Cursus prépa 2A : Mathématiques 3 3 novembre 2025

Devoir commun nº 2

La rédaction mathématique et la présentation de votre copie seront prises en compte dans la notation.

Partie algèbre

Exercice 1. Étant donnés $x_1, \ldots, x_n \in \mathbb{R}$, calculer le déterminant de la matrice suivante de $M_n(\mathbb{R})$:

$$A = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & x_2 \\ x_1 & \cdots & \cdots & x_1 \end{pmatrix}.$$

On demande le résultat sous forme factorisée.

Exercice 2. On rappelle le théorème de Bézout : si a et b sont deux entiers premiers entre eux alors il existe $u, v \in \mathbb{Z}$ tels que au + bv = 1.

Soient $A, B \in M_n(\mathbb{Z})$.

- 1. Montrer que les déterminants de A et de B sont dans \mathbb{Z} .
- 2. Rappeler la formule reliant une matrice inversible M, sa comatrice et son déterminant.
- 3. On suppose que A et B sont inversibles et que pgcd(det(A), det(B)) = 1. Montrer qu'il existe $U, V \in M_n(\mathbb{Z})$ telles que $AU + BV = I_n$.

Exercice 3. Soit E un \mathbb{R} -espace vectoriel de dimension 3 ou 4. Soit f un endomorphisme de E tel que $f^2 = -\mathrm{Id}_E$. Pour un vecteur $x \in E$, on note $F(x) = \mathrm{Vect}\{x, f(x)\}$.

- 1. En utilisant le déterminant, montrer que la dimension de E est 4.
- 2. Montrer que pour tout $x \in E$, F(x) est un sous-espace vectoriel de E stable par f et que F(x) est de dimension 2 si $x \neq 0$.
- 3. Soit $a \in E \setminus \{0\}$. Justifier qu'il existe $b \in E$ tel que $b \notin F(a)$. Montrer que $E = F(a) \oplus F(b)$.
- 4. En déduire que la famille $\mathcal{B} = (a, f(a), b, f(b))$ est une base de E.
- 5. Déterminer la matrice de f dans la base \mathcal{B} .

PARTIE ANALYSE

Exercice 4.

- 1. Soit $\sum a_n$ une série convergente à termes positifs ou nuls.
 - (a) Montrer qu'il existe $n_0 \in \mathbb{N}$ tel que pour $n \ge n_0$, $a_n \le 1$.
 - (b) En déduire la nature de la série $\sum a_n^3$.
- 2. Soit $x \in \mathbb{R}$. Justifier que la somme suivante existe et la calculer : $\sum_{n=0}^{+\infty} (-1)^n \frac{e^{inx}}{2^n}$.
- 3. Déterminer la nature de la série $\sum \frac{(-1)^n}{\sqrt{n}} \cos\left(\frac{1}{n}\right)$. En cas de convergence, on précisera si la convergence est absolue et en cas de divergence, on précisera si elle est grossière.
- 4. Soit (u_n) une suite à termes strictement positifs. On suppose que la série $\sum u_n$ converge. Lorsqu'elle existe, la limite de (u_{n+1}/u_n) est-elle forcément strictement inférieure à 1?

Exercice 5. Pour $n \in \mathbb{N}$, on définit $f_n :]0, +\infty[\to \mathbb{R} \text{ par } f_n(x) = \min\{n, \frac{1}{\sqrt{x}}\}.$

- 1. Montrer que la suite (f_n) converge simplement sur $]0, +\infty[$ vers une fonction qu'on déterminera.
- 2. Cette convergence est-elle uniforme?
- 3. Soit a > 0. Montrer que la convergence est uniforme sur $[a, +\infty[$.