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Partie commune - Correction du devoir n° 5

Partie analyse

Exercice 1. Etudier la continuité de la fonction f : R? — R définie pour tout (z,y) € R? par

z(l—y) si z<y
yl—2) si y>z

f(,y) :{

Soit D1 = {(z,y) € R?, z > y} et Dy = {(x,y) € R?, z < y}. La fonction f est clairement continue sur les

ouverts D; et Dy. De plus on a pour xp = yo,

flz,y) = lim f(z,y) = f(20,90) = 2o(1 — yo),

lim
(z,y)—(z0,y0), (2,y)€D1 (z,y)—(z0,y0) (z,y)ED2

donc f est continue sur la droite d’équation x = y. Donc f est continue sur R2.

Exercice 2. Etudier la limite en (0,0) des trois fonctions suivantes :

2?In(z® + 1)

[In(|zy| + 1)]?
2 4+y2 417

In(lz —y|+1)+1
$2+y2 :

fay) = o

g(x,y) = ’ h(xvy) =

La fonction f est clairement une fonction continue sur R2, on a alors

lim z,y) = f(0,0)=0
(Ly)ﬁ(o,o)f( y) = £(0,0)

On a pour tout (z,y) # (0,0),
Inoy + D _ a?y?
22 +y2 22ty
ceci car In(t + 1) < ¢, pour tout ¢ > —1. Donc

2
5 <Y,

lim z,y) =0
(I,y)H(O,U)g( v)

Enfin pour la fonction A, la limite n’est pas une forme indéterminée et on a
lim h(z,y) = +oo.
(z,y)—(0,0) (.9)

Exercice 3. Notons par C([0,1],R) ’ensemble des fonctions continues de [0, 1] dans R. On munit C([0, 1], R) de la norme
Nuo : Vf € C([0,1], R),
Noo(f) = sup |f(z)].

x€[0,1]
Montrer que l'application ® : f — ®(f) définie par pour tout f € C([0,1],R) et tout = € [0, 1] par

mmw=éﬂwa

est un endomorphisme continue de C([0, 1], R) muni de la norme N.

Pour toute fonction f € C([0,1],R), ®(f) est une fonction continue sur [0, 1] car c’est 'intégrale d’une fonction
continue. Donc ®(f) € C([0, 1], R). De plus on a pour toutes fonctions f,g € C([0,1],R) et A € R, par linéarité de
I’intégrale,

O(f + Ag) = ©(f) + A®(g).



Donc @ est bien un endomorphisme.

De plus pour toute fonction f € C([0,1],R), on a

Neo(®(f)) = sup | [ f(t)dt| < Noo(f),
z€l0,1] Jo

donc ® est continue.

Partie algébre

Exercice 4. Soit E un K-espace vectoriel de dimension finie n > 1.
Soient 1, ..., T, des endomorphismes de E tels que pour tous i # j dans {1,...,n}, m; # 0, 72 = m; et mom; = 0.

Pour tout i € {1,...,n}, on pose E; = Im(m;).

1. Montrer que E = E; @ -+ ® E,,. Que peut-on dire de chaque dim(FE;)?

Montrons pour commencer que la somme des E; est directe. Soit donc (z1,...,2,) € E1 X --- X E,, tel que
1 + -+ + x, = 0. Par définition de chaque E;, il existe z; € F tel que m;(z;) = ;.
Soit ig € {1,...,n}. On a alors :

0 = ﬂio(x1+"'+l’n)
= > mio(mil:))
i=1
= T (ﬂ-io (Zio)) (car Vi 7’é 10, iy © T3 = O)
= 7Ti0 (Zzo) (car 7Ti0 o] 777;0 = 7T1'0)

= Tjy-

Ainsi, la somme des F; est une somme directe. Par conséquent :
dim(E; + -+ E,) =dim(E;) + - - - + dim(E,,).

De plus, chaque 7; est non nul donc pour tout i, dim(E;) > 1, d’ou dim(F; + - - - + E,;) > n. Mais cet espace
est un sous-espace vectoriel de E et ce dernier est de dimension n donc : dim(FEy + - - - + E,,) = dim(F). On
peut alors conclure que E = @?:1 E;.

En ce qui concerne dim(E;), nous avons déja vu que dim(F;) > 1 pour tout i. Si pour I'un des ¢ nous avions

dim(E;) > 1 alors nous aurions »_ dim(E;) > n ce qui montre que pour tout ¢, dim(E;) = 1.

2. Soient ay,...,a, € Ket D =aym + -+ + anmp.

Montrer que D est diagonalisable et donner son ensemble de valeurs propres.

Pour tout ¢ entre 1 et n, soit b; un vecteur non nul de E; (ce qui est possible car F; # {0}). La somme
directe précédente implique que les b; forment une famille libre et donc une base de E. Montrons que, pour

tout 4, b; est un vecteur propre de D avec pour valeur propre a;.



Soit g € {1,...,n}. Par définition de b;, et E;,, il existe v € E tel que b;, = m;,(v). On a :

D(biy) = (D ami)(miy(v))
i=1

= Zam(%(v))

= Qi T, (Wio (U))
= Qi Ty (U)

= G, bio-

En conclusion, les b; forment une base de vecteurs propres de D qui est donc diagonalisable et les a; sont

les valeurs propres de D.

Exercice 5. Considérons la matrice de M,,(R) suivante :

n+1 1 .- 1
A= !
: . . 1
1 1 n+1

1. Déterminer, sans calculs, un scalaire « tel que rang(A — ald,) < n.

On remarque que A — nld,, est la matrice dont tous les coefficients sont 1. Toutes ses colonnes sont donc

égales donc rang(A — ald,,) =1 < n.

2. En utilisant la trace de A, en déterminer toutes ses valeurs propres.

Par ce qui précéde et en utilisant le téoréme du rang, on peut dire que n est une valeur propres de A et sa
multiplicité est supérieure ou égale & n — 1. On sait que la trace est égale a la somme des valeurs propres
comptées avec leur multiplicité. Ainsi A admet comme "autre" valeur propre (qui peut a priori étre n) :
tr(A) — (n — 1)n, c’est-a~-dire n(n 4+ 1) — n(n — 1) = 2n. Ainsi A a pour spectre {n,2n}.

3. Déterminer le polynéme minimal de A.

Par ce qui précéde, dim(E,) = n — 1 et dim(Fs,) > 1. Ainsi dim(E,, & Fs,) = n = dim(R") ce qui
signifie que A est diagonalisable. On en déduit que le polynéme minimal est scindé & racines simples et donc
ma = (X —n)(X —2n).

4. Déterminer P, D € M,,(R) telles que P soit inversible et D diagonale et P~*AP = D.

On cherche une base de E,, et une base de Es,.

Dans la matrice A —nld,,, on a les relations suivantes entre les colonnes C; : C1 —Cy =0, C1 —C3 =0, ...,
Cy —C, =0, d’ou les vecteurs suivants dans F,, : e; —eg, €1 —e3, ..., €1 —€,, ou 'on a noté e; les vecteurs
de la base canonique de R™. Ces vecteurs sont clairement libres dans FE,. Ils en forment donc une base.
Dans A — 2nld,,, on remarque que la somme des colonnes est nulle, donc le vecteur b = (1,...,1) appartient

a Es,. Ce dernier étant de dimension 1, on en obtient la base {b}.



Soient alors

11 11
1 0 0 1 n 0 0
0 -1 0
P = , D=
0
0 0 8 20
0 0 0 -1 1 K

Par ce qui précéde, P~1AP = D.

. Relativement & la base canonique de R™, déterminer les matrices associées aux projecteurs spectraux de

I’endomorphisme dont A est la matrice.

Notons II,, et Ils,, les matrices demandées.
On cherche une relation de Bézout entre X —n et X — 2n (connaissant le polynéme minimal de A). On a :
(X —n) — (X —2n) =n d’ou la relation suivante

1 -1
1=—(X— — (X -2
(X —n) + — (X —2n),

d’ou

-1 1
I, = —(A — 2nld,,) et Iz, = —(4 — nld,).
n n

. En déduire, pour chaque & € N\ {0, 1}, l'existence et l'unicité d’un polynéme Qj de la forme suivante

Qr = X* 4+ 1, X + di, avec ¢k, d, € R, qui annule A. On donnera ¢, et dj,.

Soit donc k£ > 2 un entier.

Commengons par l'existence. La matrice A est diagonalisable et A = nll,, + 2nlls,,. Par conséquent,

Ak

n*I, 4 (2n)*y,

= nr. %(A — 2nld,) + (2n)k - %(A — nld,)
= —n*1A 4 20F1d,, + 280k A — 2FRPId,,
= (2 —1)n*F A+ (2 - 2%)nF1d,

= —(1-2Mn*1a— (28 —2)nF1d,
Ainsi A est racine du polynome
X (1 —2MnPtX 4 (28 — 2)nk,

ce qui donne l'existence du polynéme demandé avec ¢ = (1 — 2°)n*~1 et d;, = (2F — 2)n*.

Montrons 1'unicité. Soient Q@ = X* +cX +d et R = X* + X +d (avec ¢,d,c/,d’ € R) deux polynémes
de la forme voulue et annulant A. Considérons le polynéme Q — R = (¢ — /)X + (d — d’). Ce polynome est
annulateur de A et son degré est au plus 1. Or m4 est de degré 2 donc si @ — R est non nul, cela contredit

la définition de m 4. Ainsi Q — R est nul, i.e. Q@ = R et 'unicité est démontrée.

. (Question bonus) A ’aide du polynéme minimal de A mais sans utiliser les projecteurs spectraux, donner

une autre démonstration du résultat de la question 6 (y compris la détermination de ¢ et dg).



Pour 'unicité, on utilise le méme argument. Montrons comment obtenir I’existence sans utiliser les projec-
teurs spectraux.

Soit k > 2 un entier. Considérons le polynome suivant (qui est de degré k) :

S = XF2Z.my,
XE=2(X —n)(X —2n)
= X" 3(X? - 3nX +2n?)
Xk —gnXxk1 4 op2 xh2

Notons T = —3nX*1 + 2n2X*=2 de sorte que S = X* + T. Pour obtenir le polynéme recherché, on

consideére la division euclidienne de T par m4 :
(x) T=U-(X—-n)(X—-2n)+R.

Par définition de la division euclidienne, R est de degré au plus 1. Il est donc de la forme R = ¢X + d avec
c,d e R.

On évalue (*) en X =n et en X = 2n et on obtient les équations suivantes :
“3n-nfFlg4om?.nf 2 =c.on+d et —3n-2n)F 422 2n)F 2 =c. 2n 4 d.
Aprés un rapide calcul, on obtient
c-n+d=—-nk et c-2n+d=—2FnF

En soustrayant la deuxiéme égalité de la premiére, on obtient cn = (1 — 2¥)n* puis ¢ = (1 — 2¥)n*~1. Puis,
en utilisant ce résultat, on obtient d = —n* — cn = (2% — 2)n*.
Maintenant, posons : Q = X* +¢- X +d.

Ce polynéme a la forme voulue. Il reste & montrer que c’est bien un annulateur de A. Or

Q = XF+R
= XF4T-U-my
= S—U-my
= Xk_g-mA—U-mA

= (X*72=U)-ma,

donc ) est multiple de m 4. Il est donc annulateur de m 4 ce qui achéve la démonstration de I’existence.



