Partie A. )
1) Pour chaque n > 1, on calcule w41 — uy, = " +1Inn —In(n+ 1). On fait tendre n vers l'infini et on
n

constate que:

1 1 1 1 1 1 1
Inn —1 N=—— I(l+-)=(-4+0(=)) = [=+0(=)) =0(=).
n+1+nn n(n+1) n+1 n( +n) (n+ (nz)) (n+ (nz)) ( 2)
Cette majoration justifie la convergence de X(up4+1 — up).
La somme partielle de la série qui précede calculée entre 1 et n — 1 vaut u,, — u;. La suite de terme général
un — w1 converge donc et de fagon immédiate aussi la suite (uy,).
2) a) On fixe = et on calcule /.. Pour tout ¢ > 0 on trouve:

1—=zlnt
héc(t)zw

Apres examen des limites, h,(¢) tend vers —oo en 07, ¢a coupe 'axe des abscisses en ¢ = 1, ¢a continue &
monter jusqu’a t = e'/? oii ca atteint un maximum dont la valeur est 1/ex et ¢a descend en tendant vers 0
quand ¢ tend vers l'infini.

b) Vu le calcul qui précede pour z = 1, la fonction hy est décroissante sur [e, +oo[ donc sur chaque [k, k + 1]
ou3 <k.

Les deux inégalités sont des applications de I'inégalité de la moyenne sur les intervalles d’intégration compte
tenu de cette décroissance.

¢) C’est une série alternée (décroissante pour n > 3). Elle n’est pas absolument convergente puisque 1/n =
o(Inn/n) et qu’une série & termes positifs devant laquelle une série divergente est négligeable est elle-méme
divergente.

Partie C.

1) a) i) Soit > 1. On calcule:

o (2) = In(n+1) Inn
(n+1)* n=

=hy(n+1) — hg(n).

ii) Soit n > 3 et soit z > 1. Puisque el/* < e <3< n, et au vu du tableau de variations du A 2 a), la
fonction h, décroit strictement sur [3, 400 et a fortiori sur [n,n + 1]. Le réel v/,(z) est donc strictement
négatif.

Pour n > 3 la fonction v,, est donc décroissante sur son ensemble de définition. Elle tend vers 0 en +oc0 ; on
déduit de ces deux informations que ||v,||co = vn(1) = ﬁ

Ceci est le terme général d’une série convergente (puisqu’équivalente & la série convergente & termes positifs
%(1/n?)), d’ou la convergence normale de Sv,,.

b) i) Cette question sera plus facile dans un mois et demi, quand le cours sur les intégrales contenant un
parametre aura été traité. Elle est néanmoins déja abordable, & condition de calculer 'intégrale, ce qui est
facile. On calcule donc w;, ce qui conduit & deux formules différentes (I'intégration de 1/t appelle le logarithme
et doit se faire & part) :

L 1 1 1 .
wp(x) = Fiﬁ{F*W sil<zx
2 —[In(n+1)—lnn) siz—1

La continuité ailleurs qu’en 1 est évidente sur cette formule, la continuité en 1 s’obtient par un passage a la
limite facile en écrivant un développement limité (il est suggéré de renommer Uexpression z — 1, par exemple
en posant h = x — 1 pour ne pas s’y perdre).

ii) La positivité de w,(z) s’obtient par I'inégalité de la moyenne sur [n,n + 1] en majorant la fonction
monotone ¢ — 1/t* par sa valeur en la borne n. L’autre inégalité s’obtient de la méme fagon cette fois en
minorant par la valeur en la borne n + 1.

iii) La majoration du ii) et la convergence normale de Xv,, garantissent la convergence normale de Yw,,, qui
est une série de fonctions continues au vu du i). Comme somme uniforme d’une série de fonctions continues,
la fonction W est elle aussi continue sur son intervalle de définition.



¢) i) On peut profiter des calculs faits au b) i) pour expliciter une somme partielle de la série Zw,,. Par
télescopage des crochets écrits plus haut, pour tout N > 1 on peut écrire:

N

N 1 1
n = _— 1_ .
< (@) nz_:lnr+1z[ (N+1)11}

Le résultat demandé s’obtient alors en faisant tendre N vers I'infini.

ii) Vu le i) la limite cherchée est aussi la limite de W (z), mais W est continue sur [1, +oo[ donc cette limite
est W (1).

Comme on 'a fait ci-desus en un = > 1 on peut expliciter les sommes partielles de la série Yw, (1) en
pratiquant encore le télescopage :

n=

> wa(1) = (Z %) —In(N +1).

n=1

Cette suite de sommes partielles differe donc de la suite uy du A 1) de la suite In(N + 1) — In N, qui tend
vers zéro. Ceci montre que la suite des sommes partielles de Ywy, (1) a la méme limite que (uy) c’est-a-dire
la constante d’Euler ~.

On conclut que W (1) = v est la réponse attendue.

2) a) On fixe un z et hop critere des séries alternées.

b) On commence par calculer ¢/, (z) pour n >1et x > 0:

Fl) = (<1 = (1) ().

On prend a ce moment la décision de ne plus travailler qu’avec des = > a ; pour un tel z, la fonction h,, qui
est strictement décroissante sur [e!'/%, 4-00[ est a fortiori strictement décroissante sur I'intervalle [e/, +-o00]
qui commence plus loin a droite. De fagon concurrente a cette bonne résolution, on ne travaillera qu’avec
des n strictement plus grands que e'/@.

Pour chaque z fixé et en se restreignant a ces seuls n, la suite des h,(n) est une suite strictement décroissante,
qui tend vers zéro quand n tend vers 'infini. La série de terme général ¢! (x) = (—1)"h,(n) vérifie donc le
critere des séries alternées A partir d’un certain n et est convergente. De plus des que N > e!/@ le reste de
cette série (sommé de N & l'infini) est plus petit en valeur absolue que le premier terme négligé, donc majoré
par |¢/y(x)|. La fonction |¢y| est elle-méme décroissante (voir son expression comme In N/N¥), donc cette
majoration peut elle-méme étre majorée indépendamment de = par le réel |¢y(a)]. On a réussi & majorer
uniformément les restes de la série par quelque chose qui tend vers zéro: la convergence uniforme est prouvée.
¢) Ben c’est un simple coup de critere de dérivation d’une série - c’est facile en faisant attention a bien faire
intervenir des segments auxiliaires. On écrit en particulier comme recommandé :

¢'(1) =5

ou il s’agit du S de la fin de la partie A.
3) a) Soit z > 1. On peut alors séparer la série qui définit ¢(z) en somme de deux séries convergentes :

+o0 1 +o0 1
ole) = ;) Qk+1)* ; 21)

et, par ailleurs:

1—2V"9F(g)=F 2+OO L 5 ! S 1 2+00 -
(1=2"F@) = F@) =23 G = |\ X e * ) 2 @

=1 k=0 =1

C’est bien le méme résultat.



b) On note h = z — 1. Avec cette notation auxiliaire :

In2)?
1—2% =1 — e 02 — (In2)h — (HT)hQ + O(h®).

Par ailleurs la question 1) ¢) ii) a montré que:

F(m)zﬁ-ﬁ-v—i—o(l):%—i—v—i—o(l).

En multipliant ces deux développements entre eux, et en utilisant le a), on obtient :

p(x) =In2 + (’y - h172> (In2)h + o(h).

¢) Puisque S = ¢'(1), c’est aussi le coefficient de h dans le développement limité qui préceéde. On conclut

que:
S— (7 - 1“72) (In2).



