
1) a) Facile

b) Les points sensibles sont les continuités à droite en n et en 2n. On les vérifie en étudiant les com-
portements de f au voisinage de ces points :
quand x → n+, f(x) → −1/n2 + 2/n = 1/n = f(n), tandis que quand x → (2n)+, f(x) → 0 = f(2n).

Pour le calcul de l’intégrale, on remarque d’abord que
∫ +∞
0 gn(x) dx =

∫ 2n

0 gn(x) dx. Vu le graphe de gn
il s’agit ici de l’aire d’un triangle de base 2n et de hauteur 1/n : c’est donc 1

2 · (2n) · 1
n = 1.

c) gn crôıt sur [0, n], décrôıt ensuite et est à valeurs positives. On en déduit que ‖gn‖∞ = gn(n) = 1/n.
On constate alors que ‖gn‖∞ tend vers 0 quand n tend vers +∞ : c’est exactement la convergence
uniforme.
Non, puisque la limite de l’intégrale vaut 1 alors que l’intégrale de la limite vaut 0.

2) a) Pour chaque a > 0, f est continue sur [0, a] comme limite uniforme de fonctions continues. Soit
x0 ≥ 0 : f étant continue sur l’intervalle [0, 2x0 + 1], elle l’est en x0.
Par passage à la limite dans l’encadrement 0 ≤ |fn| ≤ g, on obtient : 0 ≤ |f | ≤ g, ce qui entrâıne
l’intégrabilité de f sur R+.

b) Puisque g est intégrable sur R
+, l’intégrale généralisée de g converge en +∞, ce qui signifie en

particulier que :
∫ t

0 g(x) dx →
∫ +∞
0 g(x) dx quand t → +∞.

Or
∫ t

0 g(x) dx =
∫ +∞
0 g(x) dx− ϕ(t). On en déduit que ϕ(t) → 0 quand t → +∞.

Si on applique alors la définition de “tendre vers zéro” à ϕ, on en déduit l’existence d’un A > 0 tel que
la condition t ≥ A entrâıne l’inégalité |ϕ(t)| ≤ ǫ/5. En particulier, ϕ(A) < ǫ/4.
Soit alors un n ≥ 1. On peut écrire :

∫ +∞

0

|fn(x)− f(x)| dx =

∫ A

0

|fn(x)− f(x)| dx +

∫ +∞

A

|fn(x) − f(x)| dx

≤
∫ A

0

|fn(x)− f(x)| dx +

∫ +∞

A

|fn(x)| dx +

∫ +∞

A

|f(x)| dx

≤
∫ A

0

|fn(x)− f(x)| dx + 2

∫ +∞

A

g(x) dx

≤
∫ A

0

|fn(x)− f(x)| dx +
ǫ

2
.

c) Soit ǫ > 0. Soit A un réel associé à ǫ comme au b). Comme (fn − f) tend uniformément vers 0 sur
[0, A], il existe un N ≥ 1 tel que pour tout n ≥ N et tout x ∈ [0, A], |fn(x) − f(x)| ≤ ǫ/2A. Alors pour
tout n ≥ N ,

∣

∣

∣

∣

∫ +∞

0

fn(x) dx −
∫ +∞

0

f(x) dx

∣

∣

∣

∣

≤
∫ +∞

0

|fn(x) − f(x)| dx ≤
∫ A

0

ǫ

2A
dx+

ǫ

2
= ǫ.

En faisant varier ǫ, on en déduit que
∫ +∞
0

fn(x) dx →
∫ +∞
0

f(x) dx quand n → +∞.

3) Pour x ≥ 1, 0 ≤ e−x2 ≤ e−x, et x 7→ e−x est notoirement intégrable sur R+.

4) On calcule Ψ′(t) = − t
1−t qui est négative au sens large sur [0, 1[. La fonction Ψ est donc décroissante sur

cet intervalle. De plus Ψ(0) = 0 et la fonction Ψ est donc à valeurs négatives.

5) a) I0 =
π

2
et I1 = 1.

b) Pour chaque n, la fonction intégrée est continue, positive, non identiquement nulle. Enfin les bornes
sont rangées dans l’ordre. L’intégrale In est donc strictement positive.

6) Soit n ≥ 1. On effectue une intégration par parties fondée sur u(θ) = sinn θ et v(θ) = − cos θ. Je ne tape
pas les détails, ça aboutit sans difficulté.

7) Vu le 5b), pour tout n ≥ 1 il est légitime de calculer le quotient un+1

un

= (n+1)In+1

nIn−1
= 1 au vu du 5)c). La

suite est donc constante. Le 5)a) fournit la valeur u1 =
π

2
qui est donc pour tout n ≥ 1 la valeur de un. D’où

le résultat demandé.



8) a) Pour tout θ ∈ [0,
π

2
] et tout n ≥ 1, sinn+1 θ ≤ sinn θ ≤ sinn−1 θ. En intégrant ces inégalités sur [0,

π

2
]

on obtient le résultat demandé.

b) Vu le 5) b) on peut diviser par In−1 l’inégalité qui précède. On obtient :

In+1

In−1
≤ In

In−1
≤ 1

soit, au vu du 5 c) : n
n+1 ≤ In

In−1
≤ 1.

En faisant alors tendre n vers +∞, on constate que In
In−1

→ 1 (gendarmes) qu’on peut dire autrement

en écrivant que In ∼ In−1.

c) Quand n tend vers l’infini, I2n ∼ In−1In = π
2n . Comme pour tout n, In est strictement positive, on en

conclut que In =
√

I2n ∼
√

π
2n .

9) L’inégalité est évidente si
√
n ≤ x. Supposons donc x <

√
n et examinons :

ln

[

fn(x)

f(x)

]

= x2 + n ln

(

1− x2

n

)

= nΨ

(

x2

n

)

≤ 0

par la question 4). On en déduit que fn(x)/f(x) ≤ 1, soit fn(x) ≤ f(x).

10) a) On fixe un x réel positif. Alors pour tout n > x2, fn(x) = en ln(1−x2/n). Faisons tendre n vers l’infini.
Dans cette expression on peut faire un développement limité à l’ordre 1 du logarithme. On obtient

fn(x) = en(
−x

2

n
+o( 1

n
)) = eo(1)e−x2 → e−x2

= f(x).

11) Par convergence de fn vers f , d’une part simple et d’autre part dominée par la fonction intégrable f ,
∫ +∞
0 fn(x) dx tend vers

∫ +∞
0 f(x) dx quand n → +∞. C’est le résultat demandé, dès lors qu’on remarque

que fn étant nulle sur [
√
n,+∞[ son intégrale sur R+ peut se réécrire comme intégrale sur [0,

√
n].

12) On fait le changement de variable θ = Arccos(x/
√
n) donc x =

√
n cos θ et dx = −√

n sin θ dθ.
Avec ce changement de variables :

∫ x=
√
n

x=0

(

1− x2

n

)n

dx = −
√
n

∫ θ=0

θ=π/2

sin θ(1− cos2 θ)n dθ =
√
n

∫ π/2

0

sin2n+1 θ dθ =
√
n I2n+1.

13) Vu le 10), I = limn→+∞
√
nI2n+1.

Or, quand n tend vers l’infini :

√
n I2n+1 ∼

√
n

√

π

2(2n+ 1)
∼

√
n

√

π

4n
∼

√
π

2
.

D’où I =

√
π

2
.


