Courbes parametrées

1.1. On appelle courbe paramétrée (de classe C*) toute application
~ d’un intervalle I dans R™. Synonimes: arc paramétré, chemin ou mouve-
ment.

L’image C' = 7(I) est la courbe représentée (ou paramétrée) par .

Attention: la méme courbe peut étre paramétrée de plusieurs fagons.

Ezxemple: Le graphe d’'une fonction f : I — R est une courbe dans le
plan (x,y) paramétrée par le parametre z: y = f(x).

1.2. Droite tangente. Soit D(¢) une famille des droites dépendant
d’un parametre t et passant par le méme point M. On dit que la droite D
passant par M et dirigée par le vecteur u est la limite de D(t) quand t — tg
si on peut choisir une famille u(t) de vecteurs directeurs de D(t) telle que
u = limy_, u(t).

Définition. Soit v une courbe paramétrée; supposons que y(t) # y(to)
quand ¢ est proche de ty (t # tp). Soit D(t) la droite passant par les points
v(to) et v(t). On appelle droite tangente de -y en t la limite (si elle existe)
de la famille D(t) quand t — tg.

La dérivée ~'(t) s’appelle vecteur tangent (ou la vitesse) de la courbe
en t. Un point t € I est dit régulier si 7/(¢t) # 0, singulier sinon. La
courbe est dite réguliere si tous ses points sont réguliers.

1.3. Lemme. La droite tangente en un point régulier existe et est
dirigée par le vecteur tangent.

Paramétrisation de la droite tangenet. Si '(tg) # 0, la droite tantente
est donnée par I(t) = v(to) + (to — t)v'(¢).

En cas d’un graphe, z = t, y = f(¢), le vecteur tangent est (1, f/(¢)); la
tantente est le graphe de la fonction y = f(to) + f'(to)(t — to)-

La tangente géométrique existe souvant méme en un point singulier.

1.4. Lemme. Soit 7/(tg) =0, ... , Y*~D(tg) = 0 et v*) (3) # 0 Alors
la droite tangente en tg existe et est dirigée par le vecteur 7(’“) (to)-

Remarque Pour une courbe plane v(t) = (z(t),y(t)) la pente de la
tangente est donnée par lim;_, (y(t) — y(to))/(x(t) — x(to))-

1.5. Position d’une courbe plane par rapport a sa droite tan-

gente au voisinage d’un point régulier tg.
On écrit le developpement limité de v(t) en ¢y a Uordre 2:

Y(t) = (o) = (t —to)y'(to) + %(t — 1)y (to) + o((t — t0)?)



En prenant la projection sur la droite transversale parallelement a la
droite tangente, on conclut que si 7”(tg) n’est pas colinéaire & 7/(tg), la
courbe est située, au voisinage de £y, d’'un seul coté de la tangente, dans le
demi-plan contenant le vecteur 7" (¢g) ( le demi-plan de concavité de v en
to).

Si 7" (tg) est colinéaire & (o), on poursuit le développement,

Y(t)=(to) = (t—to)7 (to)+3 (t—t0)*y" (to) +§ (t—t0)*y" (to) +-o((t—t0)?)-

Dans ce cas, si 7" (tp) n’est pas colinéaire & 7/(t¢), la courbe passe d'un
coté de la tangente a I'autre; le point ou la courbe traverse la tangete est un
point d’inflexion.

1.6. Changement de parameétre.

Soit v : I — R™ une courbe paramétrée, de classe C*. Soit J un intervalle
et p: J — I une fonction C* telle que p'(s) # 0 pour tout s € J et p(J) = 1.

La courbe paramétrée (B(s) = ~(p(s)) s’obtient de v par le change-
ment de parametre (reparamétrage) ¢ = p(s). Dans ce cas ( et v sont
des paramétrages équivalents de la méme courbe.

On a % = %Cfl—z. La droite tangente est invariante par reparamétrage.

Un paramétrage détermine le sens de parcours ou I’orientation de la
courbe. Un reparamétrage p préserve ’orientation si p est une fonction
croissante: p/(s) > 0.

1.7. Lemme. Au voisinage d’un point régulier une courbe de classe C*

est le graphe d’une fonction de classe C*.

1.8. Longueur d’arc. Soit 7 : [a,b] — R™ une courbe paramétrée
de classe C' dans un espace euclidien. La longueur de la courbe v est
définie par

b
L= [ 17w a

Motivation: Pour toute subdivision a < t1 < ... < t; < b considérons
la ligne polygonale ”inscrite” passant par les sommets y(a), y(t1), ... v(tx),
7(b).

1.9. Lemme. L(v) est la borne supérieure des longueurs des lignes
polygonales ”inscrites” dans .

En coordonnées cartésiennes: si y(t) = (z1(t), ..., xn(t)),

L(Y) = 2 \Jah(8)2 + .. + ), ()2t
Pour un graphe dans le plan, y = f(z), la longueur est

L= [0V1+y(t)2dt.




La définition de la longueur fait intervenir le paramétrage de la courbe.
En fait, le résultat ne dépend pas du paramétrage au sens suivant:

1.10. Lemme. Lalongueur de la courbe est invariante par reparamétrage.

Remarque. L(y) > v(b) — v(a) ||; 'égalité a lieu si et seulement si la
courbe est un segment de droite.

1.11. Abscisse curviligne.

Soit y : I — R™ une courbe réguliere (7/(t) # 0).

Soit tg € I et I(t) = ftto || 7/ (u) || du la longueur d’arc entre g et t. Alors
U'(t) =|| ¥/(t) || et on peut utiliser s = [(t) comme un nouveau parametre.
Soit t = p(s) la fonction réciproque et y(p(s)) la courbe reparamétrée.

Lemme. (i) | £7(p(s)) |- L

(ii) Tout autre reparamétrage t = ¢(r) tel que || d%’y(q(r)) |= 1 est lié
avec § par r = +s + const.

On appelle paramétrage par abscisse curviligne ou longuer d’arc
tout paramétrage tel que le vecteur tangent est unitaire en tout point.

Asymptotes des courbes planes.

Soit y(t) = (z(t), y(t)) une courbe paramétrée dans R? définie sur I'intervalle
Ja, b[ (il se peut que b = o).

Définition. v admet une branche infinie en b si || v(¢) | — oo quand
t—b.

Définition. Une droite D est asymptote a v en b si la distance de 7(t)
a D tend vers 0 quand ¢t — b.

1.12. Lemme. La courbe v admet la droite définie par I’équation
pr+qy—+r = 0 comme asymptote en b si et seulement si px(t)+qy(t)+r — 0
quand t — b.

Soit | z(t) |— oo. Si pz(t) + qy(t) +r — 0, alors ¢ # 0 et en divisant
par ¢ on écrit cette condition comme y(t) = cx(t) + d — 0 quand t — b.

L’asymptote est donc caractérisée par deux conditions:

1) la limite lim; % = ¢ existe et

2) la limite limy_; y(t) — cz(t) = d existe.

Remarque. La limite lim;_.; %, si elle existe, donne la direction asymp-
totique de la courbe.

Cas d’un graphe y = f(z), a < x < b. Il y a une branche infinie en b si
soit b < oo et | y(t) |— oo quand t — b, soit b = oco. Dans le premier cas
il y une asymptote verticale x = b. Dans le deuxieme cas, z — oo, il faut

étudier les limites lim,_, o @ = cet lim, oo (f(z) — cx).



2. Courbure
Soit v une courbe réguliere de classe C? paramétrée par I’abscisse curvi-
line: || 7/(s) ||=1. Alors < ~"(s),'(s) >= 0 et donc —"(s) est accélération
centrifuge quand on parcourt 7y avec la vitesse unitaire. Sa norme

k(s) =[7"(s)

s’appelle la courbure de v en s.

Ezemple. La coubure d’une droite est nulle. La courbure d’un cercle de
rayon r est k= 1/r.

2.1. Lemme. Sila courbure est partout nulle, la courbe est un segment
de droite.

2.2. Lemmae. Les courbes planes régulieres a courbure constante non-
nulle sont les arcs de cercle.

Le rayon de courbure est l'inverse de la courbure: p(s) = 1/k(s).

2.3. Interprétation géométrique. La coubure mesure la déviation
de la courbe de sa droite tangente.

Soit k(s) # 0. Soit s1 # s, s2 # s et s1 # s2. Le cercle C(s1, s2) passant
par trois points y(s), v(s1), 7(s2) admet une position limite quand s; — s
et so — s. Le rayon de ce cercle limite est le rayon de courbure de 7 en s.

Pour un paramétrage quelconque la courbure relie la vitesse et l’accération

centrifuge ' (composante normale de l’accélération)
"o <Y (EAS)> 1.
TL=7 — TV (t):
onak(t) =y (t) | /17 |
Interprétation mécanique: 'accélération centrifuge est égale au produit
de la courbure et du carré de la vitesse.

La courbure d’une courbe plane est donnée par

bty — LAt/ O W) | |2y =y |
VO~ @2y
Lf" ()]

Cas d’un graphe y = f(x): la courbure k(z) = AT @2
Courbes planes
3. Coordonnées polaires
3.1. Les cordonnées polaires dans R? sont données par 'application
(r,0) — (x,y) de R? dans R?: z =rcos¢y, y = rsin .
Ce n’est pas une bijection; en plus la valeur r = 0 est mauvaise ("pdle”).
Si on veut définir un systéme de coordonnées polaires dans R? il faut choisir



un domaine D dans le plan (z,y) et un domaine D’ dans le plan (r,¢) ol
I’application polaire donne une bijection, par exemple r > 0 et 0 < ¢ < 27.

On définit le repére orthonormé (repere polaire) (u,v) dans R? :

u(p) = (cos p, sin @) et v(go) = (—siny, cos ).

Noter que g =vet d(p = —u.

3.2. Courbe paramérée en coordonnées polaire est définie par
la donnée de deux fonctions r(t) et ¢(t); son paramétrage en coordonnées
cartésiennes sera donc z(t) = r(t)cosp(t), y(t) = r(t)sinp(t) ou y(t) =
r(t)ule(t)).

Vitesse et accélération:

V(1) = (ulp(t)) + (B (H(e(t)),

V(8) = (7" (&) = ()" () ule(t) + 2" ()¢ ()v(e(t))-

3.3. Tangente en pdle r = 0. Soit r(tg) = 0; supposons que r(t) # 0
quand t est proche mais différent de ¢y [c’est le cas si il existe & > 0 tel
que dtk r(to) # 0]. Alors la droite passant par y(tp) = 0 et y(t) = r(t)u(t)
est dirigée par le vecteur u(t)) et admet une position limite dirigée par le
vecteur u(tg). Donc la tangente en t( existe et fait Pangle p(tg) avec 1'axe
des x.

3.4. Courbe donnée par une équation polaire r = r(y): il s’agit
du cas ou la courbe est paramérée par t = ¢ du (le "graphe en coordonnées
polaires”). Alors

Y (¢) =r'(p)ulp) + r()v(p),

V(@) = (r"(p) — r())ule) + 2r'(p)v(p).

3.5. La longueur de la courbe de I"équation r = r(¢) est donnée par

b b
Lo = [ 1@ e = [ rer +r(erde

3.6. La courbure est donnée par
L ety | | =2 =2 |
R R

3.7. Asymptotes. On suppose que 7(¢) — oo quand ¢ — ¢g. L’angle
(o donne la direction asymptotique.

On peut se ramener au cas ¢y = 0 par une rotation d’angle ¢y (en
ramplacant ¢ par ¢ — ¢g). Soit donc ¢y = 0. Une asymptote doit donc étre
parallelle a I'axe des x. La droite y = ¢ sera une asymptote si et seulement
siy =r(p)sinp — ¢ quand ¢ — 0.



En général, il y a une asymptote si et seulement si le produit
r(p) sin(p — ¢o) admet une limite quand ¢ — @o.

Détermination d’angle. Malgré le fait que ’angle polaire ne peut pas
étre défini comme une fonction continue dans tout le plan (privé de 0), toute
courbe ne passant pas par 0 admet un paramétrage en coordonnées polaires.

3.8. Lemme. Soit v une courbe paramétrée de classe C* qui ne
passe pas par 0. Il existe une fonction ¢(t) de classe CF telle que (t) =
(r(t) cos (), r(t) sinp(t)). Iei r(t) =[ ~(t) |-

Démonstration: on a &’ = 1" cosg + r¢’sing et y' = r'sinp — r¢’ cos ¢,
d’ott ¢’ = . Alors on définit ¢(t) par intégration:

o' (t) = gDo—l-fO W( s)ds, ol ¢g est tel que y(tg) = (r(to) cos @g, (o) sin g).

Une telle fonction ¢(t) s’appelle détermination d’angle le long de la
courbe v(g).

Si p1(t) est une autre détermination d’angle alors i(t) = @(t) + 2mn,
neJs.

3.9. Ecriture compléxe. z + iy = re'?.
On a u(p) = €%, v(p) = ie'.
( ) = r(t)e),
= (r' +iry)e', ete.

Courbes planes définies par une équation.

Soit f une fonction (de classe C*) définie dans un ouvert U de R2.

La courbe définie par l’équation f(x,y) = 0 est 'ensemble

I'={(z,y) €U : f(z,y) =0}

3.10. Théoréme de la fonction implicite. Soit f(a,b) = 0 et
(0f/0y)(a,b) # 0. Alors il existe un ouvert U’ contenant (a,b) sur lequel
I’équation f(x,y) = 0 définisse y comme une fonction ¢ de classe C*: ¢(x)
est définie sur un intervalle I et (z,y) € U’ vérifie f(x,y) = 0 si et seulement
siy = p(z).

Donc la partie I' N U’ de T est le graphe de la fonction ¢(x), un arc
régulier.

On ne connais pas ¢ exactement (c’est une ”fonction implicite”) mais
on peut calculer les dérivées de ¢ en a en dérivant l'identité f(z, ¢(x)) = 0.

Cela dorme ¢’ = —f,/f, et ¢" = —(fra +2¢' foy + 9 fy)/ f, (vappelons
que y = p(x)).

Symétriquement, si (0f/dx)(a,b) # 0, on peut résoudre f(x,y) = 0 pour
x en fonction de y: = = ¢ (y) (au voisinage de (a, b).



Un point de I' est dit régulier si df(,;) # 0 (si les dérivées partielles
de f ne s’ennulent pas en méme temps). Par conséquent, au voisinage d’'un
point réguler I' peut étre paramétrée comme une courbe réguliere.

La tangente en un point régulier (a,b) est orthogonale au gradient de f
en (a,b) et a comme équation

of
ox

(@)~ a) + 5L @by - ) =0

3.11. Courbure algébrique d’une courbe plane orientée.

Soit v une courbe plane réguliere paramétrée par l’abscisse curviligne.
Donc || 4/(s) [|[=1 et on peut écrire 7/(s) = (cos p(s), sin p(s)).

Alorsv"(s) = ¢'(s)(—sinp(s), cos ¢(s)) et la courbure est k(s) =| ¢'(s) |.

La courbure est la (valeur absolue de la) vitesse angulaire de
la rotation du vecteur tangent quand la courbe est parcourue a
vitesse constante 1.

La vitesse angulaire ¢'(s) = K(s) s’appelle courbure algébrique: le
signe de K (s) indique de quel c6té la courbe est sutuée par rapport a sa
tangente (le demi-plan de concavité). Si K(s) change de signe en s, il
s’agit d’un point d’inflexion.



