Définition 1

On dit qu'une fonction $f: \mathbb{R} \longrightarrow \mathbb{C}$ est **périodique** s'il existe un réel T strictement positif tel que

$$\forall t \in \mathbb{R}, \quad f(t+T) = f(t).$$

On appelle alors T une période de f et on dit que f est T-périodique.

Proposition 2

Soient $a \in \mathbb{R}$ et $g : [a; a + T[\longrightarrow \mathbb{C}$. Il existe une unique fonction $f : \mathbb{R} \longrightarrow \mathbb{C}$ T-périodique dont la restriction à [a; a + T[est égale à g, i.e. $f_{|_{[a;a+T[}} = g$.

Proposition 3

Soit $f: \mathbb{R} \longrightarrow \mathbb{C}$ une fonction T-périodique et $a \in \mathbb{R}$. On a équivalence entre :

- (i). f est continue,
- (ii). la restriction de f au segment [a; a+T], notée $f_{|_{[a:a+T]}}$, est continue.

Définition 4

Soit $k \in \mathbb{N}$. Une fonction $f : \mathbb{R} \longrightarrow \mathbb{C}$ T-périodique est dite **continue par morceaux** (resp. de classe C^k par morceaux) si sa restriction au segment [0;T] est continue par morceaux (resp. C^k par morceaux), c'est-à-dire s'il existe une subdivision (a_0,\ldots,a_n) de [0;T] telle que pour tout $j \in [0;n-1]$, la restriction de f à $]a_j;a_{j+1}[$, notée $f_{|]a_j;a_{j+1}[}$, admette un prolongement continu (resp. de classe C^k) au segment $[a_j;a_{j+1}]$.

Proposition 5

Soit $a \in \mathbb{R}$. Si $g : [a; a+T] \longrightarrow \mathbb{R}$ est de classe C^k par morceaux sur [a; a+T], il existe une unique fonction f qui soit T-périodique, de classe C^k par morceaux et coïncidant avec la fonction g sur [a; a+T[.

Proposition 6

Toute fonction périodique continue par morceaux est bornée.

Proposition 7

Soit $f: \mathbb{R} \longrightarrow \mathbb{C}$ une fonction T-périodique continue par morceaux. Pour tout $a \in \mathbb{R}$, on a

$$\int_{a}^{a+T} f(t) dt = \int_{0}^{T} f(t) dt.$$

Définition 8

Soient $f,g:\mathbb{R}\longrightarrow\mathbb{C}$ deux fonctions 2π -périodiques et continues par morceaux. On pose

$$\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} \overline{f(t)} g(t) dt.$$

Proposition 9

L'application

$$\begin{array}{ccc} \mathcal{CM}_{2\pi} \times \mathcal{CM}_{2\pi} & \longrightarrow & \mathbb{C} \\ (f,g) & \longmapsto & \langle f,g \rangle \end{array}$$

est une forme sesquilinéaire (i.e. linéaire à droite et semi-linéaire à gauche) hermitienne positive sur $\mathcal{CM}_{2\pi}$.

Proposition 10

L'application \langle , \rangle définit un produit scalaire hermitien sur $C_{2\pi}$. Ainsi, $C_{2\pi}$ est un espace préhilbertien complexe.

Définition 11

Pour toute fonction $f \in \mathcal{CM}_{2\pi}$, on note

$$||f||_2 = \sqrt{\langle f, f \rangle} = \sqrt{\frac{1}{2\pi} \int_0^{2\pi} |f(t)|^2 dt}.$$

Proposition 12

Pour tous $f, g \in \mathcal{CM}_{2\pi}$, on a:

- (i). Homogénéité : pour tout $\lambda \in \mathbb{C},\, \|\lambda f\|_2 = |\lambda|\, \|f\|_2,$
- (ii). Inégalité de Cauchy-Schwarz : $|\langle f, g \rangle| \le ||f||_2 ||g||_2$,
- (iii). Inégalité triangulaire : $||f + g||_2 \le ||f||_2 + ||g||_2$.

Pour tout $n \in \mathbb{Z}$, on considère les trois fonctions suivantes appartenant à $\mathcal{C}_{2\pi}$:

$$e_n: \mathbb{R} \longrightarrow \mathbb{C}, \quad C_n: \mathbb{R} \longrightarrow \mathbb{C} \quad \text{et} \quad T_n: \mathbb{R} \longrightarrow \mathbb{C}$$

 $t \longmapsto e^{int} \quad t \longmapsto \cos(nt) \quad t \longmapsto \sin(nt)$

Proposition 13

La famille de fonctions $\{e_n \mid n \in \mathbb{Z}\}$ est une famille orthonormée de $\mathcal{C}_{2\pi}$. La famille $\{C_n \mid n \in \mathbb{N}\} \cup \{T_n \mid n \in \mathbb{N}^*\}$ est une famille orthogonale de $\mathcal{C}_{2\pi}$.

Définition 14

Pour tout $n \in \mathbb{N}$, on note $\mathcal{P}_n = \text{Vect}\{e_k \mid k \in \llbracket -n; n \rrbracket\}$ et $\mathcal{P} = \text{Vect}\{e_n \mid n \in \mathbb{Z}\} = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n$. Les éléments de \mathcal{P} , qui correspondent à des combinaisons linéaires (finies) d'éléments de la famille $(e_n)_{n \in \mathbb{Z}}$, sont appelés **polynômes trigonométriques**.

Proposition 15

Soit $P \in \mathcal{P}$ un polynôme trigonométrique. Alors il existe $p \in \mathbb{N}$ tel que

$$P = \sum_{n=-n}^{p} c_n e_n \quad \text{avec} \quad c_n = \langle e_n, P \rangle$$

ce qui équivaut à $P=\frac{a_0}{2}e_0+\sum_{n=1}^p\left(a_nC_n+b_nT_n\right)$ où $a_n=c_n+c_{-n}=2\langle C_n,P\rangle$ et $b_n=i(c_n-c_{-n})=2\langle T_n,P\rangle$. On a de plus,

$$||P||_2^2 = \sum_{n=-p}^p |c_n|^2 = \frac{|a_0|^2}{4} + \frac{1}{2} \sum_{n=1}^p (|a_n|^2 + |b_n|^2).$$

Définition 16

On appelle **série trigonométrique** toute série de fonctions $\sum u_n$ où pour tout $n \in \mathbb{N}$, $u_n : \mathbb{R} \longrightarrow \mathbb{C}$ est combinaison linéaire de e_n et e_{-n} . En d'autres termes, il existe $c_0 \in \mathbb{C}$ tel que $u_0 = c_0 e_0$ et pour tout $n \in \mathbb{N}^*$, il existe c_n et $c_{-n} \in \mathbb{C}$ tels que $u_n = c_n e_n + c_{-n} e_{-n}$.

Proposition 17

Les sommes partielles d'une série trigonométrique sont des polynômes trigonométriques.

Définition 18

Soit $f: \mathbb{R} \longrightarrow \mathbb{C}$ une fonction 2π -périodique et continue par morceaux. On définit ses **coefficients** de Fourier exponentiels par

$$\forall n \in \mathbb{Z}, \quad c_n(f) = \langle e_n, f \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-int} dt.$$

et ses coefficients de Fourier trigonométriques par

$$\forall n \in \mathbb{N}, \qquad a_n(f) = 2\langle C_n, f \rangle = \frac{1}{\pi} \int_0^{2\pi} f(t) \cos(nt) dt$$
$$b_n(f) = 2\langle T_n, f \rangle = \frac{1}{\pi} \int_0^{2\pi} f(t) \sin(nt) dt.$$

Théorème 19

Si une série trigonométrique $\sum_{n\in\mathbb{Z}} \alpha_n e_n$ converge uniformément sur \mathbb{R} , alors sa fonction somme définie par

$$S: \mathbb{R} \longrightarrow \mathbb{C}$$

$$t \longmapsto \sum_{n=-\infty}^{+\infty} \alpha_n e^{int} = \alpha_0 + \sum_{n=1}^{+\infty} \left(\alpha_n e^{int} + \alpha_{-n} e^{-int} \right)$$

est continue sur \mathbb{R} , 2π -périodique et ses coefficients de Fourier exponentiels sont égaux à ses coefficients, i.e. pour tout $n \in \mathbb{Z}$, $\alpha_n = c_n(S)$.

Proposition 20

Pour tout $n \in \mathbb{N}$, on a

$$a_n(f) = c_n(f) + c_{-n}(f),$$
 $b_n(f) = i(c_n(f) - c_{-n}(f)),$ $c_n(f) = \frac{a_n(f) - ib_n(f)}{2}$ et $c_{-n}(f) = \frac{a_n(f) + ib_n(f)}{2}.$

Proposition 21

Soit $f \in \mathcal{CM}_{2\pi}$.

- (i). Si f est à valeurs réelles, alors ses coefficients de Fourier trigonométriques sont réels, i.e. pour tout $n \in \mathbb{N}$, $a_n(f) \in \mathbb{R}$ et $b_n(f) \in \mathbb{R}$.
- (ii). Si f est paire, alors pour tout $n \in \mathbb{N}$, $b_n(f) = 0$.
- (iii). Si f est impaire, alors pour tout $n \in \mathbb{N}$, $a_n(f) = 0$.

Proposition 22

Soient $f, g \in \mathcal{CM}_{2\pi}$.

- (i). Pour tous $\lambda, \mu \in \mathbb{C}$, pour tout $n \in \mathbb{Z}$, $c_n(\lambda f + \mu g) = \lambda c_n(f) + \mu c_n(g)$.
- (ii). Pour tout $n \in \mathbb{Z}$, $c_n(\overline{f}) = \overline{c_{-n}(f)}$ où \overline{f} désigne la fonction conjuguée de f.
- (iii). Pour tout $a \in \mathbb{R}$, si l'on note $f_a : t \longmapsto f(t+a)$ la fonction translatée, alors pour tout $n \in \mathbb{Z}$, $c_n(f_a) = e^{ina}c_n(f)$.

Définition 23

Soit $f: \mathbb{R} \longrightarrow \mathbb{C}$ une fonction 2π -périodique et continue par morceaux. On appelle **série de Fourier** de f la série trigonométrique $\sum_{n \in \mathbb{Z}} c_n(f)e_n$. On appelle **somme de Fourier** de f la fonction somme de la série de Fourier de f:

 $+\infty$ $a_0(f)$ $+\infty$

$$S(f): t \longmapsto \sum_{n=-\infty}^{+\infty} c_n(f)e^{int} = \frac{a_0(f)}{2} + \sum_{n=1}^{+\infty} (a_n(f)\cos(nt) + b_n(f)\sin(nt))$$

Pour tout $n \in \mathbb{N}$, on note $S_n(f)$ la somme partielle de rang n de la série de Fourier de f à savoir

$$S_n(f) = \sum_{k=-n}^{n} c_k(f)e_k = \frac{a_0(f)}{2}e_0 + \sum_{k=1}^{n} (a_k(f)C_k + b_k(f)T_k).$$

Proposition 24

Soit $f: \mathbb{R} \longrightarrow \mathbb{C}$ continue et 2π -périodique. Pour tout $n \in \mathbb{N}$, la somme partielle de rang n de la série de Fourier de f, notée $S_n(f)$, est le projeté orthogonal de f sur \mathcal{P}_n et on a

$$||f||_2^2 = ||S_n(f)||_2^2 + ||f - S_n(f)||_2^2$$
 et $||f - S_n(f)||_2 = d(f, \mathcal{P}_n)$.

Proposition 25

Soit $f \in \mathcal{CM}_{2\pi}$. Pour tout $n \in \mathbb{N}$, on note $S_n(f) = \sum_{k=-n}^n c_k(f)e_k$ la somme partielle de rang n de la série de Fourier de f. Alors, pour tout $n \in \mathbb{N}$, $f - S_n(f)$ est orthogonal au sous-espace vectoriel $\mathcal{P}_n = \text{Vect}\{e_k \mid k \in \llbracket -n; n \rrbracket \}$ c'est-à-dire que pour tout $P \in \mathcal{P}_n$, $\langle f - S_n(f), P \rangle = 0$. En particulier, $\langle f - S_n(f), S_n(f) \rangle = 0$.

Corollaire 26 (Inégalité de Bessel)

Soit $f \in \mathcal{CM}_{2\pi}$. Pour tout $n \in \mathbb{N}$, on note $S_n(f)$ la somme partielle de rang n de la série de Fourier de f. Alors on a

$$\forall n \in \mathbb{N}, \quad ||S_n(f)||_2 \le ||f||_2$$

ce qui équivaut à

$$\forall n \in \mathbb{N}, \quad \sum_{k=-n}^{n} |c_k(f)|^2 \le \frac{1}{2\pi} \int_0^{2\pi} |f(t)|^2 dt.$$

De plus, la série bilatère $\sum_{n\in\mathbb{Z}} |c_n(f)|^2$ et la série numérique $\sum (|a_n(f)|^2 + |b_n(f)|^2)$ convergent et l'on

a

$$\sum_{n=-\infty}^{+\infty} |c_n(f)|^2 = \frac{|a_0(f)|^2}{4} + \frac{1}{2} \sum_{n=1}^{+\infty} (|a_n(f)|^2 + |b_n(f)|^2) \le ||f||_2^2.$$

Corollaire 27

Soit $f \in \mathcal{CM}_{2\pi}$, alors on a:

$$c_n(f) \underset{|n| \to +\infty}{\longrightarrow} 0, \quad a_n(f) \underset{n \to +\infty}{\longrightarrow} 0 \quad \text{ et } \quad b_n(f) \underset{n \to +\infty}{\longrightarrow} 0$$

Proposition 28

Soient $k \in \mathbb{N}$ et $f : \mathbb{R} \longrightarrow \mathbb{C}$ une fonction 2π -périodique et de classe C^k . Les coefficients de Fourier de f vérifient

$$c_n(f^{(k)}) = (in)^k c_n(f) \quad \forall n \in \mathbb{Z}$$

et par conséquent

$$c_n(f) = o\left(\frac{1}{n^k}\right)$$
 quand $|n| \to +\infty$.

Définition 29

Soit $f \in \mathcal{CM}_{2\pi}$. On dit que f est **développable en série de Fourier** si sa série de Fourier converge simplement sur \mathbb{R} vers f, c'est-à-dire si

$$\forall t \in \mathbb{R}, \quad S_n(f)(t) = \sum_{k=-n}^n c_k(f)e^{int} \xrightarrow[n \to +\infty]{} f(t).$$

Dans ce cas, on obtient

$$\forall t \in \mathbb{R}, \quad f(t) = \sum_{n = -\infty}^{+\infty} c_n(f)e^{int} = \frac{a_0(f)}{2} + \sum_{n = 1}^{+\infty} \left(a_n(f)\cos(nt) + b_n(f)\sin(nt)\right).$$

Théorème 30 (Théorème de Dirichlet (admis))

Soit $f: \mathbb{R} \longrightarrow \mathbb{C}$ une fonction 2π -périodique. Si f est de classe \mathcal{C}^1 par morceaux, alors la série de Fourier de f converge simplement sur \mathbb{R} vers la régularisée de f, notée $\widetilde{f}: t \longmapsto \frac{f(t^+) + f(t^-)}{2}$, i.e.

$$\forall t \in \mathbb{R}, \quad S(f)(t) = \lim_{n \to +\infty} \sum_{k=-n}^{n} c_k(f)e^{ikt} = \frac{f(t^+) + f(t^-)}{2}.$$

Théorème 31 (Théorème de convergence normale)

Soit $f: \mathbb{R} \longrightarrow \mathbb{C}$ une fonction 2π -périodique, de classe \mathcal{C}^1 par morceaux. Si de plus f est continue sur \mathbb{R} , alors la série de Fourier de f converge normalement sur \mathbb{R} et sa somme est f.

Théorème 32

Soit $f: \mathbb{R} \longrightarrow \mathbb{C}$ 2π -périodique et continue par morceaux. Pour tout $\varepsilon > 0$, il existe un polynôme trigonométrique P_{ε} tel que $||f - P_{\varepsilon}||_2 \le \varepsilon$.

Théorème 33 (Théorème de Parseval)

Soit $f: \mathbb{R} \longrightarrow \mathbb{C}$ une fonction 2π -périodique et continue par morceaux. La suite des sommes partielles $(S_n(f))_{n\in\mathbb{N}}$ de la série de Fourier de f vérifie

$$||S_n(f) - f||_2 \underset{n \to +\infty}{\longrightarrow} 0.$$

De plus, on a l'égalité de Parseval-Bessel :

$$||f||_2^2 = \lim_{p \to +\infty} ||S_p(f)||_2^2$$

c'est-à-dire

$$\frac{1}{2\pi} \int_0^{2\pi} |f(t)|^2 dt = \sum_{n=-\infty}^{+\infty} |c_n(f)|^2 = \frac{|a_0(f)|^2}{4} + \frac{1}{2} \sum_{n=1}^{+\infty} \left(|a_n(f)|^2 + |b_n(f)|^2 \right).$$