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Partie ALGÈBRE

Exercice 1. Soit E = C1([0, 1],R). Soit ϕ : E × E → R l’application qui à tout (f, g) ∈ E × E associe

ϕ(f, g) = f(0)g(0) +

∫ 1

0
f ′(t)g′(t)dt.

1. Montrer que ϕ est un produit scalaire sur E.

Soit (f, g) dans E2. On a

ϕ(f, g) = f(0)g(0) +

∫ 1

0
f ′(t)g′(t)dt

= g(0)f(0) +

∫ 1

0
g′(t)f ′(t)dt

= ϕ(g, f).

Ainsi ϕ est symétrique. Soit (f, g, h) dans E3 et λ dans R. On a

ϕ(f + λg, h) = (f + λg)(0)h(0) +

∫ 1

0
(f + λg)′(t)h′(t)dt

= (f(0) + λg(0))h(0) +

∫ 1

0
(f ′(t) + λg′(t))h′(t)dt

= f(0)h(0) + λg(0)h(0) +

∫ 1

0
f ′(t)h′(t)dt + λ

∫ 1

0
g′(t)h′(t)dt

= ϕ(f, h) + λϕ(g, h).

Par symétrie, l’application ϕ est bilinéaire.
Soit f dans E. On a

ϕ(f, f) = f(0)2 +

∫ 1

0
f ′(t)2dt ≥ 0,

car c’est une somme de termes positifs. De plus, si ϕ(f, f) = 0, alors on a

f(0)2 = 0 et

∫ 1

0
f ′(t)2dt = 0.

Il vient f(0) = 0. Comme f ′2 est une fonction continue et positive sur [0, 1], on obtient
que f ′(t) = 0 pour tout t dans [0, 1]. Ainsi f est constante sur [0, 1] et donc f est la
fonction nulle.
Ceci montre que ϕ est définie positive et donc est un produit scalaire sur E.

2. Énoncer l’inégalité de Cauchy-Schwarz pour un produit scalaire dans un espace préhilbertien.

Soit (E, 〈·, ·〉) un espace préhilbertien. Alors, pour tous vecteurs x et y de E, on a

|〈x, y〉| ≤ ‖x‖‖y‖.

De plus, les deux membres sont égaux si et seulement si x et y sont linéairement dépen-
dants.

1



3. Montrer que, pour tout f ∈ E, on a l’inégalité

|f(1)− f(0)| ≤

√
f(0)2 +

∫ 1

0
f ′(t)2dt.

Discuter le cas d’égalité.

On applique l’inégalité de Cauchy-Schwarz avec f dans E et la fonction g dans E dé-
finie, pour tout t dans R par g(t) = t. La fonction g est polynômiale donc clairement
continuement dérivable sur [0, 1]. On obtient que

|ϕ(f, g)| =
∣∣∣∣∫ 1

0
f ′(t)dt

∣∣∣∣ = |f(1)− f(0)|,

‖f‖ =

√
f(0)2 +

∫ 1

0
f ′(t)2dt,

‖g‖ =

√∫ 1

0
12dt = 1,

où ‖ · ‖ est la norme associée à ϕ. L’inégalité

|ϕ(f, g)| ≤ ‖f‖‖g‖

donne le résultat voulu. D’après l’inégalité de Cauchy-Schwarz, il y a égalité si et seule-
ment si f et g sont linéairement dépendantes, ce qui équivaut à ce qu’il existe un réel α
tel que, pour tout t dans R, on ait f(t) = αt.

4. Soit F le sous-espace vectoriel de E engendré par les fonctions f1, f2 et f3 définies, pour tout
t ∈ [0, 1], par

f1(t) = 1, f2(t) = t, et f3(t) = t2.

Donner une base orthonormée de F pour le produit scalaire ϕ.

Montrons dans un premier temps que les fonctions f1, f2 et f3 sont linéairement indé-
pendantes. Soit (α1, α2, α3) dans R3 tel que

α1f1 + α2f2 + α3f3 = 0E .

Alors, pour tout t dans [0, 1], on a

α1 + α2t+ α3t
2 = 0.

En particulier, le polynôme α1 + α2X + α3X
2 a une infinité de racines. Il s’en suit que

α1 = α2 = α3 = 0

et (f1, f2, f3) est une famille libre.
Appliquons le procédé d’orthonormalisation de Gram-Schmidt à la famille (f1, f2, f3)
afin d’obtenir une base orthonormée (e1, e2, e3) de F . On pose u1 = f1. On a ‖f1‖ = 1
donc on pose

e1 = f1.

Posons maintenant
u2 = f2 − ϕ(f2, e1)e1 = f2,

car ϕ(f2, f1) = 0. On a

‖f2‖ =

√∫ 1

0
1dt = 1,
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donc on pose e2 = f2/‖f2‖ = f2. Enfin, on considère

u3 = f3 − ϕ(f3, e1)e1 − ϕ(f3, e2)e2

= f3 −
(∫ 1

0
2tdt

)
f2

= f3 −
[
t2
]1
0
f2

= f3 − f2.

On a

‖u3‖2 =

∫ 1

0
(2t− 1)2dt

=

∫ 1

0
(4t2 − 4t+ 1)dt

=

[
4

3
t3 − 2t2 + t

]1
0

=
4

3
− 2 + 1

=
1

3
,

donc on pose

e3 =
u3
‖u3‖

=
√

3(f3 − f2).

La famille (e1, e2, e3) ainsi construite est une base orthonormée de F .

5. Soit g ∈ E la fonction définie, pour tout t ∈ [0, 1], par g(t) = arctan(t). Déterminer la projection
orthogonale de g sur F .

Comme (e1, e2, e3) est une base orthonormée de F , la projection orthogonale de g sur F
est donnée par la formule

pF (g) = ϕ(g, e1)e1 + ϕ(g, e2)e2 + ϕ(g, e3)e3.

On a
ϕ(g, e1) = g(0) = 0,

ϕ(g, e2) =

∫ 1

0
g′(t)dt

= arctan(1)− arctan(0)

= π/4,

et

ϕ(g, e3) =
√

3

∫ 1

0
g′(t)(2t− 1)dt

=
√

3

∫ 1

0

(
2t

1 + t2
− 1

1 + t2

)
dt

=
√

3
[
ln(1 + t2)− arctan(t)

]1
0

=
√

3
(

ln(2)− π

4

)
.

Ainsi, on a

pF (g) =
π

4
f2 + 3

(
ln(2)− π

4

)
(f3 − f2).
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6. Montrer qu’une fonction f ∈ E est orthogonale à F si et seulement si

f(0) = f(1) = 0 et

∫ 1

0
f(t)dt = 0.

Comme F est engendré par la famille (f1, f2, f3), on a f ∈ F⊥ si et seulement si

ϕ(f, f1) = ϕ(f, f2) = ϕ(f, f3) = 0.

Or, on a
ϕ(f, f1) = f(0),

ϕ(f, f2) =

∫ 1

0
f ′(t)dt = f(1)− f(0),

et

ϕ(f, f3) =

∫ 1

0
f ′(t)2tdt

= [f(t)2t]10 −
∫ 1

0
f(t)2dt

= 2f(1)− 2

∫ 1

0
f(t)dt.

Ainsi, f ∈ F⊥ si et seulement si

f(0) = 0, f(1) = f(0) et f(1) =

∫ 1

0
f(t)dt,

ce qui est équivalent au système

f(0) = f(1) =

∫ 1

0
f(t)dt = 0,

comme voulu.
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