Durée: 1h30

Partie commune - Devoir numéro 1 - Correction

Exercice 1. 1. Fixons $n \in \mathbb{N}$. Par définition, on a

$$A\cdot X_n = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix} = \begin{pmatrix} 2u_{n+1} + 3u_n \\ u_{n+1} \end{pmatrix} = X_{n+1} \ .$$

2. Pour justifier que P est inversible, on peut calculer son déterminant, qui vaut $1 \cdot 1 - 3 \cdot (-1) = 4$. Pour calculer l'inverse de P, on peut soit appliquer une formule connue pour donner l'inverse d'une matrice 2×2 , soit revenir à la définition : en notant $P^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, le fait que $P \cdot P^{-1} = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ nous amène au système suivant :

$$\begin{cases} a+3c=1\\ b+3d=0\\ -a+c=0\\ -b+d=1 \end{cases}$$

On obtient donc

$$P^{-1} = \begin{pmatrix} \frac{1}{4} & -\frac{3}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1 & -3 \\ 1 & 1 \end{pmatrix}$$

3. On écrit le produit de matrices :

$$\begin{split} D &= P^{-1} \cdot A \cdot P = P^{-1} \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ -1 & 1 \end{pmatrix} = P^{-1} \begin{pmatrix} 2 - 3 & 6 + 3 \\ 1 & 3 \end{pmatrix} \\ &= \frac{1}{4} \begin{pmatrix} 1 & -3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 9 \\ 1 & 3 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} -4 & 0 \\ 0 & 12 \end{pmatrix} \\ &= \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix} \; . \end{split}$$

4. Raisonnons par récurrence sur n; la formule désirée est vraie pour n=0: $A^0=I$, et $P^{-1}\cdot A^0\cdot P=P^{-1}\cdot P=I$. On a aussi, par définition de D, que la formule est vraie pour n=1: en multipliant à gauche par P et à droite par P^{-1} , l'égalité $D=P^{-1}\cdot A\cdot P$ devient $P\cdot D\cdot P^{-1}=A$.

Supposons maintenant la formule vérifiée jusqu'à un rang $n \geq 1$. On a alors :

$$A^{n+1} = A \cdot A^n = \left(P \cdot D \cdot P^{-1}\right) \cdot \left(P \cdot D^n \cdot P^{-1}\right) = P \cdot D \cdot \left(P^{-1} \cdot P\right) \cdot D^n \cdot P^{-1} = P \cdot D^{n+1} \cdot P^{-1} \ .$$

Comme la matrice D est diagonale, on obtient par une récurrence immédiate que pour tout $n \in \mathbb{N}$ on a $D^n = \begin{pmatrix} (-1)^n & 0 \\ 0 & 3^n \end{pmatrix}$. Il nous reste à calculer un dernier produit de matrices : pour tout $n \in \mathbb{N}$, on a

$$A^{n} = P \cdot D^{n} \cdot P^{-1} = \frac{1}{4} \begin{pmatrix} 1 & 3 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} (-1)^{n} & 0 \\ 0 & 3^{n} \end{pmatrix} \begin{pmatrix} 1 & -3 \\ 1 & 1 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1 & 3 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} (-1)^{n} & 3(-1)^{n+1} \\ 3^{n} & 3^{n} \end{pmatrix}$$
$$= \frac{1}{4} \begin{pmatrix} (-1)^{n} + 3^{n+1} & 3(-1)^{n+1} + 3^{n+1} \\ (-1)^{n+1} + 3^{n} & 3(-1)^{n} + 3^{n} \end{pmatrix}$$

5. Raisonnons de nouveau par récurrence sur n. Pour n=0, on a $X_0=\begin{pmatrix} u_1\\u_0 \end{pmatrix}=A^0\cdot \begin{pmatrix} u_1\\u_0 \end{pmatrix}$. La formule désirée est donc bien vraie au rang 0; supposons-la vérifiée à un rang $n\geq 0$, et utilisons le fait que $X_{n+1}=A\cdot X_n$ pour écrire

$$X_{n+1} = A \cdot X_n = A \cdot A^n \cdot \begin{pmatrix} u_1 \\ u_0 \end{pmatrix} = A^{n+1} \cdot \begin{pmatrix} u_1 \\ u_0 \end{pmatrix}$$
.

On peut donc conclure que, pour tout $n \in \mathbb{N}$, on a $X_n = A^n \cdot \begin{pmatrix} u_1 \\ u_0 \end{pmatrix}$.

6. Etant donnée la formule que l'on avait obtenue pour A^n , et le fait que u_n est égal à la deuxième coordonnée de X_n , on obtient finalement que pour tout $n \in \mathbb{N}$ on a

$$u_n = \frac{1}{4} \left[\left((-1)^{n+1} + 3^n \right) u_1 + \left(3(-1)^n + 3^n \right) u_0 \right].$$

(Notons, à titre de vérification partielle de nos calculs, que cette formule a le bon goût de nous redonner $u_0 = u_0$ et $u_1 = u_1$, ce qui est rassurant).

Exercice 2. On peut par exemple utiliser la formule du binôme de Newton :

$$\begin{split} P(X) &= (X^2+1)^n - 2X^{2n} + (X^2-1)^n = \left(\sum_{k=0}^n \binom{n}{k} X^{2k}\right) - 2X^{2n} + \left(\sum_{k=0}^n \binom{n}{k} X^{2k} (-1)^{n-k}\right) \\ &= \left(\sum_{k=0}^{n-1} \binom{n}{k} X^{2k}\right) + \left(\sum_{k=0}^{n-1} \binom{n}{k} X^{2k} (-1)^{n-k}\right) \end{split}$$

Si jamais n=1, on obtient P(X)=1-1=0: le degré de P est alors $-\infty$. Si $n\geq 2$, on peut isoler les termes de plus haut degré et écrire $P(X)=2\binom{n}{n-2}X^{2n-4}+Q(X)$, où Q est de degré strictement inférieur à 2n-4. Par conséquent, P est de degré 2n-4 quand n est supérieur ou égal à 2.

Exercice 3. 1. Soit x > 0. Alors on a aussi $e^{-x} > 0$, par conséquent $xe^{-x} > 0$, et on vient de montrer que $x > 0 \Rightarrow f(x) > 0$, autrement dit $f(]0, +\infty[) \subset]0, +\infty[$.

- 2. Par récurrence, on voit grâce au résultat de la question précédente que $u_n > 0$ pour tout n. De plus, pour tout $n \in \mathbb{N}$ on a $u_{n+1} u_n = u_n(e^{-u_n} 1) < 0$ puisque $u_n > 0$. Par conséquent, (u_n) est décroissante (strictement).
- 3. D'après les résultats des questions précédentes, (u_n) est une suite décroissante de réels positifs : elle est convergente vers $l \in [0, +\infty[$. De plus, puisque $f(u_n) = u_{n+1}$ et f est continue sur \mathbb{R} , on obtient à la limite que f(l) = l, autrement dit $le^{-l} = l$, soit encore $l(e^{-l} 1) = 0$, ce qui n'est possible que si l = 0. Par conséquent (u_n) converge vers 0.
- 4. Soit $n \in \mathbb{N}$. On a

$$v_n = \frac{1}{u_{n+1}} - \frac{1}{u_n} = \frac{u_n - u_{n+1}}{u_n u_{n+1}} = \frac{u_n (1 - e^{-u_n})}{u_n u_n e^{-u_n}} = \frac{1 - e^{-u_n}}{u_n e^{-u_n}} = e^{u_n} \left(\frac{1 - e^{-u_n}}{u_n}\right) .$$

Comme (u_n) converge vers 0, e^{u_n} tend vers 1 quand n tend vers $+\infty$. De plus, on sait que $\frac{e^x-1}{x}$ tend vers $\exp'(0) = 1$ quand x tend vers 0 (c'est un taux d'accroissement; on pourrait aussi, de manière équivalente, utiliser le développement limité à l'ordre 1 en 0 de $x \mapsto e^x$); puisque (u_n) tend vers 0, la formule ci-dessus permet donc de conclure que (v_n) tend vers 1 quand n tend vers $+\infty$.

5. En appliquant le résultat fourni par l'énoncé (qui est un cas particulier du lemme de Cesàro), on sait que $\frac{1}{n}\sum_{k=0}^{n-1}v_k \text{ converge vers 1. Mais on a}$

$$\frac{1}{n} \sum_{k=0}^{n-1} v_k = \frac{1}{n} \sum_{k=0}^{n-1} \left(\frac{1}{u_{k+1}} - \frac{1}{u_k} \right) = \frac{1}{n} \left[\left(\sum_{k=1}^n \frac{1}{u_k} \right) - \left(\sum_{k=0}^{n-1} \frac{1}{u_k} \right) \right] = \frac{1}{n} \left(\frac{1}{u_n} - \frac{1}{u_0} \right).$$

Finalement, on sait donc que $\frac{1}{nu_n} - \frac{1}{nu_0}$ converge vers 1 quand n tend vers $+\infty$, autrement dit que $\frac{1}{nu_n}$ tend vers 1, ce qui revient à dire que nu_n tend vers 1, ce qu'on peut encore reformuler sous la forme $u_n \sim \frac{1}{n \to +\infty} \frac{1}{n}$.

Exercice 4.

1. (a) Notons déjà que g est bien définie parce que arctan est définie sur \mathbb{R} ; sur $\left[\arctan(a), \frac{\pi}{2}\right[, g$ est une composée de fonctions continues et est donc continue. Pour vérifier que g est continue en $\frac{\pi}{2}$, on doit calculer la limite de g(x) quand x tend vers $\frac{\pi}{2}$ par valeurs inférieures; dans ce cas-là on a que $\tan(x)$ tend vers $+\infty$, donc, par hypothèse sur f, $g(x) = f(\tan x)$ tend vers $\lim_{t \to +\infty} f(t) = f(a)$. Puisque par définition $f(a) = g\left(\frac{\pi}{2}\right)$, on vient de montrer que f est continue sur $\left[\arctan(a), \frac{\pi}{2}\right]$. Sur $\left[\arctan(a), \frac{\pi}{2}\right[g$ est une composée de deux fonctions dérivables (puisque tan est dérivable sur \mathbb{R} et $\tan\left(\left[\arctan(a), \frac{\pi}{2}\right]\right) = \left[a, +\infty\right[$, intervalle sur lequel f est dérivable), et on a, d'après la formule de dérivation d'une fonction composée :

$$\forall x \in \left[\arctan(a), \frac{\pi}{2}\right[\quad g'(x) = f'(\tan x) \tan'(x) = (1 + \tan^2(x)) f'(\tan x) \ .$$

- (b) La fonction g est continue sur $\left[\arctan(a), \frac{\pi}{2}\right]$, dérivable sur $\left[\arctan(a), \frac{\pi}{2}\right]$, et $g(\arctan(a)) = g\left(\frac{\pi}{2}\right)$: on peut appliquer le théorème de Rolle pour conclure qu'il existe $x \in \left]\arctan(a), \frac{\pi}{2}\right[$ tel que g'(x) = 0. D'après la formule pour g'(x) obtenue ci-dessus, cela revient à dire qu'il existe $c \in \left[a, +\infty\right[$ tel que f'(c) = 0.
- 2. Utilisons la fonction f suggérée par l'énoncé, et énumérons de manière strictement croissante les racines de P sous la forme $\alpha_1 < \alpha_2 < \ldots < \alpha_n$, avec $n \ge q$. Pour tout $i \in \{0, \ldots, n-1\}$ on a $f(\alpha_i) = 0$; par conséquent le théorème de Rolle appliqué à f (qui est de classe C^{∞} sur \mathbb{R}) nous permet d'affirmer que f' s'annule quelque part dans $]\alpha_i, \alpha_{i+1}[$ pour tout $i \in \{0, \ldots, n-1\}$. Puisque $f'(x) = e^{\lambda x}(P'(x) + \lambda P(x))$ et $e^{\lambda x} \ne 0$ pour tout x, on vient d'obtenir n-1 racines réelles distinctes pour $P' + \lambda P$ (donc si n > q on a gagné; si n = q il nous manque une racine).

Vu le résultat de la question précédente, on s'intéresse à la limite de f en $+\infty$; les croissances comparées nous permettent de voir que celle-ci existe et vaut 0 (parce que λ est strictement négatif). Par conséquent, il existe $c \in]\alpha_n, +\infty[$ tel que f'(c)=0, ce qui nous fournit une nouvelle racine de $P'+\lambda P$ (les autres étaient toutes strictement inférieures à α_n , et celle-ci est strictement supérieure à α_n), et on a bien obtenu que $P'+\lambda P$ a au moins n racines distinctes, ce qui nous permet de conclure puisque $n \geq q$.

- 3. Si $\lambda < 0$, on peut appliquer le résultat précédent à $\tilde{\lambda} = -\lambda$ et \tilde{P} défini par $\tilde{P}(X) = P(-X) : \tilde{P}' \lambda \tilde{P}$ a au moins q racines réelles distinctes d'après le résultat précédent, et puisque $\tilde{P}'(X) \lambda \tilde{P}(X) = -P'(-X) \lambda P(-X) = -(P'(-X) + \lambda P(-X))$, on obtient le même résultat que précédemment. Remarque. On pourrait aussi démontrer que le résultat reste vrai quand $\lambda > 0$ en raisonnant sur $]-\infty, a]$, en considérant la limite en $-\infty$ de f, et en établissant un résultat analogue à celui de (1a) valable sur un intervalle de la forme $]-\infty, a]$.
- 4. Dans le cas où $\lambda = 0$, on est bien embêté : par exemple, le polynôme P donné par P(X) = X a une racine réelle, mais P' + 0P = P' = 1 n'a pas de racine réelle. Le mieux qu'on puisse dire, à l'aide du théorème de Rolle, est que si P a au moins q racines réelles distinctes alors P' a au moins q 1 racines réelles distinctes.