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@ Un peu de topologie sur R” :
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i thbvacaal Définton 1.1
On appelle norme sur R" toute application N : R" — R* vérifiant :
@ axiome de séparation : Vx € R", N(x) =0 <= x = Ogn
@ homogénéité : Vx e R", VA eR, N(Ax)= |\ N(x)
@ inégalité triangulaire : Vx,y € R",  N(x+y) < N(x) + N(y).

Proposition 1.2 (Inégalité triangulaire inversée)

Soit || .|| une norme sur R". Pour tous x,y € R", on a

HIxIF = [y lIT < fIx =yl
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Définition 1.3
On appelle norme euclidienne sur R" ['application || . ||> : R" — R™
définie par :

Proposition 1.5 J

L’application || . ||2 est une norme sur R".

Dans tout le reste du chapitre, la seule norme considérée sur R” sera la
norme euclidienne. On se contentera donc de la noter ||. || a la place de

Vx = (x1,...,%) €R" x|l =

Il ll2-
Proposition 1.4 (Inégalité de Cauchy-Schwarz) Définition 1.6
Pour tous x = (x1,...,%n), ¥y = (V1,---,¥n) ER", 0n a On appelle distance euclidienne sur R" ['application d : R" x R" — RT
définie par :
n n n
S ] <[>0 2 Vx,y €R",  d(x.y) = [Ix -yl
k=1 k=1 k=1
avec égalité si et seulement si la famille (x, y) est liée.
[ Fonctionsdeplusieursvariablesréelles L U] [ Fonctionsdeplusieursvariablesréelles |10
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Proposition 1.7 o Un peu de topologie sur R” :
La distance euclidienne d : R" x R" — RT Vérifie :

@ symétrie : Vx,y € R", d(x,y) =d(y,x)

@ séparation :Vx,y e R", d(x,y)=0 <= x=y

@ inégalité triangulaire : Vx,y,z € R", d(x,y) < d(x,z)+ d(z,y).

@ Boules et sphéres

Proposition 1.8

Pour tout x = (x1,...,x,) € R",

max_|xc| < [Ix|| < v/n max_|x|.
ke[1;n] ke[1;n]
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Définition 1.10
Une partie A de R" est dite bornée s'il existe M € R™ tel que

Définition 1.9
Soient a € R" et r > 0. On définit : Vx e A, x| <M.
@ /a boule ouverte de centre a et de rayon r par . . . .. .
B(a,r) = {x € R" | [|x — a|| < r}, Si A est une partie bornée non vide de E, on définit son diamétre par :
o /a boule fermée de centre a et de rayon r par diam(A) := sup{||x — y|| | x,y € A}.
B(a,r) ={xeR"|||x—a| <r},
@ /a sphere de centre a et de rayon r par Proposition 1.11
S(a,r) ={x eR" | [x —al| = r}. Soit A C R". Les assertions suivantes sont équivalentes :

@ A est bornée,
@ il existea € R" et r > 0 tels que A C B(a,r).
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0 Un peu de topologie sur R" : Définition 1.12
On appelle voisinage d’un élément x € R" toute partie V C R" vérifiant :

@ Parties ouvertes

Ir>0, B(x,r)cC V.

Définition 1.13

Une partie U de R" est dite ouverte si elle est voisinage de chacun de ses
points, i.e.

VxeU, 3Ir>0, B(x,r)CU.

On dit encore que U est un ouvert de R".
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Figure — Une sphére n'est pas ouverte.

Figure — Une boule ouverte est ouverte
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Proposition 1.14

Une réunion (finie ou infinie) d’ouverts est un ouvert.

Proposition 1.15 © Limites

Une intersection finie d’ouverts est un ouvert.

Proposition 1.16

Soient U un ouvert de R" et VV un ouvert de RP, alors le produit cartésien
U x V est un ouvert de R"™P (oi I'on a identifié R" x RP avec R™P).
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Définition 2.1
On dit qu'une suite (ux)ken € (R™)N d'éléments de R" est bornée s'il
existe M € RT tel que ||ux|| < M pour tout k € N.

9 Limites Définition 2.2

° i : - ’ - 121 £
Cas des suites On dit qu'une suite (uy)ken € (R")YN d’éléments de R" est convergente

s'il existe ¢ € R" tel que ||ux — £|| — 0 lorsque k — +o0, i.e.
Ve>0, INEN, Vk>N, |u—{|<e.

Cet élément ¢ est alors unique, on I'appelle limite de la suite (ux)x et on

note { = |lim wug ouu, — ¥.
k—+400 k—+00
Fonctions de plusieurs variables réelles _ Fonctions de plusieurs variables réelles _

Proposition 2.4

Soient (uk)ken et (Vk)ken deux suites d’éléments de R" convergeant

Remarque : On dispose des équivalences : respectivement vers { et {'. Pour tous \,;u € R, on a
u — ¢ <= uy—t — Opn Aug + pve — M+l quand k — +oo.
k——+o00 k——+o00
= lu =/ . _>—+>OO 0. En d’autres termes, I'ensemble des suites convergentes de E est un espace

vectoriel, et I'application (ux)x — lim uy est linéaire.
k—~+o00

Proposition 2.3

Siux — € alors ||uk|| — ||¢||. Par conséquent, toute suite Proposition 2.5
k—+o00 k—+00

Soient (A\)ken € RY une suite réelle convergeant vers \ et
(u)ken € (RMY une suite d'éléments de R" convergeant vers { € R",
alors

convergente est bornée.

Ak~ukkij-€.
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Proposition 2.6

Soit u = (u(k))ken € (R™)N une suite d’éléments de R". Pour tout k € N,
on peut écrire

u(k) = (u1(k),...,un(k)) avec ui(k) e R Vi€ [1;n].
© Limites
Les suites réelles u; = (uj(k))ken sont appelées suites coordonnées (ou
composantes) de la suite vectorielle u. @ Cas des fonctions :
On a équivalence entre :

@ /a suite u converge,

@ les suites coordonnées us, . . ., u, convergent.
De plus, si tel est le cas, on a
lim wu(k)=( lim wu(k),..., lim w,(k)).
k—+o00 ( ) (k—>+oo ( ), ’k—)—i—oo ( ))
[ Fonctionsdeplusieursvariableséelles ] [ Fonctionsdeplusieursvariableséelles Ll
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Définition 2.7

Soient X une partie de R" et a € R". On dit que a est un point adhérent
3 X s'il existe une suite (xx)xen € X" d'éléments de X qui converge vers
a.

© Limites
Définition 2.8
@ Cas des fonctions : Soient f : X C R" — RP et a un point adhérent 3 X. On dit que f tend
@ Définitions et propriétés .
vers £ € RP en a si

Ve>0, >0, ¥xeX, |x—a<n=|f(x)—¢| <e

Cet élément ( est alors unique, et on note £ = lim f(x) ou f(x) — £.
X—a X—a
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Proposition 2.9
Soient f : X = Xy UXo C R"” — RP, a un point adhérent a Xy et a X, et
L eRP.Si .
Proposition 2.11
fx) — € et f(x) — ¢, Soit f : X C R" — RP. Pour tout x € X, on peut écrire
x—a,xEX1 x—ra,xEXa . .
f(x) = (f(x),...,f(x)) avec fi(x) € R. On rappelle que les applications
alors f(x) — /L. fi,...,fp : X — R sont appelées applications coordonnées ou
HEE composantes de f. Soit a € R" un point adhérent 3 X. On a équivalence
entre :
Théoreme 2.10 (Caractérisation séquentielle) @ ftendverst=(1,...,0,) ena,
Soient f : X C R" — RP, / € RP et a un point adhérent 3 X. On a @ pour tout i € [1;p], f; tend vers {; en a.
équivalence entre
@ f(x) —¢,
X—ra
@ V(Xk)keN c XN, Xk —— a= f(Xk) — /.
k——+o00 k——+o0
l Fonctionsdeplusieursvariablesrelles L | [ Fonctionsdeplusieursvariablesréelles L ]|
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Proposition 2.12
Soient f,g : X CR" — RP et A, ju € R. Sif(x) — L et g(x) — ¢,
alors (AMf + pg)(x) S A+l

© Limites Proposition 2.13

o Soienta: X CR" — Retf: X CR" — RP. Sia(x) — A e R et
@ Cas des fonctions : X—>a

f(x) — ¢, alors (af)(x) — L.
. . .. X—a X—a
@ Opérations sur les limites

Proposition 2.14 (Composition des limites)

Soientd € N*, f : X CR" — RP etg: Y CRP — R? avec f(X) C Y.

Si f(x) o betg(y) y—_);f, alors g o f(x) o L.
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Soit f : X C R — RP avec X une partie de R non majorée. On dit que f
tend vers £ € RP en 400 si

Ve>0, JAcRT, WVxeX, x>A=|f(x)—/{|<Le

© Limites On note alors f(x) X_>—+>oo . On définit de maniére analogue (x) ono l,

pour X C R non minorée.

@ Cas des fonctions :

Definition 2
@ Extension “a I'infini” Soit f : X C R"” — RP avec X une partie de RP non bornée. On dit que
f tend vers £ € RP lorsque ||x|| — 400 si

Ve >0, JAeRT, vxeX, |x|>A=|f(x)-{ <e.

On note alors f(x) — /.
[|x[| =400
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Definition 3
Soit f : X C RP — R et a un point adhérent a X. On dit que f tend vers
400 en asi

VMeRT, In>0, VxeX, |x—a|<n=Ff(x)>M.
On note alors f(x) ;oo On définit de maniére analogue
X—a

f(x) — —oo, f(x) — +o0, etc...
5] [[x]|—=+o0

© Continuité
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Definition 4
On dit que f : X C R” — RP est continue en a € X si f(x) N~ f(a),
X—a

e si

Ve>0, In>0, VxeX, |[x—a|<n=|f(x)-rf(all <e.

Théoreme 3.1
Soient f : X C R" — RP et a € X. On a équivalence entre :

@ f est continue en a,

© Continuite _ @ Y(xuken € XN, lim xk=a= lim f(x) = f(a).
@ Définition et premiers exemples k—+00 k—+o00
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Definition 5
On dit que f : X C R” — RP est continue sur X si f est continue en

tout point a € X. On note C(X,RP) I'ensemble des fonctions continues de
X dans RP.

Proposition 3.2

Soit f : X C R" — RP. On peut noter f = (f,...,f,) avec
fi : X C R" — R pour tout i € [1; p]. La fonction f est continue sur X si
et seulement ses fonctions coordonnées fi, ..., f, sont continues sur X. © Continuité

@ Fonctions lipschitziennes
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Definition 6
Une application f : X C R” — RP est dite lipschitzienne s'il existe
k € RT tel que

Vx,y € X, |[f(x) = f(y)ll < klx = yll-

Proposition 3.3
Les applications lipschitziennes sont continues.

9 Continuité

® Opérations sur les fonctions continues
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Soient f,g : X C R" — RP continues et A\, u € R. La fonction \f + ug
est continue sur X.

Proposition 3.5

Soienta : X CR" — R et f : X C R" — RP continues sur X. Le
produit « - f est continu sur X.

Proposition 3.6

Soientd e N*, f : X CR" — RP et g : Y C RP — RY vérifiant
f(X) C Y. Sif etg sont continues (resp. sur X et Y), la composée g o f
est continue sur X. © Continuité

Proposition 3.7

Soit f : X CR" — RP et U C X un ouvert de R". Si la restriction de f a

. . . ® Applications partielles
U, notée 1|, est continue sur U, alors f est continue en tout point de U. PP P
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Definition 7
Soit f : D C R" — RP. Soit a = (a1,...,an) € D. Pour tout j € [1; n],
on définit les applications partielles

faJ : DaJ‘ — RP
t +— f(ar,...,aj-1,t,8j41,...,3n) Proposition 3.8
N Soit f : D C R" — RP. Si f est continue en a € D, alors I'application
partielle f, j est continue en aj, pour tout j € [1; n].

Dan {t eR | (al,...,aj_l,t,aj+1,...,a,,) € D}
avec les notations abusives :

(al,...,aj_l,t,aj+1,...,a,,) = (t,az,...,a,,) et

(a]_, 0 0oy Ej=ily y fdkilpoossg a,,) = (a]_, ...y an—1, t)

dans les cas ou j =1 ou n.
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