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Dans toute la suite, (E , ‖ . ‖) désigne un K-espace vectoriel normé. Les notions
qui suivent ne seront pas modifiées lorsqu’on passe d’une norme à une norme
équivalente. En particulier, si l’espace E est de dimension finie, elles ne dépendent
pas de la norme choisie.

1. Parties ouvertes et fermées

1.1. Parties ouvertes

Définition 1.1
On appelle voisinage d’un élément x ∈ E toute partie V ⊂ E vérifiant :

∃r > 0, B(x , r) ⊂ V .

Définition 1.2
Une partie U de E est dite ouverte si elle est voisinage de chacun de ses points,
i.e.

∀x ∈ U , ∃r > 0, B(x , r) ⊂ U .

On dit encore que U est un ouvert de E.
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Figure – Une boule ouverte est ouverte
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Figure – Une sphère n’est pas ouverte.
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Proposition 1.3

Une réunion (finie ou infinie) d’ouverts est un ouvert.

Proposition 1.4

Une intersection finie d’ouverts est un ouvert.

Proposition 1.5

Si U1, . . . ,Up sont des ouverts des espaces normés (E1,N1), . . . , (Ep,Np)
alors U = U1 × · · · × Up est un ouvert de l’espace normé produit
E = E1 × · · · × Ep muni de la norme produit.
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Démonstration : Commençons par préciser les boules de E . Notons N1, . . . ,Np

les normes sur E1, . . . ,Ep et ‖ . ‖ la norme sur E définie pour x = (x1, . . . , xp) ∈ E
par ‖x‖ = max

1≤k≤p
Nk(xk). Soit a = (a1, . . . , ap) ∈ E et r > 0,

x ∈ B(a, r) ⇐⇒ ‖x − a‖ = max
1≤k≤p

Nk(xk) < r

⇐⇒ ∀k ∈ J1; pK, Nk(xk) < r

⇐⇒ ∀k ∈ J1; pK, xk ∈ Bk(ak , r)

ce qui démontre que

B(a, r) =

p∏

k=1

Bk(ak , r).

Soient U1, . . . ,Up des ouverts de E1, . . . ,Ep et U = U1 × · · · × Up. Soit
a = (a1, . . . , ap) ∈ U . Pour tout k ∈ J1; pK, ak ∈ Uk , or Uk est ouvert, donc il
existe rk > 0 tel que Bk(ak , rk) ⊂ Uk . Considérons alors

r = min{rk | k ∈ J1; pK} > 0.

Pour tout k ∈ J1; pK, Bk(ak , r) ⊂ Uk , donc

B(a, r) =

p∏

k=1

Bk(ak , r) ⊂
p∏

k=1

Uk = U .
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1.2. Parties fermées

Définition 1.6

Une partie F de E est dite fermée si son complémentaire (dans E) est un
ouvert. On dit aussi que F est un fermé de E.

Remarque : Pour une partie X ⊂ E , la notation probabiliste X du
complémentaire est à proscrire : elle est utilisée pour une autre notion en
topologie, l’adhérence, que l’on verra dans la suite. On notera donc X c s’il
n’y a pas de confusion possible sur l’espace normé E , ou E\X .

Proposition 1.7

Une intersection (finie ou infinie) de fermés de E est un fermé de E.

Proposition 1.8

Une union finie de fermés de E est un fermé de E.
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Proposition 1.9 (Caractérisation séquentielle des fermés)

Une partie F de E est fermée si et seulement si, pour toute suite
(xn)n∈N ∈ FN d’éléments de F qui converge, la limite lim

n→+∞
xn appartient

à F , ce qui s’écrit encore :

∀(xn)n∈N ∈ FN, xn −→
n→+∞

ℓ ⇒ ℓ ∈ F .

Remarque : Attention, cela ne signifie pas que dans un fermé toutes les
suites convergent !

Proposition 1.10

Si F1, . . . ,Fp sont des fermés des espaces normés E1, . . . ,Ep alors
F = F1 × · · · × Fp est une partie fermée de l’espace vectoriel normé
produit E = E1 × · · · × Ep pour la norme produit.
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2. Intérieur, adhérence et densité

2.1. Intérieur

Définition 2.1

Un élément a ∈ E est dit intérieur à une partie X ⊂ E si X est un
voisinage de a, i.e. ∃r > 0, B(a, r) ⊂ X .

L’intérieur de X , noté
◦
X, est l’ensemble de tous les points intérieurs à X ,

c’est-à-dire
◦
X = {x ∈ E | ∃r > 0, B(x , r) ⊂ X}.

Remarque : On a toujours l’inclusion
◦
X ⊂ X .

Proposition 2.2

Une partie X ⊂ E est ouverte si et seulement si
◦
X = X.
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Proposition 2.3

Soit X une partie de E, alors
◦
X est la réunion de tous les ouverts inclus

dans X . Par conséquent,
◦
X est le plus grand ouvert (au sens de l’inclusion)

inclus dans X .

2.2. Adhérence

Définition 2.4

On dit qu’un élément a ∈ E est adhérent à une partie X ⊂ E si

∀r > 0, B(a, r) ∩ X 6= ∅.

On appelle adhérence de X l’ensemble, noté X , des éléments adhérents à
X .

Remarque : On a toujours l’inclusion X ⊂ X puisque pour tout x ∈ X et
tout r > 0, x ∈ B(x , r) ∩ X .
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Proposition 2.5

Soit X une partie de E, alors

E\X =
◦

(E\X ) et E\
◦
X = E\X .

Proposition 2.6

Une partie X ⊂ E est fermée si et seulement si X = X.
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Proposition 2.7

Soit X une partie de E, alors X est l’intersection de tous les fermés
contenant X . Par conséquent, X est le plus petit fermé (au sens de
l’inclusion) contenant X .

Proposition 2.8 (Caractérisation séquentielle des points adhérents)

Soient X une partie de E et a ∈ E. On a équivalence entre :

(i). a est adhérent à X ,

(ii). il existe une suite (xn)n∈N d’éléments de X qui converge vers a.
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2.3. Frontière

Définition 2.9

On appelle frontière d’une partie X de E l’ensemble Fr(X ) = X\
◦
X.

Remarque : On peut voir que

Fr(X ) = X ∩ (E\
◦
X ) = X ∩ E\X = Fr(E\X )

Cette écriture permet aussi de démontrer que Fr(X ) est un fermé de E .
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2.4. Densité

Definition 1

Une partie X de E est dite dense si X = E .

Proposition 2.10

Soit X une partie de E. On a équivalence entre :

(i). X est une partie dense de E,

(ii). ∀a ∈ E , ∀r > 0, B(a, r) ∩ X 6= ∅,
(iii). ∀a ∈ E , ∃(xn)n∈N ∈ XN, xn −→

n→+∞
a.
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3. Parties compactes

3.1. Suites extraites

Définition 3.1

Soit (un)n∈N ∈ EN une suite d’éléments de E. On appelle suite extraite
(ou sous-suite) de la suite (un)n∈N toute suite de la forme (uϕ(n))n∈N où
ϕ : N −→ N est une application strictement croissante.

Remarque : Si w = (wn)n est une suite extraite de v = (vn)n, elle-même
extraite de u = (un)n, alors la suite w est une suite extraite de u. En effet,
notons v = (uϕ(n))n et w = (vψ(n))n avec ϕ, ψ : N −→ N strictement
croissantes, alors pour tout n ∈ N, on a

wn = vψ(n) = uϕ(ψ(n)) = uϕ◦ψ(n)

avec ϕ ◦ ψ : N −→ N strictement croissante comme composée de deux
fonctions strictement croissantes.
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Théorème 3.2

Soit (un)n∈N ∈ EN une suite d’éléments de E. Si (un)n converge vers
ℓ ∈ E, alors toute suite extraite de (un)n converge aussi vers ℓ.

3.2. Compacts

Définition 3.3

Une partie K de E est dite compacte si toute suite d’éléments de K
possède une sous-suite convergente dans K, i.e.

∀(xn)n∈N ∈ KN, ∃ϕ : N −→ N strictement croissante , xϕ(n) −→
n→+∞

ℓ ∈ K .

On dit aussi que K est un compact de E.

Proposition 3.4

Toute partie compacte est fermée et bornée.
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Théorème 3.5

Si E est un espace de dimension finie, les parties compactes sont
exactement les parties fermées et bornées.

Corollaire 3.6 (Généralisation du théorème de Bolzano-Weierstrass)

Dans un espace vectoriel de dimension finie, toute suite bornée admet une
sous-suite convergente.
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