Durée: 1h30

Cursus préparatoire, 1ère année

Partie commune - Devoir numéro 1

L'étudiant attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Il veillera à justifier soigneusement toutes ses réponses.

Les exercices sont réputés indépendants et peuvent donc être traités dans n'importe quel ordre. À l'intérieur d'un exercice, lorsqu'un étudiant ne peut répondre à une question, il lui est vivement recommandé de poursuivre en admettant le résultat qu'il lui était demandé de démontrer.

Exercice 1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite de réels définie ainsi :

on pose $u_0 = 6$, $u_1 = -2$, et pour tout $n \in \mathbb{N}$, $u_{n+2} = 3u_n + 2u_{n+1}$.

- 1. Soit, pour tout $n \in \mathbb{N}$, $X_n = \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix}$ et soit A la matrice $A = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix}$. Montrer que pour tout $n \in \mathbb{N}$, $X_{n+1} = A \cdot X_n$.
- 2. Soit $P = \begin{pmatrix} 1 & 3 \\ -1 & 1 \end{pmatrix}$. Justifier que P est inversible et calculer son inverse.
- 3. Soit $D = P^{-1} \cdot A \cdot P$. Calculer D.
- 4. Montrer que pour tout $n \in \mathbb{N}$, $A^n = P \cdot D^n \cdot P^{-1}$ puis calculer A^n .
- 5. Montrer que pour tout $n \in \mathbb{N}$, $X_n = A^n \cdot \begin{pmatrix} u_1 \\ u_0 \end{pmatrix}$.
- 6. En déduire une expression de u_n en fonction de n, pour tout $n \in \mathbb{N}$.

Exercice 2. Soit $n \ge 1$ un entier. Déterminer le degré du polynôme suivant de $\mathbb{C}[X]$: $P = (X^2 + 1)^n - 2X^{2n} + (X^2 - 1)^n$.

Exercice 3. On définit la suite de réels $(u_n)_{n\in\mathbb{N}}$ par : $u_0>0$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=u_ne^{-u_n}$.

- 1. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = xe^{-x}$. Montrer que $f(]0, +\infty[) \subset]0, +\infty[$.
- 2. Montrer que $(u_n)_{n\in\mathbb{N}}$ est décroissante.
- 3. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.
- 4. On définit la suite $(v_n)_{n\in\mathbb{N}}$ par : pour tout $n\in\mathbb{N},$ $v_n=\frac{1}{u_{n+1}}-\frac{1}{u_n}$. Montrer que $(v_n)_{n\in\mathbb{N}}$ converge vers 1.
- 5. En admettant que $\lim_{n\to+\infty}\frac{1}{n}\sum_{k=0}^{n-1}v_k=1$, montrer que $u_n\underset{n\to+\infty}{\sim}\frac{1}{n}$.

Exercice 4.

1. Soit $a \in \mathbb{R}$ et $f : [a, +\infty[\to \mathbb{R}$ une fonction continue sur $[a, +\infty[$ et dérivable sur $]a, +\infty[$ telle que $\lim_{x \to +\infty} f(x) = f(a)$.

- (a) On définit la fonction g sur $\left[\arctan a, \frac{\pi}{2}\right]$ par $\left\{ \begin{aligned} g(x) &= f \left(\tan x\right) & \text{si } x \neq \frac{\pi}{2} \\ g\left(\frac{\pi}{2}\right) &= f \left(a\right) \end{aligned} \right.$ Montrer que g est continue sur $\left[\arctan a, \frac{\pi}{2}\right]$, dérivable sur $\left[\arctan a, \frac{\pi}{2}\right]$ et calculer sa dérivée.
- 2. Soit $\lambda < 0$, $q \in \mathbb{N}^*$ et P un polynôme ayant au moins q racines réelles distinctes. Montrer que $P' + \lambda P$ admet au moins q racines réelles distinctes.

Indication: utiliser la fonction f définie sur \mathbb{R} par $f(x) = e^{\lambda x} P(x)$.

3. Bonus. Peut-on montrer le même résultat avec $\lambda > 0$?

(b) Montrer qu'il existe $c \in]a, +\infty[$ tel que f'(c)=0.

4. Bonus. Et avec $\lambda = 0$?