
Partie A.

1) Pour chaque n ≥ 1, on calcule un+1 − un =
1

n+ 1
+ lnn− ln(n+ 1). On fait tendre n vers l’infini et on

constate que :
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Cette majoration justifie la convergence de Σ(un+1 − un).
La somme partielle de la série qui précède calculée entre 1 et n− 1 vaut un − u1. La suite de terme général
un − u1 converge donc et de façon immédiate aussi la suite (un).
2) a) On fixe x et on calcule h′

x. Pour tout t > 0 on trouve :

h′

x(t) =
1− x ln t

tx+1
.

Après examen des limites, hx(t) tend vers −∞ en 0+, ça coupe l’axe des abscisses en t = 1, ça continue à
monter jusqu’à t = e1/x où ça atteint un maximum dont la valeur est 1/ex et ça descend en tendant vers 0
quand t tend vers l’infini.
b) Vu le calcul qui précède pour x = 1, la fonction h1 est décroissante sur [e,+∞[ donc sur chaque [k, k+1]
où 3 ≤ k.
Les deux inégalités sont des applications de l’inégalité de la moyenne sur les intervalles d’intégration compte
tenu de cette décroissance.
c) C’est une série alternée (décroissante pour n ≥ 3). Elle n’est pas absolument convergente puisque 1/n =
o(lnn/n) et qu’une série à termes positifs devant laquelle une série divergente est négligeable est elle-même
divergente.
Partie C.
1) a) i) Soit x ≥ 1. On calcule :

v′n(x) =
ln(n+ 1)

(n+ 1)x
−

lnn

nx
= hx(n+ 1)− hx(n).

ii) Soit n ≥ 3 et soit x ≥ 1. Puisque e1/x ≤ e ≤ 3 ≤ n, et au vu du tableau de variations du A 2 a), la
fonction hx décrôıt strictement sur [3,+∞[ et a fortiori sur [n, n+ 1]. Le réel v′n(x) est donc strictement
négatif.
Pour n ≥ 3 la fonction vn est donc décroissante sur son ensemble de définition. Elle tend vers 0 en +∞ ; on
déduit de ces deux informations que ‖vn‖∞ = vn(1) =

1
n(n+1) .

Ceci est le terme général d’une série convergente (puisqu’équivalente à la série convergente à termes positifs
Σ(1/n2)), d’où la convergence normale de Σvn.
b) i) Cette question sera plus facile dans un mois et demi, quand le cours sur les intégrales contenant un
paramètre aura été traité. Elle est néanmoins déjà abordable, à condition de calculer l’intégrale, ce qui est
facile. On calcule donc wn ce qui conduit à deux formules différentes (l’intégration de 1/t appelle le logarithme
et doit se faire à part) :

wn(x) =

{

1
nx

− 1
x−1

[

1
nx−1 − 1

(n+1)x−1

]

si 1 < x
1
n − [ln(n+ 1)− lnn] si x = 1

La continuité ailleurs qu’en 1 est évidente sur cette formule, la continuité en 1 s’obtient par un passage à la
limite facile en écrivant un développement limité (il est suggéré de renommer l’expression x− 1, par exemple
en posant h = x− 1 pour ne pas s’y perdre).
ii) La positivité de wn(x) s’obtient par l’inégalité de la moyenne sur [n, n+ 1] en majorant la fonction
monotone t 7→ 1/tx par sa valeur en la borne n. L’autre inégalité s’obtient de la même façon cette fois en
minorant par la valeur en la borne n+ 1.
iii) La majoration du ii) et la convergence normale de Σvn garantissent la convergence normale de Σwn, qui
est une série de fonctions continues au vu du i). Comme somme uniforme d’une série de fonctions continues,
la fonction W est elle aussi continue sur son intervalle de définition.



c) i) On peut profiter des calculs faits au b) i) pour expliciter une somme partielle de la série Σwn. Par
télescopage des crochets écrits plus haut, pour tout N ≥ 1 on peut écrire :

N
∑

n=1

wn(x) =
N
∑

n=1

1

nx
+

1

1− x

[

1−
1

(N + 1)x−1

]

.

Le résultat demandé s’obtient alors en faisant tendre N vers l’infini.
ii) Vu le i) la limite cherchée est aussi la limite de W (x), mais W est continue sur [1,+∞[ donc cette limite
est W (1).
Comme on l’a fait ci-desus en un x > 1 on peut expliciter les sommes partielles de la série Σwn(1) en
pratiquant encore le télescopage :

N
∑

n=1

wn(1) =

(

N
∑

n=1

1

n

)

− ln(N + 1).

Cette suite de sommes partielles diffère donc de la suite uN du A 1) de la suite ln(N + 1) − lnN , qui tend
vers zéro. Ceci montre que la suite des sommes partielles de Σwn(1) a la même limite que (uN) c’est-à-dire
la constante d’Euler γ.
On conclut que W (1) = γ est la réponse attendue.
2) a) On fixe un x et hop critère des séries alternées.
b) On commence par calculer ϕ′

n(x) pour n ≥ 1 et x > 0 :

ϕ′

n(x) = (−1)n
lnn

nx
= (−1)nhx(n).

On prend à ce moment la décision de ne plus travailler qu’avec des x ≥ a ; pour un tel x, la fonction hx, qui
est strictement décroissante sur [e1/x,+∞[ est a fortiori strictement décroissante sur l’intervalle [e1/a,+∞[
qui commence plus loin à droite. De façon concurrente à cette bonne résolution, on ne travaillera qu’avec
des n strictement plus grands que e1/a.
Pour chaque x fixé et en se restreignant à ces seuls n, la suite des hx(n) est une suite strictement décroissante,
qui tend vers zéro quand n tend vers l’infini. La série de terme général ϕ′

n(x) = (−1)nhx(n) vérifie donc le
critère des séries alternées à partir d’un certain n et est convergente. De plus dès que N ≥ e1/a le reste de
cette série (sommé de N à l’infini) est plus petit en valeur absolue que le premier terme négligé, donc majoré
par |ϕ′

N (x)|. La fonction |ϕ′

N | est elle-même décroissante (voir son expression comme lnN/Nx), donc cette
majoration peut elle-même être majorée indépendamment de x par le réel |ϕ′

N (a)|. On a réussi à majorer
uniformément les restes de la série par quelque chose qui tend vers zéro : la convergence uniforme est prouvée.
c) Ben c’est un simple coup de critère de dérivation d’une série - c’est facile en faisant attention à bien faire
intervenir des segments auxiliaires. On écrit en particulier comme recommandé :

ϕ′(1) = S

où il s’agit du S de la fin de la partie A.
3) a) Soit x > 1. On peut alors séparer la série qui définit ϕ(x) en somme de deux séries convergentes :

ϕ(x) =

+∞
∑
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1
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−

+∞
∑
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1

(2l)x

et, par ailleurs :

(1− 21−x)F (x) = F (x)− 2
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1
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)
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+∞
∑

l=1

1
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C’est bien le même résultat.



b) On note h = x− 1. Avec cette notation auxiliaire :

1− 21−x = 1− e−h ln 2 = (ln 2)h−
(ln 2)2

2
h2 +O(h3).

Par ailleurs la question 1) c) ii) a montré que :

F (x) =
1

x− 1
+ γ + o(1) =

1

h
+ γ + o(1).

En multipliant ces deux développements entre eux, et en utilisant le a), on obtient :

ϕ(x) = ln 2 +

(

γ −
ln 2

2

)

(ln 2)h+ o(h).

c) Puisque S = ϕ′(1), c’est aussi le coefficient de h dans le développement limité qui précède. On conclut
que :

S =

(

γ −
ln 2

2

)

(ln 2).


