour chaque k ∈ N r {0, 1}, l’existence et l’unicité d’un polynôme Qk de la forme suivante

Qk = Xk + ckX + dk, avec ck, dk ∈ R, qui annule A. On donnera ck et dk.

Soit donc k ≥ 2 un entier.

Commençons par l’existence. La matrice A est diagonalisable et A = nΠn + 2nΠ2n. Par conséquent,

Ak = nkΠn + (2n)kΠ2n

= nk · −1
n

(A− 2nIdn) + (2n)k · 1
n

(A− nIdn)

= −nk−1A+ 2nkIdn + 2knk−1A− 2knkIdn

= (2k − 1)nk−1A+ (2− 2k)nkIdn

= −(1− 2k)nk−1A− (2k − 2)nkIdn

Ainsi A est racine du polynôme

Xk + (1− 2k)nk−1X + (2k − 2)nk,

ce qui donne l’existence du polynôme demandé avec ck = (1− 2k)nk−1 et dk = (2k − 2)nk.

Montrons l’unicité. Soient Q = Xk + cX + d et R = Xk + c′X + d′ (avec c, d, c′, d′ ∈ R) deux polynômes

de la forme voulue et annulant A. Considérons le polynôme Q−R = (c− c′)X + (d− d′). Ce polynôme est

annulateur de A et son degré est au plus 1. Or mA est de degré 2 donc si Q−R est non nul, cela contredit

la définition de mA. Ainsi Q−R est nul, i.e. Q = R et l’unicité est démontrée.

7. (Question bonus) À l’aide du polynôme minimal de A mais sans utiliser les projecteurs spectraux, donner

une autre démonstration du résultat de la question 6 (y compris la détermination de ck et dk).
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Pour l’unicité, on utilise le même argument. Montrons comment obtenir l’existence sans utiliser les projec-

teurs spectraux.

Soit k ≥ 2 un entier. Considérons le polynôme suivant (qui est de degré k) :

S = Xk−2 ·mA

= Xk−2(X − n)(X − 2n)

= Xk−2(X2 − 3nX + 2n2)

= Xk − 3nXk−1 + 2n2Xk−2

Notons T = −3nXk−1 + 2n2Xk−2 de sorte que S = Xk + T . Pour obtenir le polynôme recherché, on

considère la division euclidienne de T par mA :

(∗) T = U · (X − n)(X − 2n) +R.

Par définition de la division euclidienne, R est de degré au plus 1. Il est donc de la forme R = cX + d avec

c, d ∈ R.

On évalue (∗) en X = n et en X = 2n et on obtient les équations suivantes :

−3n · nk−1 + 2n2 · nk−2 = c · n+ d et − 3n · (2n)k−1 + 2n2 · (2n)k−2 = c · 2n+ d.

Après un rapide calcul, on obtient

c · n+ d = −nk et c · 2n+ d = −2knk

En soustrayant la deuxième égalité de la première, on obtient cn = (1− 2k)nk puis c = (1− 2k)nk−1. Puis,

en utilisant ce résultat, on obtient d = −nk − cn = (2k − 2)nk.

Maintenant, posons : Q = Xk + c ·X + d.

Ce polynôme a la forme voulue. Il reste à montrer que c’est bien un annulateur de A. Or

Q = Xk +R

= Xk + T − U ·mA

= S − U ·mA

= Xk−2 ·mA − U ·mA

= (Xk−2 − U) ·mA,

donc Q est multiple de mA. Il est donc annulateur de mA ce qui achève la démonstration de l’existence.
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