
Université Claude Bernard - Lyon 1 Semestre d’automne 2024-2025

Algèbre 3 - Cursus prépa Durée : 2 heures

Examen final du 10 janvier 2025

Aucun document et aucune calculatrice ne sont autorisés durant l’épreuve. L’usage des téléphones est prohibé. La

justification des réponses et un soin particulier de la présentation seront demandés et pris en compte lors de la

notation.Les 4 exercices sont indépendants et peuvent être traités dans n’importe quel ordre.

Le barème (sur 28 points) est uniquement indicatif et tient compte de la longueur du sujet.

Exercice 1. (' 8.5 points) Soient m ∈ R et A =

m 2 2
2 2 m
2 m 2

.

1. Déterminer le polynôme caractéristique de A sous forme factorisée dans R[X].

2. Montrer que le spectre de A ne peut pas être réduit à un seul élément.

3. Déterminer l’ensemble des m ∈ R pour lesquels le spectre de A comporte exactement 2 éléments.

4. Déterminer l’ensemble des m ∈ R pour lesquels la matrice A est diagonalisable dans M3(R).

5. On suppose dans cette question que m = −1. Déterminer explicitement An pour tout entier n ∈ N.

6. Déterminer toutes les suites réelles (xn)n∈N, (yn)n∈N et (zn)n∈N telles que

∀n ∈ N,

 xn+1 = −2xn + 4yn + 4zn
yn+1 = 4xn + 4yn − 2zn
zn+1 = 4xn − 2yn + 4zn

et x0 = y0 = 0 et z0 = 1.

Exercice 2. (' 8.5 points) Soient E un R-espace vectoriel de dimension 4 et B = (e1, e2, e3, e4) une base de E.

Soit f l’endomorphisme de E dont la matrice dans la base B est

A =

−1 0 1 0
5 1 4 1
−1 0 −3 0
5 0 2 1

 .

1. Déterminer une base de Ker(f + 2 IdE). Que peut-on en déduire sur le polynôme caractéristique χf de f ?

2. On admet qu’il existe deux réels a et b distincts tels que χf = (X − a)2(X − b)2. Déterminer a et b.

3. Justifier que f est trigonalisable et déterminer une base de E dans laquelle la matrice de f , que l’on notera

T , est triangulaire supérieure. On donnera T comme la somme d’une matrice diagonale D et d’une matrice

nilpotente N qui commutent entre elles. On donne pour ceci

A2 =

 0 0 −4 0
1 1 −1 2
4 0 8 0
−2 0 1 1

 , (A− I4)2 =

 3 0 −6 0
−9 0 −9 0
6 0 15 0

−12 0 −3 0

 et (A+ 2I4)2 =

 0 0 0 0
21 9 15 6
0 0 0 0
18 0 9 9

 .

4. Résoudre le système différentiel

(S) : ∀t ∈ R,


x′(t) = −x(t) + z(t)
y′(t) = 5x(t) + y(t) + 4z(t) + u(t)
z′(t) = −x(t)− 3z(t)
u′(t) = 5x(t) + 2z(t) + u(t)

d’inconnues x, y, z, u : R −→ R dérivables.
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Exercice 3. (' 2.5 points) Soient n ∈ N∗ et A = (ai,j)1≤i,j≤n ∈Mn(C). On note A = (ai,j)1≤i,j≤n et on suppose

que tA = −A.

1. Montrer que det
(
A
)

= det(A).

2. Montrer que le déterminant de A est réel si n est pair, et imaginaire pur si n est impair.

Exercice 4. (' 8.5 points) Soient n un entier supérieur ou égal à 5 et E un R-espace vectoriel de dimension n.

Soit f ∈ L(E) non diagonalisable tel que :

f3 = 4f2 − 4f et Tr(f) = 8.

1. Montrer que f est trigonalisable.

2. Montrer que f possède exactement deux valeurs propres et préciser leurs multiplicités algébriques respectives.

3. Déterminer le polynôme minimal de f .

4. Pour λ ∈ Sp(f), on note mλ la multiplicité algébrique de λ. Soit k ∈ J1;mλK. Donner sans justification une

inclusion entre Ker((f −λ IdE)k) et l’espace caractéristique de f associé à λ. En déduire une inégalité entre

dim Ker((f − λ IdE)k) et mλ.

5. Montrer que Ker(f) et Ker((f −2 IdE)2) sont supplémentaires dans E, et à l’aide de la question précédente,

déterminer leurs dimensions respectives.

6. On considère une base B de E adaptée à la décomposition E = Ker(f)⊕Ker((f − 2 IdE)2). Justifier que la

matrice M de f dans la base B est diagonale par blocs de la forme

M =

(
M1 (0)
(0) M2

)
où M1 est à expliciter, et rappeler le lien entre M2 et un endomorphisme induit par f sur un sous-espace

vectoriel de E bien choisi.

7. Montrer qu’il existe une matrice N ∈M4(R) nilpotente d’indice de nilpotence 2 telle que M2 = 2I4 +N .
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Correction de l’examen final (session 1) d’algèbre 3 de 2024-2025

Correction de l’exercice 1

1. En additionnant toutes les colonnes dans la première, puis en retranchant la première ligne aux deux sui-

vantes, on trouve :

χA = det(XI3 −A) =

∣∣∣∣∣∣
X −m −2 −2
−2 X − 2 −m
−2 −m X − 2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
X −m− 4 −2 −2
X −m− 4 X − 2 −m
X −m− 4 −m X − 2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
X −m− 4 −2 −2

0 X 2−m
0 2−m X

∣∣∣∣∣∣
d’où en développant selon la première colonne

χA = (X −m− 4)

∣∣∣∣ X 2−m
2−m X

∣∣∣∣ = (X − (m+ 4))(X2 − (2−m)2) = (X − (m+ 4))(X − (2−m))(X − (m− 2))

2. Le spectre (réel) de A est égal à l’ensemble des racines (réelles) de χA, donc SpR(A) = {m+4, 2−m,m−2}.
Les réels m+ 4 et m− 2 ne peuvent pas être égaux, sinon on aurait 4 = −2, donc le spectre de A contient

toujours au moins 2 éléments.

3. Comme m+ 4 6= m− 2, le spectre de A comporte exactement deux éléments si, et seulement si,

m+ 4 = 2−m ou 2−m = m− 2 ⇐⇒ 2m = −2 ou 2m = 4 ⇐⇒ m ∈ {−1; 2}.

4. • Si m /∈ {−1; 2}, alors les 3 racines de χA sont deux à deux distinctes, donc χA est scindé à racines simples

sur R. Par conséquent, A est diagonalisable dans M3(R).

• Si m = 2, alors χA = (X − 6)X2 est scindé sur R. Pour λ ∈ Sp(A), notons mλ la multiplicité algébrique

de λ et Eλ = Ker(A − λI3) l’espace caractéristique associé. On sait que 1 ≤ dimEλ ≤ mλ. Ainsi, on a

1 ≤ dimE6 ≤ m6 = 1, donc dimE6 = 1. De plus, par le théorème du rang,

dimE0 = 3− rang(A− 0I3) = 3− rang

2 2 2
2 2 2
2 2 2

 = 3− 1 = 2 = m0

puisque toutes les colonnes de A sont identiques et non nulles. Ainsi, pour tout λ ∈ Sp(A), dimEλ = mλ

donc A est diagonalisable.

• Si m = −1, alors χA = (X − 3)2(X + 3). Pour la même raison que ci-dessus, dimE−3 = 1 = m−3. De

plus,

rang(A− 3I3) = rang

−4 2 2
2 −1 −1
2 −1 −1

 = 1 car L1 = −2L2 et L2 = L3 6= (0)

Par le théorème du rang, on en conclut que dimE3 = 2, et ainsi∑
λ∈SpR(A)

dimEλ = dimE−3 + dimE3 = 3 = dimM3,1(R)

donc A est diagonalisable dans M3(R).

Finalement, la matrice A est diagonalisable pour tout m ∈ R.

5. Dans le cas m = −1, on a vu que Sp(A) = {−3; 3}.
• Méthode 1 : De plus, comme dans la matrice A− 3I3, C1 = −2C2 et C2 = C3, les vecteurs

e1 =

1
2
0

 et e1 =

 0
1
−1


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appartiennent à E3. Comme ils sont non colinéaires, la famille (e1, e2) est une famille libre d’éléments de

E3, de cardinal 2 = dimE3, donc il s’agit d’une base de E3. De même, E−3 est de dimension 1, et dans la

matrice A+3I3, on remarque que C2+C3 = 2C1 donc le vecteur e3 =

−2
1
1

 appartient à E−3, et comme

il est non nul, c’est une base de E−3. Puisque A est diagonalisable dans M3(R), M3,1(R) = E3 ⊕ E−3
donc la concaténation B = (e1, e2, e3) est une base de M3,1(R). Si l’on note P la matrice de passage de

la base canonique de M3,1(R) à la base B, on obtient alors

P−1AP =

3 0 0
0 3 0
0 0 −3

 = D avec P =

1 0 −2
2 1 1
0 −1 1


On en déduit que A = PDP−1. On montre par récurrence immédiate que pour tout n ∈ N, An =

PDnP−1 et il reste à faire le calcul explicite de ce produit matriciel, après avoir calculé P−1...

• Méthode 2 : Comme A est diagonalisable dans M3(R), son polynôme minimal πA est scindé à racines

simples sur R. Par ailleurs, πA est unitaire et possède exactement les mêmes racines que χA, donc

πA = (X − 3)(X + 3). Soit n ∈ N, par division euclidienne de Xn par πA,

∃(Qn, Rn) ∈ R[X]2, (∗) Xn = πAQn +Rn avec deg(Rn) < deg(πA) = 2.

Par conséquent, il existe an, bn ∈ R tels que Rn = an + bnX. En évaluant (∗) successivement en 3 et en

−3, on en déduit :{
3n = an + 3bn
(−3)n = an − 3bn

⇐⇒
{
an = 1

2 (3n + (−3)n)
(−3)n = an − 3bn

en ayant effectué L1 ← L1 + L2

⇐⇒
{
an = 1

2 (3n + (−3)n)
bn = 1

6 (3n − (−3)n)

En évaluant (∗) en A, on obtient finalement, puisque πA est annulateur de A,

An = πA(A)Qn(A) +Rn(A)

= anI3 + bnA

=
1

2
(3n + (−3)n)I3 +

1

6
(3n − (−3)n)A

=
1

6

2.3n + 4(−3)n 2(3n − (−3)n) 2(3n − (−3)n)
2(3n − (−3)n) 5.3n + (−3)n −3n + (−3)n

2(3n − (−3)n) −3n + (−3)n 5.3n + (−3)n



6. Soient (xn)n, (yn)n et (zn)n 3 suites réelles. Pour n ∈ N, posons Xn =

xnyn
zn

 de sorte que

(xn)n, (yn)n et (zn)n vérifient le système donné ⇐⇒ ∀n ∈ N, Xn+1 =

−2 4 4
4 4 −2
4 −2 4

Xn

⇐⇒ ∀n ∈ N, Xn+1 = 2AXn

⇐⇒ ∀n ∈ N, Xn = 2nAnX0.

où A est la matrice de l’énoncé obtenue dans le cas m = −1. Par ailleurs, les conditions initiales données

sont équivalentes à X0 =

0
0
1

. Ainsi, (xn)n, (yn)n et (zn)n sont solutions du problème posé si, et seulement

si, pour tout n ∈ N, Xn est égal à la troisième colonne de la matrice An calculée à la question précédente
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multipliée par 2n, ce qui équivaut à

∀n ∈ N,


xn =

2n+1

6
(3n − (−3)n)

yn =
2n

6
(−3n + (−3)n)

zn =
2n

6
(5.3n + (−3)n)

Correction de l’exercice 2

1. Soit x ∈ E, il existe (x1, . . . , x4) ∈ R4 tel que x =

4∑
k=1

xkek. On a :

x ∈ Ker(f + 2 IdE) ⇐⇒


x1
x2
x3
x4

 ∈ Ker(A+ 2I4)

⇐⇒


1 0 1 0
5 3 4 1
−1 0 −1 0
5 0 2 3



x1
x2
x3
x4

 =


0
0
0
0


⇐⇒

 x1 + x3 = 0
5x1 + 3x2 + 4x3 + x4 = 0
5x1 + 2x3 + 3x4 = 0

⇐⇒

 x3 = −x1
x2 = 0
x4 = −x1

⇐⇒ x = x1e1 − x1e3 − x1e4

Ainsi, Ker(f + 2 IdE) = {x1(e1 − e3 − e4) | x1 ∈ R} = Vect{e1 − e3 − e4}. Comme le vecteur e1 − e3 − e4
n’est pas nul (par liberté de la famille B), la famille (e1 − e3 − e4) est une base de Ker(f + 2 IdE). Puisque

dim Ker(f + 2 IdE) = 1 6= 0, on en déduit que −2 est une valeur propre de f de multiplicité algébrique

supérieure ou égale à 1. Ainsi, le polynôme X − 2 divise χf .

2. On voit grâce à la deuxième colonne de A que f(e2) = 1e2. Puisque e2 6= 0E , on en déduit que 1 est aussi

valeur propre de f . Comme par hypothèse Sp(f) = {a; b} et que l’on vient de démontrer que {−2; 1} ⊂ Sp(f),

on peut conclure que a = −2 et b = 1 (ou réciproquement, par symétrie des rôles de a et b).

3. Comme χf est scindé sur R, f est trigonalisable. Notons, pour λ ∈ Sp(f), Eλ = Ker(f − λ IdE) l’espace

propre associé et Fλ = Ker((f − λ IdE)2) l’espace caractéristique associé (puisque les deux valeurs propres

sont de multiplicité algébrique 2). Déterminons une base de Fλ, sachant que cet espace vectoriel est de

dimension mλ = 2. Par les matrices données, comme les colonnes de (A+ 2I4)2 vérifient C2 − C3 + C4 est

la colonne nulle, le vecteur u2 = e2 − e3 + e4 appartient à F−2. L’inclusion E−2 ⊂ F−2 donne par ailleurs

u1 = e1 − e3 − e4 ∈ F−2. La famille (u1, u2) est donc une famille libre d’éléments de F−2 (car les deux

vecteurs ne sont pas colinéaires), de cardinal 2 = dimF−2. Ainsi, (u1, u2) est une base de F−2. De même,

comme les colonnes 2 et 4 de la matrice (A− I4)2 sont nulles, les vecteurs e2 et e4 appartiennent à F1. La

famille (e2, e4) est donc une famille libre maximale de F1, donc une base de F1.

Le caractère trigonalisable de f entrâıne E = F−2 ⊕ F1, ainsi la concaténation B′ = (u1, u2, e2, e4) est une

base de E. On a par construction f(u1) = −2u1 et f(e2) = e2. De plus, par calcul matriciel,

A


0
1
−1
1

 =


−1
−2
3
−1

 = −


1
0
−1
−1

− 2


0
1
−1
1

 donc f(u2) = −u1 − 2u2.
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De même, on a directement f(e4) = e2 + e4 ce qui entrâıne que la matrice de f dans la base B′ est

T =


−2 −1 0 0
0 −2 0 0
0 0 1 1
0 0 0 1

 = D +N où D =


−2 0 0 0
0 −2 0 0
0 0 1 0
0 0 0 1

 et N =


0 −1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


Puisque N est triangulaire supérieure stricte, N est nilpotente, et par calculs par blocs, N2 = 0M4(R). De

plus, si l’on écrit N =

(
N1 (0)
(0) N2

)
avec N1 et N2 dans M2(R), puisque D =

(
−2I2 (0)
(0) I2

)
, alors

DN =

(
−2I2N1 (0)

(0) I2N2

)
=

(
N1(−2I2) (0)

(0) N2I2

)
= ND

donc T est bien de la forme voulue.

4. Soient x, y, z, u : R −→ R dérivables. On pose X : R −→ R définie par

∀X(t) =


x(t)
y(t)
z(t)
u(t)


alors X est aussi dérivable sur R de dérivée donnée par

∀t ∈ R, X ′(t) =


x′(t)
y′(t)
z′(t)
u′(t)

 .

Ainsi,

x, y, z et u sont solutions de (S) ⇐⇒ ∀t ∈ R, X ′(t) =


−x(t) + z(t)

5x(t) + y(t) + 4z(t) + u(t)
−x(t)− 3z(t)

5x(t) + 2z(t) + u(t)


⇐⇒ ∀t ∈ R, X ′(t) = AX(t)

⇐⇒ ∃X0 ∈M4,1(R), ∀t ∈ R, X(t) = etAX0.

Soit t ∈ R, puisque les matrices tD et tN commutent, on sait déjà que etT = etD+tN = etDetN . Puisque tD

est une matrice diagonale, par le cours,

etD =


e−2t 0 0 0

0 e−2t 0 0
0 0 et 0
0 0 0 et


De plus, comme N2 est nulle, toutes les puissances de N supérieures à 2 sont aussi nulles, ce qui entrâıne

etN =

+∞∑
k=0

(tN)k

k!
=

1∑
k=0

tkNk

k!
= I4 + tN

d’où

etT =


e−2t 0 0 0

0 e−2t 0 0
0 0 et 0
0 0 0 et




1 −t 0 0
0 1 0 0
0 0 1 t
0 0 0 1

 =


e−2t −te−2t 0 0

0 e−2t 0 0
0 0 et tet

0 0 0 et


Finalement, par formule de changement de base,

T = P−1AP où P = PassB→B′ =


1 0 0 0
0 1 1 0
−1 −1 0 0
−1 1 0 1


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et ainsi etA = exp(P.tT.P−1) = PetTP−1. On obtient donc :

x, y, z et u sont solutions de (S)

⇐⇒ ∃X0 ∈M4,1(R), ∀t ∈ R, X(t) = PetTP−1X0

⇐⇒ ∃Y0 ∈M4,1(R), ∀t ∈ R, X(t) = PetTY0 (en posant Y0 = P−1X0)

⇐⇒ ∃α, β, γ, δ ∈ R, ∀t ∈ R, X(t) =


1 0 0 0
0 1 1 0
−1 −1 0 0
−1 1 0 1



e−2t −te−2t 0 0

0 e−2t 0 0
0 0 et tet

0 0 0 et



α
β
γ
δ



⇐⇒ ∃α, β, γ, δ ∈ R, ∀t ∈ R, X(t) =


e−2t −te−2t 0 0

0 e−2t et tet

−e−2t te−2t − e−2t 0 0
−e−2t te−2t + e−2t 0 et



α
β
γ
δ



⇐⇒ ∃α, β, γ, δ ∈ R, ∀t ∈ R,


x(t) = αe−2t − βte−2t
y(t) = βe−2t + γet + δtet

z(t) = −αe−2t + β(te−2t − e−2t)
u(t) = −αe−2t + β(te−2t + e−2t) + δet

Correction de l’exercice 3

1. Par définition du déterminant,

det
(
A
)

=
∑
σ∈Sn

ε(σ)

n∏
i=1

aσ(i),i

=
∑
σ∈Sn

ε(σ)

n∏
i=1

aσ(i),i par conjugué d’un produit

=
∑
σ∈Sn

ε(σ)

n∏
i=1

aσ(i),i

= det(A)

puisque ε(σ) ∈ {±1} pour toute permutation σ donc ε(σ) = ε(σ), et puisque le conjugué d’une somme est

la somme des conjugués.

2. On en déduit que

det(A) = det(tA) = det(−A) = (−1)n det
(
A
)

= (−1)ndet(A).

Ainsi, si n est pair, alors det(A) = det(A) donc det(A) ∈ R. Si n est impair, alors det(A) = −det(A).

Comme det(A) ∈ C, il existe deux réels a et b tels que det(A) = a+ ib. L’égalité ci-dessus se réécrit alors en

a+ ib = −a+ ib ce qui équivaut à a = 0 et ainsi det(A) = ib est un imaginaire pur.

Correction de l’exercice 4

1. L’égalité f3 = 4f2 − 4f équivaut à f3 − 4f2 + 4f = 0L(E) donc le polynôme P = X3 − 4X2 + 4X est

annulateur de f . Comme on peut factoriser P en P = X(X2 − 4X + 4) = X(X − 2)2, P est scindé sur R,

ce qui entrâıne que f est trigonalisable.

2. Le spectre de f est inclus dans l’ensemble des racines (réelles) de P , ainsi Sp(f) ⊂ {0; 2}. Par ailleurs, comme

f est trigonalisable, on sait que la somme des valeurs propres de f comptées avec multiplicité algébrique est
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égale à la trace de f . Si l’on note m0 et m2 les multiplicités algébriques respectives de 0 et 2 (éventuellement

nulles si 0 ou 2 n’appartient pas au spectre), on obtient alors

m00 +m22 = Tr(f) = 8 ⇐⇒ m2 = 4.

Par ailleurs, comme f est trigonalisable, son polynôme caractéristique est scindé sur R, donc la somme des

multiplicités de ses racines est égale à dim(E) = n, ce qui entrâıne, puisque ses racines constituent Sp(f),

que m0 +m2 = n. Ainsi, m0 = n− 4 ≥ 1 puisque n ≥ 5. On en déduit que Sp(f) = {0; 2} avec m0 = n− 4

et m2 = 4.

On aurait aussi pu utiliser une base de trigonalisation de f : comme f est trigonalisable, il existe une

base B′ de E dans laquelle la matrice de f est une matrice triangulaire supérieure de Mn(R), et ses

éléments diagonaux appartiennent à Sp(f). Avec les notations ci-dessus, m0 de ces termes diagonaux valent

0, et m2 des autres valent 2, ce qui entrâıne nécessairement m0 + m2 = n, 8 = Tr(f) = m00 + m22 et

χf = Xm0(X − 2)m2 = Xn−4(X − 2)4 donnant ainsi le spectre (puisque n − 4 ≥ 1) et les multiplicités

respectives des valeurs propres 0 et 2.

3. Le polynôme minimal πf de f divise tout polynôme annulateur de f , donc il divise P . De plus, il est unitaire,

et l’ensemble de ses racines dans R est égal à Sp(f). Ainsi, πf appartient à {X(X − 2);X(X − 2)2}. Par

ailleurs, f est non diagonalisable, donc son polynôme minimal ne peut pas être scindé à racines simples sur

R, donc πf = X(X − 2)2.

4. Comme k est un entier inférieur à mλ, on sait que Ker((f − λ IdE)k) ⊂ Ker((f − λ IdE)mλ) = Fλ où Fλ

désigne le sous-espace caractéristique associé à λ. Comme celui-ci est de dimension mλ par le cours, on en

déduit que dim Ker((f − λ IdE)k) ≤ dimFλ = mλ.

5. Les polynômes X et (X − 2)2 sont premiers entre eux (en effet, les seuls diviseurs unitaires de X sont 1 et

X, et parmi eux, seul 1 divise (X − 2)2). On peut donc appliquer le Lemme des noyaux :

Ker(f ◦ (f − 2 IdE)2) = Ker(f)⊕Ker((f − 2 IdE)2).

Comme f◦(f−2 dE)2 = P (f) = 0L(E), Ker(f◦(f−2 dE)2) = E, ce qui montre que Ker(f) et Ker((f−2 IdE)2)

sont supplémentaires dans E.

Par conséquent, dim Ker(f) + dim Ker((f − 2 Id2)2) = dim(E) = n. La question précédente donnait aussi

les deux inégalités dim Ker(f) ≤ m0 = n − 4 et dim Ker((f − 2 IdE)2) ≤ m2 = 4, donc la seule possibilité

pour que leur somme vaille n est dim Ker(f) = n− 4 et dim Ker((f − 2 IdE)2) = 4.

Remarque : si on ne nous demandait pas d’utiliser la question précédente, on pourrait argumenter direc-

tement par le cours à l’aide du polynôme minimal de f . Puisque πf = X(X − 2)2, si l’on note α0 = 1 et

α2 = 2 les multiplicités respectives de 0 et 2 en tant que racines de πf , on sait que pour tout λ ∈ Sp(f),

l’espace vectoriel Gλ = Ker((f − λ IdE)αk) est égal à l’espace caractéristique de f et est de dimension mλ.

Ainsi, Ker(f) = G0 est de dimension m0 = n− 4 et Ker((f − 2 IdE)2) = G2 est de dimension m2 = 4.

6. Puisque les sous-espaces vectoriels Ker(f) et Ker((f − 2 IdE)2) sont des noyaux de polynômes en f qui

commutent avec f , ils sont stables par f . Par conséquent, si l’on note la base adaptée B = B1 ∪ B2 comme

la concaténation de la base B1 de G0 = Ker(f) et de la base B2 de G2 = Ker((f − 2 IdE)2), la matrice de f

dans B est diagonale par blocs de la forme

M =

(
M1 (0)
(0) M2

)
avec M1 = MatB1

(fG0
) ∈Mn−4(R) et M2 = MatB2

(fG2
) ∈M4(R)
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où fG2 désigne l’endomorphisme induit par f sur G2. Comme l’image par f d’un élément de Ker(f) est

nulle, on peut affirmer que M1 = 0Mn−4(R) (car pour tout x ∈ B1, fG0(x) = f(x) = 0E).

7. Par définition, pour tout x ∈ G2 = Ker((f −2 IdE)2), on a (fG2
−2 IdG2

)2(x) = (f −2 IdE)2(x) = 0E . Ainsi,

si l’on note N = M2 − 2I4, alors

N2 = (M − 2I4)2 = MatB2

(
(fG2 − 2 IdG2)2

)
= 0M4(R)

ce qui démontre que M2 = 2I4 + N avec N nilpotente d’indice de nilpotence inférieure ou égale à 2 (on

aurait aussi pu utiliser le calcul par blocs et le polynôme P annulateur de f pour montrer que N2 est

nulle). En outre, on ne peut pas avoir N = 0, sinon M2 = 2I4 entrâınerait que M = MatB(f) est diagonale,

ce qui contredit l’hypothèse que f est non diagonalisable. Finalement, N est donc d’indice de nilpotence

exactement 2.
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