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Dans toute la suite, n et p désignent des entiers naturels non nuls, et U un ouvert de Rn.

Définition 1

Soit f : U ⊂ Rn −→ Rp. On dit que f est scalaire si f est à valeurs dans R, c’est-à-dire si p = 1. On
dit que f est à valeurs vectorielles sinon.

Définition 2

Soit f : U ⊂ Rn −→ Rp. Pour tout x ∈ Rn, on peut écrire f(x) sous la forme f(x) = (f1(x), . . . , fp(x)) ∈
Rp. Pour tout i ∈ J1; pK, l’application fi : U ⊂ Rn −→ R est appelée i-ème fonction composante
(ou i-ème fonction coordonnée) de f .

Définition 3

Soit f : U ⊂ Rn −→ Rp. Soit a = (a1, . . . , an) ∈ U . Pour tout j ∈ J1;nK, on définit l’application
partielle fa,j par

fa,j : Ua,j ⊂ R −→ Rp

t 7−→ f(a1, . . . , aj−1, t, aj+1, . . . , an)

où Ua,j = {t ∈ R | (a1, . . . , aj−1, t, aj+1, . . . , an) ∈ U} (la notation est abusive dans les cas j = 1 et
j = n pour lesquels il faut remplacer les expressions ci-dessus par (t, a2, . . . , an) et (a1, . . . , an−1, t)
respectivement).

Définition 4

Soit I un ouvert non vide de R, a ∈ I et f : I ⊂ R −→ Rp. On dit que f est dérivable en a si le taux
d’acroissement

1

t
(f(a+ t)− f(a))

converge lorsque t → 0 (avec t 6= 0). Sa limite est alors appelée vecteur dérivé de f en a et noté
f ′(a).

Définition 5

Une fonction f : I ⊂ R −→ Rp est dite dérivable si elle l’est en tout point de l’ouvert non vide I. On
peut alors introduire l’application f ′ : I −→ Rp

t 7−→ f ′(t)
appelée fonction dérivée de f .

Théorème 6

Soit f : I ⊂ R −→ Rp de fonctions coordonnées f1, . . . , fp. On a équivalence entre :

(i). f est dérivable,

(ii). les fonctions f1, . . . , fp sont dérivables.

De plus, si tel est le cas, on a

∀t ∈ I, f ′(t) = (f ′1(t), . . . , f ′p(t)).

Définition 7

Soient U ⊂ Rn un ouvert, a ∈ U et f : U ⊂ Rn −→ Rp. On dit que f admet une dérivée partielle par
rapport à sa j-ième variable au point a (encore appelée j-ième dérivée partielle en a) si l’application
partielle fa,j est dérivable au point aj .
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On note alors ∂jf(a) ou
∂f

∂xj
(a) cette dérivée, c’est-à-dire

∂jf(a) = f ′a,j(aj)

= lim
t→0

f(a1, . . . , aj−1, aj + t, aj+1, . . . , an)− f(a1, . . . , an)

t
.

Définition 8

Si f : U ⊂ Rn −→ Rp admet une dérivée partielle par rapport à sa j-ième variable en tout point
a ∈ U , l’application ∂jf : U ⊂ Rn −→ Rp est appelée j-ième dérivée partielle de f .

Proposition 9

Soit f : U ⊂ Rn −→ Rp et f1, . . . , fp : U ⊂ Rn −→ R ses applications coordonnées. On a équivalence
entre :

(i). f admet des dérivées partielles,

(ii). les fonctions coordonnées de f admettent des dérivées partielles.

De plus, on a alors (∂if)k = ∂i(fk) où l’on a noté fk et (∂if)k les fonctions coordonnées de f et ∂if .

Définition 10

Soit f : U ⊂ Rn −→ Rp et a ∈ U . Si f admet des dérivées partielles par rapport à toutes ses variables
au point a, on définit la matrice Jacobienne de f au point a, notée Jf (a), comme la matrice à p
lignes et n colonnes dont les coefficients sont

(Jf (a))i,j = ∂jfi(a) =
∂fi
∂xj

(a) ∀i ∈ J1; pK,∀j ∈ J1;nK.

On remarque que Jf (a) ∈Mp,n(R).

Définition 11

Toujours sous réserve d’existence des dérivées partielles de f , soit a ∈ U :

• si f est scalaire (i.e p = 1), on définit le gradient de f au point a, noté gradf(a) ou ∇f(a), par

gradf(a) =

∂1f(a)
...

∂nf(a)

 = tJf (a)

• si n = p (i.e. f : U ⊂ Rn −→ Rn), on définit la divergence de f au point a par

divf(a) =

n∑
i=1

∂ifi(a) = (Jf (a))

• si n = p = 3, on définit le rotationnel de f au point a par

rotf(a) =

∂2f3(a)− ∂3f2(a)
∂3f1(a)− ∂1f3(a)
∂1f2(a)− ∂2f1(a)



Définition 12

Soient f : U ⊂ Rn −→ Rp, a ∈ U et v ∈ Rn. On dit que f est dérivable selon le vecteur v en a (ou
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admet une dérivée directionnelle suivant v en a) si la fonction d’une variable réelle ϕ : t 7−→ f(a+ tv)
est dérivable en 0.
On appelle alors dérivée selon le vecteur v de f en a la valeur de cette dérivée, notée

Dvf(a) = ϕ′(0) = lim
t→0

1

t
(f(a+ tv)− f(a)).

Proposition 13

Notons (e1, . . . , en) la base canonique de Rn. Soient f : U ⊂ Rn −→ Rd et a ∈ U . Soit j ∈ J1;nK. La
fonction f admet une dérivée partielle par rapport à sa j-ième variable en a si et seulement si elle
admet une dérivée directionnelle selon le vecteur ej en a.
Si c’est le cas, on a alors

∂jf(a) = Dejf(a).

Définition 14

Une fonction f : U ⊂ Rn −→ Rp est dite différentiable en a ∈ U s’il existe une application linéaire
u : Rn −→ Rp telle que

lim
h

6=→0Rn

‖f(a+ h)− f(a)− u(h)‖
‖h‖

= 0 (∗)

Proposition 15

Si f est différentiable en a, l’application linéaire u est unique. On la note df(a), appelée différentielle
de f en a. Par définition, df(a) appartient à L(Rn,Rp).

Théorème 16

Soit f : U ⊂ Rn −→ Rp. Si f est différentiable en a ∈ U , alors f est continue en a.

Définition 17

Soit f : U ⊂ Rn −→ Rp. On dit que f est différentiable (sur U) si f est différentiable en tout point
de U . L’application

df : U −→ L(Rn,Rp)
a 7−→ df(a)

est alors appelée différentielle de f .

Proposition 18

Si f : Rn −→ Rp est constante, alors f est différentiable et sa différentielle est l’application nulle :
pour tout a ∈ Rn, df(a) = 0̃.

Proposition 19

Si f : Rn −→ Rp est linéaire, alors f est différentiable et sa différentielle est constante :

∀a ∈ Rn, df(a) = f.
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Proposition 20

Si ϕ : Rd × Rm −→ Rp est une application bilinéaire, alors ϕ est différentiable, et on a

∀(x, y) ∈ Rd × Rm, ∀(h, k) ∈ Rd × Rm, dϕ(x, y)(h, k) = ϕ(x, k) + ϕ(h, y).

Proposition 21

Soient I un ouvert non vide de R, a ∈ I et f : I ⊂ R −→ Rp. On a équivalence entre :

(i). f est différentiable en a,

(ii). f est dérivable en a.

Dans ce cas, on a alors

∀h ∈ R, df(a)(h) = hf ′(a) et f ′(a) = df(a)(1)

où l’on rappelle que f ′(a) = lim
t→0

1

t
(f(a+ t)− f(a)).

Théorème 22

Soient f : U ⊂ Rn −→ Rp et a ∈ U . Si f est différentiable en a, alors f est dérivable en a selon tout
vecteur v ∈ Rn et on a

Dvf(a) = df(a)(v).

Théorème 23

Notons (e1, . . . , en) la base canonique de Rn. Si f : U ⊂ Rn −→ Rp est différentiable, alors f admet
des dérivées partielles par rapport à toutes ses variables, et pour tout a ∈ U , on a

∂if(a) = df(a)(ei) ∀i ∈ J1;nK.

De plus, pour tout h = (h1, . . . , hn) ∈ Rn, on a

df(a)(h) =

n∑
i=1

hi∂if(a) =

n∑
i=1

hi
∂f

∂xi
(a).

Proposition 24

Soient f : U ⊂ Rn −→ Rp et a ∈ U . Si f est différentiable en a, la matrice Jacobienne de f en a est
la matrice de df(a) dans les bases canoniques de Rn et Rp respectivement.

Proposition 25

Soient f, g : U ⊂ Rn −→ Rp. Pour tous λ, µ ∈ R, si f et g sont différentiables, alors λf +µg l’est aussi
et

d(λf + µg) = λ df + µdg.
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Démonstration : Soit a ∈ U . Pour h ∈ Rn non nul tel que a+ h ∈ U , on a

0 ≤ ‖(λf + µg)(a+ h)− (λf + µg)(a)− (λdf(a) + µ dg(a))(h)‖
‖h‖

≤ |λ| ‖f(a+ h)− f(a)− df(a)(h)‖
‖h‖ + |µ| ‖g(a+ h)− g(a)− dg(a)(h)‖

‖h‖
−→

h→0Rn
0

avec λdf(a)+µ dg(a) ∈ L(Rn,Rp), ce qui démontre que λf+µg est différentiable en a et d(λf+µg)(a) =
λ df(a) + µ dg(a).

Proposition 26

Soit f : U ⊂ Rn −→ Rp de fonctions coordonnées f1, . . . , fp. On a équivalence entre :

(i). f est différentiable,

(ii). les fonctions coordonnées f1, . . . , fp de f sont différentiables.

Dans ce cas, on a

∀a ∈ U, ∀h ∈ Rn, df(a)(h) = ( df1(a)(h), . . . , dfp(a)(h)).

Démonstration : Soit a ∈ U fixé.

• (i) ⇒ (ii) : Supposons que f est différentiable en a Notons ( df(a))1, . . . , ( df(a))p les fonctions
coordonnées de df(a). Pour tout h ∈ Rn tel que a+ h ∈ U , on a

f(a+ h)− f(a)− df(a)(h) = (f1(a+ h)− f1(a)− ( df(a))1(h), . . . , fp(a+ h)− fp(a)− ( df(a))p(h))

Par propriétés des limites vectorielles,
1

‖h‖ (f(a+h)−f(a)− df(a)(h)) tend vers 0Rp si et seulement si

chacune de ses composantes tend vers 0, ce qui démontre que pour tout i ∈ J1; pK, fi est différentiable
en a (car ( df(a))i est linéaire puisque df(a) l’est), et que dfi(a) = ( df(a))i.

• (ii) ⇒ (i) : un raisonnement analogue en sens inverse démontre que si pour tout i ∈ J1; pK, fi est
différentiable en a, il en est de même pour f .

Théorème 27 (Différentiation de fonctions composées)

Soient f : U ⊂ Rn −→ Rp, V un ouvert de Rp tel que f(U) ⊂ V et g : V ⊂ Rp −→ Rd. Si f est
différentiable en a ∈ U et g différentiable en f(a) ∈ V , la fonction composée g ◦ f : U ⊂ Rn −→ Rd

est différentiable en a et

∀h ∈ Rn, d(g ◦ f)(a)(h) = dg(f(a))
(

df(a)(h)
)
.

Par suite, si f et g sont différentiables, g ◦ f est aussi différentiable et

∀a ∈ U, d(g ◦ f)(a) = dg(f(a)) ◦ df(a).

Démonstration : Soit a ∈ U . On suppose que f est différentiable en a et que g est différentiable en f(a). Il
existe alors une fonction ε définie au voisinage de 0Rn telle que

f(a+ h) = f(a) + df(a)(h) + ‖h‖ε(h) avec ε(h) −→
h→0Rn

0Rp .
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On peut donc écrire f(a+ h) sous la forme

f(a+ h) = f(a) + h′ en posant h′ = df(a)(h) + ‖h‖ε(h).

Par continuité et linéarité de df(a), on remarque que lorsque h→ 0Rn , h′ → 0Rp . Comme g est différen-
tiable en f(a), il existe une fonction η définie au voisinage de 0Rp vérifiant en particulier

g(f(a) + h′) = g(f(a)) + dg(f(a))(h′) + ‖h′‖η(h′) avec η(h′) −→
h→0Rn

0Rd .

Par suite, on peut donc écrire

(g ◦ f)(a+ h) = (g ◦ f)(a) + dg(f(a))( df(a)(h)) + ‖h‖ dg(f(a))(ε(h)) + ‖h′‖η(h′)

= (g ◦ f)(a) + ( dg(f(a)) ◦ df(a))(h) + ϕ(h)

avec ϕ(h) = ‖h‖dg(f(a))(ε(h)) + ‖h′‖η(h′). Par continuité de df(a), il existe C ≥ 0 tel que

‖df(a)(h)‖ ≤ C‖h‖ d’où ‖h′‖ = ‖df(a)(h) + ‖h‖ε(h)‖ ≤ (C + ‖ε(h)‖)‖h‖,

ce qui implique que

‖ϕ(h)‖ ≤ (‖ dg(f(a))(ε(h))‖+ (C + ‖ε(h)‖)‖η(h′)‖)‖h‖.

On a donc au final ϕ(h) = o(‖h‖) lorsque h → 0Rn . Puisque la fonction dg(f(a)) ◦ df(a) appartient à
L(Rn,Rd), ceci démontre que g ◦ f est différentiable en a et que d(g ◦ f)(a) = dg(f(a)) ◦ df(a).

Corollaire 28 (Version matricielle)

Soient f : U ⊂ Rn −→ Rp, g : V ⊂ Rp −→ Rd telles que f(U) ⊂ V et a ∈ U . Si f est différentiable en
a, g différentiable en f(a), alors on a

Jg◦f (a) = Jg(f(a))× Jf (a).

Corollaire 29 (Formule de dérivation en châıne)

Soient f : U ⊂ Rn −→ Rp, g : V ⊂ Rp −→ Rd telles que f(U) ⊂ V et a ∈ U . Si f est différentiable en
a et g différentiable en f(a), alors les dérivées partielles de g ◦ f en a sont données par

∂i(g ◦ f)(a) =

p∑
k=1

∂ifk(a)∂kg(f(a)) ∀i ∈ J1;nK

où l’on a noté f1, . . . , fp les fonctions coordonnées de f .

Remarque : Si l’on convient de noter x1, . . . , xn les coordonnées d’un vecteur générique x ∈ Rn et y1, . . . , yp
celles d’un vecteur générique y ∈ Rp, la formule précédente se récrit sous la forme

∂(g ◦ f)

∂xi
(a) =

p∑
k=1

∂fk
∂xi

(a)
∂g

∂yk
(f(a)) ∀i ∈ J1;nK.

Proposition 30

Soient f : U ⊂ Rn −→ Rp, λ : U ⊂ Rn −→ R une fonction scalaire et a ∈ U . Si f et λ sont
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différentiables en a, il en est de même de la fonction λf et on a

∀h ∈ Rn, d(λf)(a)(h) = λ(a) df(a)(h) + dλ(a)(h)f(a) i.e. d(λf)(a) = dλ(a)f(a) + λ(a) df(a).

Définition 31

Une fonction f : U ⊂ Rn −→ Rp est dite de classe C1 ou continûment différentiable si elle est
différentiable et si sa différentielle df : U −→ L(Rn,Rp) est continue.

Théorème 32

Soit f : U ⊂ Rn −→ Rp où U est un ouvert de Rp. On a équivalence entre :

(i). f est de classe C1,

(ii). pour tout i ∈ J1;nK, la dérivée partielle de f par rapport à sa i-ème variable ∂if : U −→ Rp

existe et est continue.
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