
Courbes parametrées
.
1.1. On appelle courbe paramétrée (de classe Ck) toute application

γ d’un intervalle I dans Rn. Synonimes: arc paramétré, chemin ou mouve-
ment.

L’image C = γ(I) est la courbe représentée (ou paramétrée) par γ.
Attention: la même courbe peut être paramétrée de plusieurs façons.
Exemple: Le graphe d’une fonction f : I → R est une courbe dans le

plan (x, y) paramétrée par le parametre x: y = f(x).
.
1.2. Droite tangente. Soit D(t) une famille des droites dépendant

d’un parametre t et passant par le même point M . On dit que la droite D
passant par M et dirigée par le vecteur u est la limite de D(t) quand t→ t0
si on peut choisir une famille u(t) de vecteurs directeurs de D(t) telle que
u = limt→t0 u(t).

Définition. Soit γ une courbe paramétrée; supposons que γ(t) 6= γ(t0)
quand t est proche de t0 (t 6= t0). Soit D(t) la droite passant par les points
γ(t0) et γ(t). On appelle droite tangente de γ en t0 la limite (si elle existe)
de la famille D(t) quand t→ t0.

La dérivée γ′(t) s’appelle vecteur tangent (ou la vitesse) de la courbe
en t. Un point t ∈ I est dit régulier si γ′(t) 6= 0, singulier sinon. La
courbe est dite régulière si tous ses points sont réguliers.

1.3. Lemme. La droite tangente en un point régulier existe et est
dirigée par le vecteur tangent.

Paramétrisation de la droite tangenet. Si γ′(t0) 6= 0, la droite tantente
est donnée par l(t) = γ(t0) + (t0 − t)γ′(t).

En cas d’un graphe, x = t, y = f(t), le vecteur tangent est (1, f ′(t)); la
tantente est le graphe de la fonction y = f(t0) + f ′(t0)(t− t0).

La tangente géométrique existe souvant même en un point singulier.
1.4. Lemme. Soit γ′(t0) = 0, ... , γ(k−1)(t0) = 0 et γ(k) (t0) 6= 0 Alors

la droite tangente en t0 existe et est dirigée par le vecteur γ(k) (t0).
Remarque Pour une courbe plane γ(t) = (x(t), y(t)) la pente de la

tangente est donnée par limt→t0(y(t)− y(t0))/(x(t)− x(t0)).
.
1.5. Position d’une courbe plane par rapport à sa droite tan-

gente au voisinage d’un point régulier t0.
On écrit le developpement limité de γ(t) en t0 à l’ordre 2:

γ(t)− γ(t0) = (t− t0)γ′(t0) +
1
2
(t− t0)2γ′′(t0) + o((t− t0)2)
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En prenant la projection sur la droite transversale parallèlement à la
droite tangente, on conclut que si γ′′(t0) n’est pas colinéaire à γ′(t0), la
courbe est située, au voisinage de t0, d’un seul côté de la tangente, dans le
demi-plan contenant le vecteur γ′′(t0) ( le demi-plan de concavité de γ en
t0).

Si γ′′(t0) est colinéaire à γ′(t0), on poursuit le développement,
γ(t)−γ(t0) = (t−t0)γ′(t0)+ 1

2(t−t0)2γ′′(t0)+ 1
6(t−t0)3γ′′′(t0)+o((t−t0)3).

Dans ce cas, si γ′′′(t0) n’est pas colinéaire à γ′(t0), la courbe passe d’un
côté de la tangente à l’autre; le point où la courbe traverse la tangete est un
point d’inflexion.

.
1.6. Changement de paramètre.
Soit γ : I → Rn une courbe paramétrée, de classe Ck. Soit J un intervalle

et p : J → I une fonction Ck telle que p′(s) 6= 0 pour tout s ∈ J et p(J) = I.
La courbe paramétrée β(s) = γ(p(s)) s’obtient de γ par le change-

ment de paramètre (reparamétrage) t = p(s). Dans ce cas β et v sont
des paramétrages équivalents de la même courbe.

On a dβ
ds = dt

ds
dγ
dt . La droite tangente est invariante par reparamétrage.

Un paramétrage détermine le sens de parcours ou l’orientation de la
courbe. Un reparamétrage p préserve l’orientation si p est une fonction
croissante: p′(s) > 0.

1.7. Lemme. Au voisinage d’un point régulier une courbe de classe Ck

est le graphe d’une fonction de classe Ck.
.
1.8. Longueur d’arc. Soit γ : [a, b] → Rn une courbe paramétrée

de classe C1 dans un espace euclidien. La longueur de la courbe γ est
définie par

L(γ) =
∫ b

a
‖ γ′(t) ‖ dt

Motivation: Pour toute subdivision a < t1 < ... < tk < b considérons
la ligne polygonale ”inscrite” passant par les sommets γ(a), γ(t1), ... γ(tk),
γ(b).

1.9. Lemme. L(γ) est la borne supérieure des longueurs des lignes
polygonales ”inscrites” dans γ.

.
En coordonnées cartésiennes: si γ(t) = (x1(t), ..., xn(t)),
L(γ) =

∫ b
a

√
x′1(t)2 + ...+ x′n(t)2dt

Pour un graphe dans le plan, y = f(x), la longueur est
L =

∫ b
a

√
1 + y′(t)2dt.
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La définition de la longueur fait intervenir le paramétrage de la courbe.
En fait, le résultat ne dépend pas du paramétrage au sens suivant:

1.10. Lemme. La longueur de la courbe est invariante par reparamétrage.
Remarque. L(γ) ≥‖ γ(b) − γ(a) ‖; l’égalité a lieu si et seulement si la

courbe est un segment de droite.
.
1.11. Abscisse curviligne.
Soit γ : I → Rn une courbe régulière (γ′(t) 6= 0).
Soit t0 ∈ I et l(t) =

∫ t
t0
‖ γ′(u) ‖ du la longueur d’arc entre t0 et t. Alors

l′(t) =‖ γ′(t) ‖ et on peut utiliser s = l(t) comme un nouveau paramètre.
Soit t = p(s) la fonction réciproque et γ(p(s)) la courbe reparamétrée.

Lemme. (i) ‖ d
dsγ(p(s)) ‖= 1.

(ii) Tout autre reparamétrage t = q(r) tel que ‖ d
drγ(q(r)) ‖= 1 est lié

avec s par r = ±s+ const.
On appelle paramétrage par abscisse curviligne ou longuer d’arc

tout paramétrage tel que le vecteur tangent est unitaire en tout point.
.
Asymptotes des courbes planes.
Soit γ(t) = (x(t), y(t)) une courbe paramétrée dansR2 définie sur l’intervalle

]a, b[ (il se peut que b = ∞).
Définition. γ admet une branche infinie en b si ‖ γ(t) ‖→ ∞ quand

t→ b.
Définition. Une droite D est asymptote à γ en b si la distance de γ(t)

à D tend vers 0 quand t→ b.
1.12. Lemme. La courbe γ admet la droite définie par l’équation

px+qy+r = 0 comme asymptote en b si et seulement si px(t)+qy(t)+r → 0
quand t→ b.

Soit | x(t) |→ ∞. Si px(t) + qy(t) + r → 0, alors q 6= 0 et en divisant
par q on écrit cette condition comme y(t) = cx(t) + d→ 0 quand t→ b.

L’asymptote est donc caractérisée par deux conditions:
1) la limite limt→b

y(t)
x(t) = c existe et

2) la limite limt→b y(t)− cx(t) = d existe.
Remarque. La limite limt→b

y(t)
x(t) , si elle existe, donne la direction asymp-

totique de la courbe.
.
Cas d’un graphe y = f(x), a < x < b. Il y a une branche infinie en b si

soit b < ∞ et | y(t) |→ ∞ quand t → b, soit b = ∞. Dans le premier cas
il y une asymptote verticale x = b. Dans le deuxième cas, x → ∞, il faut
étudier les limites limx→∞

f(x)
x = c et limx→∞(f(x)− cx).
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.
2. Courbure

Soit γ une courbe régulière de classe C2 paramétrée par l’abscisse curvi-
line: ‖ γ′(s) ‖= 1. Alors < γ′′(s), γ′(s) >= 0 et donc −γ′′(s) est accélération
centrifuge quand on parcourt γ avec la vitesse unitaire. Sa norme

k(s) =‖ γ′′(s) ‖

s’appelle la courbure de γ en s.
Exemple. La coubure d’une droite est nulle. La courbure d’un cercle de

rayon r est k = 1/r.
2.1. Lemme. Si la courbure est partout nulle, la courbe est un segment

de droite.
2.2. Lemme. Les courbes planes régulières à courbure constante non-

nulle sont les arcs de cercle.
Le rayon de courbure est l’inverse de la courbure: ρ(s) = 1/k(s).
2.3. Interprétation géométrique. La coubure mesure la déviation

de la courbe de sa droite tangente.
Soit k(s) 6= 0. Soit s1 6= s, s2 6= s et s1 6= s2. Le cercle C(s1, s2) passant

par trois points γ(s), γ(s1), γ(s2) admet une position limite quand s1 → s
et s2 → s. Le rayon de ce cercle limite est le rayon de courbure de γ en s.

Pour un paramétrage quelconque la courbure relie la vitesse et l’accération
centrifuge γ′′⊥ (composante normale de l’accélération)

γ′′⊥ = γ′′ − <γ′′(s),γ′(s)>
‖γ′(s)‖2 γ′(t):

on a k(t) =‖ γ′′⊥(t) ‖ / ‖ γ′(t) ‖2.
Interprétation mécanique: l’accélération centrifuge est égale au produit

de la courbure et du carré de la vitesse.
.
La courbure d’une courbe plane est donnée par

k(t) =
| det(γ′(t), γ′′(t)) |

‖ γ′(t) ‖3
=
| x′y′′ − x′′y′ |
(x′2 + y′2)3/2

Cas d’un graphe y = f(x): la courbure k(x) = |f ′′(x)|
(1+f ′(x)2)3/2

.
Courbes planes

3. Coordonnées polaires
3.1. Les cordonnées polaires dans R2 sont données par l’application

(r, ϕ) → (x, y) de R2 dans R2: x = r cosϕ, y = r sinϕ.
Ce n’est pas une bijection; en plus la valeur r = 0 est mauvaise (”pôle”).

Si on veut définir un système de coordonnées polaires dans R2 il faut choisir
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un domaine D dans le plan (x, y) et un domaine D′ dans le plan (r, ϕ) où
l’application polaire donne une bijection, par exemple r > 0 et 0 ≤ ϕ < 2π.

On définit le repère orthonormé (repère polaire) (u, v) dans R2 :
u(ϕ) = (cosϕ, sinϕ) et v(ϕ) = (− sinϕ, cosϕ).
Noter que du

dϕ = v et dv
dϕ = −u.

3.2. Courbe paramérée en coordonnées polaire est définie par
la donnée de deux fonctions r(t) et ϕ(t); son paramétrage en coordonnées
cartésiennes sera donc x(t) = r(t) cosϕ(t), y(t) = r(t) sinϕ(t) ou γ(t) =
r(t)u(ϕ(t)).

Vitesse et accélération:
γ′(t) = r′(t)u(ϕ(t)) + r(t)ϕ′(t)v(ϕ(t)),
γ′′(t) = (r′′(t)− r(t)ϕ′′(t))u(ϕ(t)) + 2r′(t)ϕ′(t)v(ϕ(t)).
.
3.3. Tangente en pôle r = 0. Soit r(t0) = 0; supposons que r(t) 6= 0

quand t est proche mais différent de t0 [c’est le cas si il existe k > 0 tel
que dkr

dtk
(t0) 6= 0]. Alors la droite passant par γ(t0) = 0 et γ(t) = r(t)u(t)

est dirigée par le vecteur u(t)) et admet une position limite dirigée par le
vecteur u(t0). Donc la tangente en t0 existe et fait l’angle ϕ(t0) avec l’axe
des x.

3.4. Courbe donnée par une équation polaire r = r(ϕ): il s’agit
du cas où la courbe est paramérée par t = ϕ du (le ”graphe en coordonnées
polaires”). Alors

γ′(ϕ) = r′(ϕ)u(ϕ) + r(ϕ)v(ϕ),
γ′′(ϕ) = (r′′(ϕ)− r(ϕ))u(ϕ) + 2r′(ϕ)v(ϕ).
.
3.5. La longueur de la courbe de l’équation r = r(ϕ) est donnée par

L(γ) =
∫ b

a
‖ γ′(ϕ) ‖ dϕ =

∫ b

a

√
r′(ϕ)2 + r(ϕ)2dϕ

3.6. La courbure est donnée par

k =
| det(γ′, γ′′) |
‖ γ′ ‖3

=
| r′′r − r2 − 2r′2 |

(r′2 + r2)3/2

.
3.7. Asymptotes. On suppose que r(ϕ) →∞ quand ϕ→ ϕ0. L’angle

ϕ0 donne la direction asymptotique.
On peut se ramener au cas ϕ0 = 0 par une rotation d’angle ϕ0 (en

ramplaçant ϕ par ϕ−ϕ0). Soit donc ϕ0 = 0. Une asymptote doit donc être
parallèlle à l’axe des x. La droite y = c sera une asymptote si et seulement
si y = r(ϕ) sinϕ→ c quand ϕ→ 0.
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En général, il y a une asymptote si et seulement si le produit
r(ϕ) sin(ϕ− ϕ0) admet une limite quand ϕ→ ϕ0.
.
Détermination d’angle. Malgré le fait que l’angle polaire ne peut pas

être défini comme une fonction continue dans tout le plan (privé de 0), toute
courbe ne passant pas par 0 admet un paramétrage en coordonnées polaires.

3.8. Lemme. Soit γ une courbe paramétrée de classe Ck qui ne
passe pas par 0. Il existe une fonction ϕ(t) de classe Ck telle que γ(t) =
(r(t) cosϕ(t), r(t) sinϕ(t)). Ici r(t) =‖ γ(t) ‖.

Démonstration: on a x′ = r′ cosϕ+ rϕ′ sinϕ et y′ = r′ sinϕ− rϕ′ cosϕ,
d’où ϕ′ = xy′−x′y

x2+y2 . Alors on définit ϕ(t) par intégration:

ϕ′(t) = ϕ0+
∫ t
t0

xy′−x′y
x2+y2 (s)ds, où ϕ0 est tel que γ(t0) = (r(t0) cosϕ0, r(t0) sinϕ0).

Une telle fonction ϕ(t) s’appelle détermination d’angle le long de la
courbe γ(g).

Si ϕ1(t) est une autre détermination d’angle alors ϕ1(t) = ϕ(t) + 2πn,
n ∈ Z.

.
3.9. Ecriture complèxe. x+ iy = reiϕ.
On a u(ϕ) = eiϕ, v(ϕ) = ieiϕ.
γ(t) = r(t)eiϕ(t),
γ′ = (r′ + irϕ′)eiϕ, etc.
.
Courbes planes définies par une équation.
Soit f une fonction (de classe Ck) définie dans un ouvert U de R2.
La courbe définie par l’équation f(x, y) = 0 est l’ensemble
Γ = {(x, y) ∈ U : f(x, y) = 0}.
3.10. Théorème de la fonction implicite. Soit f(a, b) = 0 et

(∂f/∂y)(a, b) 6= 0. Alors il existe un ouvert U ′ contenant (a, b) sur lequel
l’équation f(x, y) = 0 définisse y comme une fonction ϕ de classe Ck: ϕ(x)
est définie sur un intervalle I et (x, y) ∈ U ′ vérifie f(x, y) = 0 si et seulement
si y = ϕ(x).

Donc la partie Γ ∩ U ′ de Γ est le graphe de la fonction ϕ(x), un arc
régulier.

On ne connais pas ϕ exactement (c’est une ”fonction implicite”) mais
on peut calculer les dérivées de ϕ en a en dérivant l’identité f(x, ϕ(x)) = 0.

Cela donne ϕ′ = −fx/fy et ϕ′′ = −(fxx +2ϕ′fxy +ϕ′2fyy)/fy (rappelons
que y = ϕ(x)).

Symétriquement, si (∂f/∂x)(a, b) 6= 0, on peut résoudre f(x, y) = 0 pour
x en fonction de y: x = ψ(y) (au voisinage de (a, b).
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Un point de Γ est dit régulier si df(a,b) 6= 0 (si les dérivées partielles
de f ne s’ennulent pas en même temps). Par conséquent, au voisinage d’un
point réguler Γ peut être paramétrée comme une courbe régulière.

La tangente en un point régulier (a, b) est orthogonale au gradient de f
en (a, b) et a comme équation

∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y − b) = 0

.
3.11. Courbure algébrique d’une courbe plane orientée.
Soit γ une courbe plane régulière paramétrée par l’abscisse curviligne.

Donc ‖ γ′(s) ‖= 1 et on peut écrire γ′(s) = (cosϕ(s), sinϕ(s)).
Alors γ′′(s) = ϕ′(s)(− sinϕ(s), cosϕ(s)) et la courbure est k(s) =| ϕ′(s) |.
La courbure est la (valeur absolue de la) vitesse angulaire de

la rotation du vecteur tangent quand la courbe est parcourue à
vitesse constante 1.

La vitesse angulaire ϕ′(s) = K(s) s’appelle courbure algébrique: le
signe de K(s) indique de quel côté la courbe est sutuée par rapport à sa
tangente (le demi-plan de concavité). Si K(s) change de signe en s0, il
s’agit d’un point d’inflexion.
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