Université Claude Bernard - Lyon 1 Semestre d’automne 2024-2025
Algebre 3 - Cursus prépa Durée : 2 heures

Examen final du 10 janvier 2025

Aucun document et aucune calculatrice ne sont autorisés durant l’épreuve. L usage des téléphones est prohibé. La
justification des réponses et un soin particulier de la présentation seront demandés et pris en compte lors de la

notation.Les J exercices sont indépendants et peuvent étre traités dans n’importe quel ordre.

Le baréme (sur 28 points) est uniquement indicatif et tient compte de la longueur du sujet.

m 2 2
Exercice 1. (~ 8.5 points) Soient m e Ret A=|2 2 m
2 m 2

1. Déterminer le polynéme caractéristique de A sous forme factorisée dans R[X].

Montrer que le spectre de A ne peut pas étre réduit & un seul élément.

Déterminer ’ensemble des m € R pour lesquels le spectre de A comporte exactement 2 éléments.
Déterminer 1’ensemble des m € R pour lesquels la matrice A est diagonalisable dans M3(R).

On suppose dans cette question que m = —1. Déterminer explicitement A™ pour tout entier n € N.

A T

Déterminer toutes les suites réelles (z,,)neN, (Yn)nen €t (2n)nen telles que

Tpy1 = —2xy + 4yn + 4z,
Vn € Na Yn+1 = 4mn + 4yn - an
Zn41 = 4-Tn - 2yn + 4Zn

et g =yo=0et 29 = 1.

Exercice 2. (=~ 8.5 points) Soient E un R-espace vectoriel de dimension 4 et B = (e, es, €3, e4) une base de E.
Soit f 'endomorphisme de F dont la matrice dans la base B est

—1 1 0

-3
2

I

—_
o O = O
— o =

1. Déterminer une base de Ker(f + 2Idg). Que peut-on en déduire sur le polynéme caractéristique x s de f?
2. On admet qu’il existe deux réels a et b distincts tels que x5 = (X — a)?(X — b)?. Déterminer a et b.

3. Justifier que f est trigonalisable et déterminer une base de E dans laquelle la matrice de f, que ’on notera
T, est triangulaire supérieure. On donnera 7' comme la somme d’une matrice diagonale D et d’une matrice

nilpotente N qui commutent entre elles. On donne pour ceci

0 0 —4 0 3 0 —6 0 00 0 0
el IR B B ] I il N
-2 0 1 1 12 0 -3 0 18 0 9 9

4. Résoudre le systeme différentiel
x
(S):Vt €R, Z

d’inconnues x,y, z,u : R — R dérivables.



Exercice 3. (~ 2.5 points) Soient n € N* et A = (a; j)1<i,j<n € M, (C). On note A = (@; ;)1<;,j<n €t on suppose

que ‘A = —A.

1. Montrer que det (A) = det(A).

2. Montrer que le déterminant de A est réel si n est pair, et imaginaire pur si n est impair.

Exercice 4. (~ 8.5 points) Soient n un entier supérieur ou égal & 5 et E un R-espace vectoriel de dimension n.

Soit f € L(E) non diagonalisable tel que :
fP=4f2—4f et Tr(f)=8.

1. Montrer que f est trigonalisable.
2. Montrer que f possede exactement deux valeurs propres et préciser leurs multiplicités algébriques respectives.
3. Déterminer le polynéome minimal de f.

4. Pour A € Sp(f), on note my la multiplicité algébrique de A. Soit k € [1;m,]. Donner sans justification une
inclusion entre Ker((f — AIdg)*) et 'espace caractéristique de f associé a . En déduire une inégalité entre

dim Ker((f — AIdg)*) et my.

5. Montrer que Ker(f) et Ker((f —2Idg)?) sont supplémentaires dans E, et a 'aide de la question précédente,

déterminer leurs dimensions respectives.

6. On considere une base B de E adaptée a la décomposition E = Ker(f) @ Ker((f —2Idg)?). Justifier que la

matrice M de f dans la base B est diagonale par blocs de la forme

w=(to )

ou M est a expliciter, et rappeler le lien entre M5 et un endomorphisme induit par f sur un sous-espace

vectoriel de E bien choisi.

7. Montrer qu'il existe une matrice N € M4(R) nilpotente d’indice de nilpotence 2 telle que My = 21, + N.



Correction de I’examen final (session 1) d’algebre 3 de 2024-2025

Correction de 1’exercice 1

1. En additionnant toutes les colonnes dans la premiere, puis en retranchant la premiere ligne aux deux sui-

vantes, on trouve :

X-m -2 -2 X—-m-—4 -2 -2 X—-—m-—-4 -2 -2
xa=det(XI3—A)=| -2 X-2 —m|=X-m—-4 X-2 —m|= 0 X 2—m
—2 -m X -2 X-m—-4 -m X-2 0 2—m X

d’ou en développant selon la premiere colonne

X 2—m
XA:(X—m—él)’ ‘

2—m X
2. Le spectre (réel) de A est égal & 'ensemble des racines (réelles) de x 4, donc Spg(A) = {m+4,2—m, m—2}.
Les réels m + 4 et m — 2 ne peuvent pas étre égaux, sinon on aurait 4 = —2, donc le spectre de A contient

toujours au moins 2 éléments.

3. Comme m + 4 # m — 2, le spectre de A comporte exactement deux éléments si, et seulement si,
m+4=2—mou2—m=m-2 < 2m=-2ou22m=4 < me{-1;2}.

4. e Sim ¢ {—1;2}, alors les 3 racines de x 4 sont deux a deux distinctes, donc x 4 est scindé & racines simples
sur R. Par conséquent, A est diagonalisable dans M3(R).

e Sim =2, alors Ya = (X —6)X? est scindé sur R. Pour A € Sp(4), notons my la multiplicité algébrique

de X et E\ = Ker(A — A\I3) l'espace caractéristique associé. On sait que 1 < dim Ey < my. Ainsi, on a

1 < dim Fg < mg =1, donc dim Fg = 1. De plus, par le théoréeme du rang,
2 2 2
dimFEy=3—rang(A—0I3) =3 —rang |2 2 2| =3-1=2=my
2 2 2

puisque toutes les colonnes de A sont identiques et non nulles. Ainsi, pour tout A € Sp(A4), dim E) = m,

donc A est diagonalisable.

e Sim = —1, alors xYa = (X — 3)%(X + 3). Pour la méme raison que ci-dessus, dimE_3 = 1 = m_3. De
plus,
-4 2 2
rang(A—3I3) =rang | 2 —1 —1]| =1car L1 = —2Ly et Ly = L3 # (0)
2 -1 -1

Par le théoréeme du rang, on en conclut que dim F3 = 2, et ainsi
Y dimEy = dim E_3 + dim E3 = 3 = dim Mj ; (R)
AESpR(A)
donc A est diagonalisable dans M3(R).
Finalement, la matrice A est diagonalisable pour tout m € R.

5. Dans le cas m = —1, on a vu que Sp(4) = {-3;3}.
e Méthode 1 : De plus, comme dans la matrice A — 3I3, C; = —2C5 et Cy = Cj, les vecteurs

1 0
e1= |2 ete = 1
0 -1

= (X = (m+49)(X* = (2-m)") = (X = (m+49))(X = (2-m))(X — (m —2))



appartiennent & E3. Comme ils sont non colinéaires, la famille (e, es) est une famille libre d’éléments de

F5, de cardinal 2 = dim Fj3, donc il s’agit d’une base de F3. De méme, F_3 est de dimension 1, et dans la
-2
matrice A+313, on remarque que Co+C35 = 2C donc le vecteur e3 = | 1 | appartient & E_3, et comme
1
il est non nul, c’est une base de E_3. Puisque A est diagonalisable dans M3(R), M31(R) = E5 ® E_3

donc la concaténation B = (e1, eg, e3) est une base de M3 1(R). Sil’on note P la matrice de passage de

la base canonique de M3 1(R) & la base B, on obtient alors

30 0 1 0 =2
P'AP=10 3 0|=D avec P=[2 1 1
0 0 -3 0 -1 1

On en déduit que A = PDP~!. On montre par récurrence immédiate que pour tout n € N, A" =
PD"P~1 et il reste & faire le calcul explicite de ce produit matriciel, apres avoir calculé P~1...

e Méthode 2 : Comme A est diagonalisable dans M3(R), son polynéme minimal 74 est scindé & racines
simples sur R. Par ailleurs, w4 est unitaire et possede exactement les mémes racines que x4, donc

ma = (X = 3)(X + 3). Soit n € N, par division euclidienne de X™ par 74,
3(Qu. Ra) €RIX]?, (+) X" =maQu+ Ry avec deg(Ry) < deg(ra) = 2

Par conséquent, il existe a,, b, € R tels que R,, = a,, + b, X. En évaluant (%) successivement en 3 et en
—3, on en déduit :
3" = ay, + 3by, an = 33"+ (=3)")
{ (_3)71 = a, — 3by, — { (_3)71 = ap — 3by
an = 3(3" + (-3)")
<~ .
&

En évaluant (x) en A, on obtient finalement, puisque w4 est annulateur de A,

en ayant effectué Ly < L1 + Lo

AT = mA(A)Qu(A) + Ra(A)
= ayl3+b,A
= (84 (30— (-3 A
2,37 4 4(—3)" 23" — (=3)") 2(3" — (—3)")

1
= 3 203" = (=3)") 53"+ (=3)" 3"+ (=3)"
23" = (=3)") =3"+(=3)" 53"+ (-3)"
Ty
6. Soient (z,)n, (Yn)n et (2n)n 3 suites réelles. Pour n € N, posons X,, = | y, | de sorte que
Zn
-2 4 4
(Zn)n, (Yn)n €t (2n)n vérifient le systéme donné <— VvVneN X, ;1= 4 4 =-2|X,
4 -2 4
<~ Vne N,Xn+1 =2AX,
— VneNX,=2"A"X,.
ou A est la matrice de I’énoncé obtenue dans le cas m = —1. Par ailleurs, les conditions initiales données
0
sont équivalentes & Xo = [ 0 |. Ainsi, (€5)n, (Yn)n €t (2n)n sont solutions du probléme posé si, et seulement
1

si, pour tout n € N, X,, est égal a la troisieme colonne de la matrice A™ calculée a la question précédente



multipliée par 2™, ce qui équivaut a

tn = = (3" = (-3)")
27l
Vn € N, Y = E(_3” +(=3)")
2
= (53" +(=3)")
Correction de 1’exercice 2
4
1. Soit x € E, il existe (x1,...,24) € R* tel que z = Zxkek. On a :
k=1
T
z€Ker(f +2ldg) <« iQ € Ker(A +214)
3
T4
1 0 1 0 1 0
— 5 3 4 1 2| |0
-1 0 -1 0 zs| |0
5 0 2 3 Ty 0
xr] +x3 = 0
<= 521 +3x2 +4x3+ 24 =0
5r1 4+ 2x3 +3x4 =0
T3 = —T1
<~ o =0
Ty = —21

e X =11 —T13 — T1€4

Ainsi, Ker(f 4+ 2Idg) = {x1(e1 —e3 —e4) | 21 € R} = Vect{e; — e3 — e4}. Comme le vecteur e; — e3 — ey
n’est pas nul (par liberté de la famille B), la famille (e; — ez — e4) est une base de Ker(f + 2Idg). Puisque
dimKer(f 4+ 2Idg) = 1 # 0, on en déduit que —2 est une valeur propre de f de multiplicité algébrique
supérieure ou égale a 1. Ainsi, le polynéme X — 2 divise xy.

2. On voit grace & la deuxiéme colonne de A que f(ez) = les. Puisque es # O, on en déduit que 1 est aussi
valeur propre de f. Comme par hypothése Sp(f) = {a;b} et que 'on vient de démontrer que {—2;1} C Sp(f),

on peut conclure que a = —2 et b = 1 (ou réciproquement, par symétrie des rdles de a et b).

3. Comme X est scindé sur R, f est trigonalisable. Notons, pour A € Sp(f), Ex = Ker(f — AIdg) l'espace
propre associé et Fy = Ker((f — AMdg)?) I'espace caractéristique associé (puisque les deux valeurs propres
sont de multiplicité algébrique 2). Déterminons une base de F), sachant que cet espace vectoriel est de
dimension my = 2. Par les matrices données, comme les colonnes de (A + 214)? vérifient Cy — C5 + Cy est
la colonne nulle, le vecteur us = es — e3 + e4 appartient a F_,. L'inclusion F_o C F_o donne par ailleurs
u; = ey —e3 —eq € F_o. La famille (uy,uz2) est donc une famille libre d’éléments de F_o (car les deux
vecteurs ne sont pas colinéaires), de cardinal 2 = dim F_s. Ainsi, (u1,us) est une base de F_5. De méme,
comme les colonnes 2 et 4 de la matrice (4 — 14)2 sont nulles, les vecteurs ey et e4 appartiennent a Fj. La

famille (e, e4) est donc une famille libre maximale de Fy, donc une base de F.

Le caractere trigonalisable de f entraine E = F_o & F}, ainsi la concaténation B’ = (uy,us, es, e4) est une

base de E. On a par construction f(u;) = —2u; et f(e2) = ea. De plus, par calcul matriciel,
0 -1 1 0
1 —2 0 1
A 2=l s =1 2 1 donc f(ug) = —ug — 2us.
1 -1 -1 1



De méme, on a directement f(e4) = es + ¢4 ce qui entraine que la matrice de f dans la base B’ est

9 1.0 0 2 0 00 0 -1 0 0
0 -2 0 0 o =200 fo 0 0 0
T=109 o 1 1|=P+tNouD=|y 4 1 ol ®N=10 0 01
0 0 0 1 0 0 0 1 0 0 00

Puisque N est triangulaire supérieure stricte, N est nilpotente, et par calculs par blocs, N2 = 0,4 L(R)- De

plus, si 'on écrit N = (%3 58)) avec N1 et Ny dans My(R), puisque D = (_(?)52 (IO)), alors
2 2
_(—2LN1 (0) \ _ (Ni(=2L) (0) ) _
P = < (0) Ny ) (0) Nolp) ND

donc T est bien de la forme voulue.
. Soient z,y, z,u : R — R dérivables. On pose X : R — R définie par
x(t)
VX(t) = Zgg
u(t)
alors X est aussi dérivable sur R de dérivée donnée par
x
VieR, X'(t)= Z t
U
Ainsi,

x,y, z et u sont solutions de (S) <= VteR, X'(t)=

— VteR, X'(t)=AX(t)
— 3XpeMy1(R), VteR, X(t)=e"Xo.

Soit t € R, puisque les matrices tD et tN commutent, on sait déja que et? = e!PHN = etPetN  Puisque tD

est une matrice diagonale, par le cours,

2 0 0 0
Jp_| 0 e 0 0
1o 0 e o0
0 0 0 e

De plus, comme N2 est nulle, toutes les puissances de N supérieures & 2 sont aussi nulles, ce qui entraine

+oo k 1 kark
tN t*IN
etN Z( ) Z I, +tN

k! K
k=0 k=0
d’out
e 2t 0 0 0 1 -t 0 0 e 2t —te2 0 0
o 0 e?2 0 0 0 1 0 0f _ 0 e2 0 0
- 0 0 e 0 0 0 1 ¢ 0 0 et tet
0 0 0 e 0 0 01 0 0 e
Finalement, par formule de changement de base,
1 0 0 O
1 < 10 1 1 0
T =P AP ou P = Passg_,p = 1 -1.0 0
-1 1 0 1



et ainsi et = exp(P.tT.P~) = Pe!T P~1. On obtient donc :

x,y, z et u sont solutions de (.5)

IXo € My1(R), VteR, X(t)=PeTP71X,

11

o € My (R), VteR, X(t)=PeTYy (en posant Yo = P~'X)

1 0 00 e —te™2 0 0 @
0 1 1 0 0 e2t 0 O I5]
— da,8,7,0€R, VteR, X(t)= 1 -1.0 0 0 0 ot tet .
-1 1 0 1 0 0 0 ¢ 1)
e 2 —te % 0 a
0 e2t et tel B
— 304,6,’7, NS Ra Vt € R7 X(t) - 767215 t€72t _ 672t 0 0 vy
—e % e 472 (0 ef )
2(t) = ae™2 — Bte=2
y(t) = Be 2t + yet + tet
— 30{76777 NS Ra vt € R7 Z(t) _ —0[6721& + ﬁ(t672t _ 67215)
u(t) = —ae™? + B(te™2" + e72t) + et

Correction de 1’exercice 3

1. Par définition du déterminant,

det (A) = Zs(J)HW
i1

n
= Z E(O‘)H ag(i),; par conjugué d'un produit

oeS, i=1

= Z 5(J)Haa(i),i
oeS, =1

= det(A)

puisque (o) € {£1} pour toute permutation ¢ donc £(c) = £(o), et puisque le conjugué d’une somme est

la somme des conjugués.

. On en déduit que

det(A) = det(*A) = det(—A4) = (=1)"det (A) = (—1)"det(A).

Ainsi, si n est pair, alors det(A4) = det(A) donc det(A) € R. Si n est impair, alors det(A) = —det(A).
Comme det(A) € C, il existe deux réels a et b tels que det(A) = a+ 1b. L'égalité ci-dessus se rééerit alors en

a+ib = —a +ib ce qui équivaut & a = 0 et ainsi det(A) = b est un imaginaire pur.

Correction de 1’exercice 4

1. Légalité f3 = 4f% — 4f équivaut a f3 — 4f2 +4f = Oz(z) donc le polynome P = X3 — 4X? 44X est
annulateur de f. Comme on peut factoriser P en P = X (X2 —4X +4) = X(X — 2)?, P est scindé sur R,

ce qui entraine que f est trigonalisable.

2. Le spectre de f est inclus dans I’ensemble des racines (réelles) de P, ainsi Sp(f) C {0;2}. Par ailleurs, comme

f est trigonalisable, on sait que la somme des valeurs propres de f comptées avec multiplicité algébrique est



égale & la trace de f. Sil’on note mg et my les multiplicités algébriques respectives de 0 et 2 (éventuellement

nulles si 0 ou 2 n’appartient pas au spectre), on obtient alors
mo0 +ma2 =Tr(f) =8 <= my =4.

Par ailleurs, comme f est trigonalisable, son polynome caractéristique est scindé sur R, donc la somme des
multiplicités de ses racines est égale & dim(E) = n, ce qui entraine, puisque ses racines constituent Sp(f),
que mg + mo = n. Ainsi, mg =n — 4 > 1 puisque n > 5. On en déduit que Sp(f) = {0;2} avec my = n — 4

et mo = 4.

On aurait aussi pu utiliser une base de trigonalisation de f : comme f est trigonalisable, il existe une
base B’ de E dans laquelle la matrice de f est une matrice triangulaire supérieure de M, (R), et ses
éléments diagonaux appartiennent & Sp(f). Avec les notations ci-dessus, mg de ces termes diagonaux valent
0, et mo des autres valent 2, ce qui entraine nécessairement mg + ma = n, 8 = Tr(f) = me0 + m22 et
Xf = X™(X —2)m2 = X" (X — 2)* donnant ainsi le spectre (puisque n — 4 > 1) et les multiplicités
respectives des valeurs propres 0 et 2.

. Le polynéme minimal 7y de f divise tout polynéme annulateur de f, donc il divise P. De plus, il est unitaire,
et ensemble de ses racines dans R est égal & Sp(f). Ainsi, 7 appartient & {X (X — 2); X(X — 2)?}. Par
ailleurs, f est non diagonalisable, donc son polynéme minimal ne peut pas étre scindé a racines simples sur
R, donc 7y = X (X — 2)2.

. Comme k est un entier inférieur & my, on sait que Ker((f — AIdg)*) C Ker((f — AMdg)™ ) = Fy ou F
désigne le sous-espace caractéristique associé a A. Comme celui-ci est de dimension my par le cours, on en
déduit que dim Ker((f — Adg)*) < dim F = m,.

. Les polynomes X et (X — 2)? sont premiers entre eux (en effet, les seuls diviseurs unitaires de X sont 1 et

X, et parmi eux, seul 1 divise (X — 2)?). On peut donc appliquer le Lemme des noyaux :
Ker(f o (f —2Idg)?) = Ker(f) @ Ker((f — 21dg)?).

Comme fo(f—2dg)* = P(f) = 0z(g), Ker(fo(f—2dg)?) = E, ce qui montre que Ker(f) et Ker((f—21dg)?)

sont supplémentaires dans FE.

Par conséquent, dim Ker(f) + dim Ker((f — 2Id2)?) = dim(FE) = n. La question précédente donnait aussi
les deux inégalités dim Ker(f) < mg = n — 4 et dimKer((f — 2Idg)?) < mo = 4, donc la seule possibilité

pour que leur somme vaille n est dim Ker(f) = n — 4 et dim Ker((f — 21dg)?) = 4.

Remarque : si on ne nous demandait pas d’utiliser la question précédente, on pourrait argumenter direc-
tement par le cours & 'aide du polynoéme minimal de f. Puisque 7y = X(X — 2)2, si l'on note ap = 1 et
ay = 2 les multiplicités respectives de 0 et 2 en tant que racines de 7y, on sait que pour tout A € Sp(f),
Pespace vectoriel Gy = Ker((f — AIdg)®*) est égal a 'espace caractéristique de f et est de dimension my.
Ainsi, Ker(f) = Gy est de dimension mg =n — 4 et Ker((f — 21dg)?) = G4 est de dimension my = 4.

. Puisque les sous-espaces vectoriels Ker(f) et Ker((f — 2Idg)?) sont des noyaux de polynomes en f qui
commutent avec f, ils sont stables par f. Par conséquent, si I'on note la base adaptée B = B; U By comme
la concaténation de la base By de Gy = Ker(f) et de la base By de Go = Ker((f — 21dg)?), la matrice de f

dans B est diagonale par blocs de la forme

M= (J(\g; 5\2) avec M1 = Matg, (fg,) € Mn—a(R) et My = Matg,(fa,) € M4(R)



ou fg, désigne 'endomorphisme induit par f sur Go. Comme l'image par f d’un élément de Ker(f) est

nulle, on peut affirmer que M; = Opq,_,(r) (car pour tout = € By, fg,(z) = f(x) = 0g).

. Par définition, pour tout # € G5 = Ker((f —21dg)?), on a (fg, —21dg,)?(x) = (f —21dg)%(x) = 0. Ainsi,

si 'on note N = My — 21, alors
N? = (M —214)* = Matg, ((fo, — 21dg,)?) = O, (®)

ce qui démontre que My = 2I; + N avec N nilpotente d’indice de nilpotence inférieure ou égale & 2 (on
aurait aussi pu utiliser le calcul par blocs et le polynome P annulateur de f pour montrer que N2 est
nulle). En outre, on ne peut pas avoir N = 0, sinon My = 21, entrainerait que M = Matg(f) est diagonale,
ce qui contredit I’hypothese que f est non diagonalisable. Finalement, N est donc d’indice de nilpotence

exactement 2.



