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Cursus prépa 2A : Mathématiques 3 15 décembre 2025

Devoir commun n° 4

La rédaction mathématique et la présentation de votre copie seront prises en compte dans la notation.

Les quatre exercices sont a rédiger sur quatre copies doubles séparées.

Exercice 1.
1. Déterminer le rayon de convergence des séries entieres suivantes :

@ LS ) LR @ Y s

3
n>0 (n) n>1 n>1

2. En admettant que le rayon de convergence de la série entiere suivante est 1, calculer la somme de

la série pour tout x €] —1,1[ :

Z(_l)n+1n$2n+1'

n=0

Exercice 2. Soit f € £(R3), dont la matrice dans la base canonique B. est

1 —-16 8
A=1|1 —-11 6
2 -16 9

On admet que le polynéme caractéristique de f est x; = (X + 3)(X — 1)
1. Montrer que f n’est pas diagonalisable.

2. Déterminer une base B de R? telle que Matg(f) = D+ N avec D une matrice diagonale et N une

matrice nilpotente triangulaire vérifiant ND = DN.

3. Notons P la matrice de passage de B, & B. Déterminer une expression de A° en fonction de P, N
et D.

Exercice 3. Soit (E) I’équation différentielle :
2y’ (x) + (2 - 2)y'(x) — y(z) = 3.

1. On suppose qu’il existe une série entiere Z anx” de rayon de convergence R > 0 dont la fonction

neN
somme S est solution de (£) sur R.

(a) Déterminer une relation de récurrence satisfaite par les coefficients a,, pour n > 1.
(b) En déduire une expression explicite de a,, pour n € N en fonction de n et ay.
2. On pose désormais les coefficients a,, comme étant ceux trouvés ci-dessus. Déterminer le rayon de
convergence R de la série entiere Z anx".

3. Déterminer ’ensemble des séries entieres dont la fonction somme est solution de (E), et exprimer

leurs sommes a 1’aide de fonctions usuelles.



Exercice 4. Soit a € R*. On considére la matrice suivante dans M3(R) :

SO AN o R

0 a a?
_ 11
A= o 0 a
11
2z o 0

Vérifier que A? = A 4 2I. La matrice A est-elle diagonalisable ?

Déterminer le polynéme minimal de A.

Calculer la trace de A et en déduire le polynéme caractéristique de A.

Justifier que la matrice A est inversible, et exprimer A~! comme combinaison linéaire de A et I.
Déterminer un polynéme annulateur de degré 2 de B = A + A~ L.

BONUS : Montrer que si X est un vecteur propre de A associé a la valeur propre —1, alors X est
vecteur propre de A~! et en déduire la multiplicité algébrique de —2 en tant que valeur propre de
B.



Correction du Devoir Surveillé commun 4

Exercice 1

1.

(a)

(3n)!
(n!)3

D’Alembert pour les séries entieres. On a :

Pour tout n > 0, soit a, = . Comme a, # 0 pour tout n, on peut utiliser la regle de

ant1|  (3n+3)! ' n!3 (3 +3)(3n+2)(3n + 1) N 273 .
an | (438 GBn) (n+3)(n+2)(n+1)3 nd
e 1

On a donc — 27 et le rayon de convergence de > a,z" est ainsi R =

27"

Soit z € C*. Pour tout n > 1, posons a, = 12—?23"“. On a a, # 0 pour tout n > 2 et

B ln(n—|—1)|
T 12 ”

an+1
Gn

‘3n+5 . LQ 1 — ln(n + 1) . n’ . |Z|3
Inn |z|3n+2 Inn (n+1)2 )

Or,onaln(n+1) ~Inncarln(n+1) =Inn+In(1+ 1) =Inn+o(1) = Inn+o(lnn). Ainsi,

R N P S e

n

Ainsi, d’apres la régle de D’Alembert pour les séries numériques, la série > a,, est absolument
convergente (donc convergente) si |z|2 < 1, c’est-a-dire |z| < 1. Ainsi le rayon de convergence
R de la série entiere proposée vérifie R > 1. Par ailleurs, toujours par la régle de D’Alembert,
la série > a,, est grossierement divergente si |z|® > 1, c’est-a-dire |z| > 1, et donc R < 1. On
a donc R=1.

"

Soit » > 0. Si r < 1, on a |sin(n)r"| < 1 pour tout n > 1. Cela montre que la suite

(sin(n)r™)p=0 est bornée pour tout r < 1, et donc que le rayon de convergence R de > sin(n)z"
vérifie R > 1. Par ailleurs, on a sin(n) - 1" = sinn /4 0 quand n — +00, ce qui montre que
R < 1. Finalement, cela montre que R = 1.

Remarque : pour démontrer que sinn - 0, on peut procéder de la maniere suivante. Puisque
sin(n + 1) —sin(n — 1) = 2cos(n)sin 1, si on avait sinn — 0, on aurait aussi cosn — 0. On

aurait ensuite 1 = cos®n 4 sin?n — 0, ce qui est absurde.

2. Soit z €] —1,1]. On a alors

La somme E nX" ! est la somme en X de la série dérivée de E z", dont la somme vaut 1>

+oo +o00 +oo
Z(_l)n+1nx2n+l — Zn(_x2)n _ _xZan7
n=0 n=0 n=0
avec X = —z2. Or,
+oo +o00 +0oo
d nX"=>"nX"=XY» nXx"l
n=0 n=1 n=1
+oo

n=1 n=0

pour tout |z| < 1. Pour de tels z, on a donc

+o0 1
nt = ——
nz:l (1—2)?



Puisque X = —22 €] — 1,1[, on peut remplacer z par X = —x?, et on obtient finalement

“+o00

Z(_l)n+1n$2n+l = . (_332) .

n=0

o
(1= (=2?))?

73

Exercice 2

1. Déterminons le polynome minimale de f, que I'on note 7. Nous savons que my = ma, et par
le théoreme de Cayley-Hamilton, x4(A4) = 0, ainsi 74 divise le polynéme y 4. De plus, toute
valeur propre de A est racine de 7y, et Sp(4) = {—3,1}, donc 74 = (X +3)(X — 1) ou 4 =
(X +3)(X —1)2

4 -16 8 0 —-16 8 0 O 0
Cependant, (A+3I3)- (A—-I3)=|1 -8 6] -|1 —-12 6] =4 —16 8 | #0 Doncle
2 —16 12 2 —-16 8 8 =32 16

polynome (X +3)(X — 1) n’annule pas la matrice A, de ce fait m4 = (X +3)(X —1)2. Le polynome

minimal n’est pas & racine simple, donc A n’est pas diagonalisable.

2. Pour déterminer la base B souhaitez, nous commencgons par calculer les espaces propres de A, puis

a
nous en déduisons ceux de f. Soit v= [ b | € M3 1(R).
c
0 4a — 16b + 8c 0
veFE_3(4) & Av+3v=|0 = a—8b+6¢c | =1{0
0 2a — 16b + 12¢ 0
a—4b+2c=0
c=b
< a—8b+6c=0 <
a=2b
a—8b+6c=0
2
& v e Vect 1
1
0
Notons v1 = (2,1, 1). On montre de méme que Ej(A) = Vect 1| 7, notons vy = (0,1,2). Nous
2

avons obtenu les deux premiers éléments de B, les triplets v; et vo. Nous cherchons maintenant a
compléter cette base par un vecteur de Ker((f — id)?) car la dimension de E1(A) n’est pas égale

a la multiplicité algébrique de la valeur propre 1.

0 64 —32 a 0
veKer(A-1I3)%) & (A-I)* v=0 <« [0 32 -16 bl=10
0 32 —16 c 0
64b — 32¢ =0
& 32b—16c¢=0 & c=2b
32b — 16¢ = 0
0 1
& v e Vect 11,10
2 0



Nous pouvons donc prendre v = (1,0,0). Nous avons f(v3) = vg + vs, la matrice de f dans la

-3 00 0 00
base B = (vi,v2,v3) estdoncT=| 0 1 1| =D+ N,avecN=|(0 0 1
0 01 0 00

De plus nous avons bien ND = DN, a vérifier par le calcul ou en justifiant car elles sont diagonales
2 01
par blocs. La matrice de passage P vérifiant P~'AP =T estici P=[1 1 0
1 20

3. Nous savons que A = P-Matg(f)-P~! = P(N+D)P~!, donc par récurrence, A> = P(N+D)>P~1L.
De plus, ND = DN, donc d’apres le binome de Newton :
5
5
5 _ kps—k _ )b 4
(N + D) _;O<k>z\r D>% = D 4 5ND

La somme précédente s’arrétant au terme k = 2 car N2 = 0. Ainsi, A> = P(D® + 5ND*)P~1,

Exercice 3

1. (a) Comme R > 0, la fonction somme S est de classe C* sur | — R; R| et ses dérivées successives

s’obtiennent par dérivation terme a terme. Ainsi, pour tout z €] — R; R|,

“+o0o +oo +oo
S(x) = Zana}", S'(x) = Znanxnfl et S"(x)= Zn(n — Dapz™ 2,
n=0 n=1 n=2
Par conséquent, pour tout x €] — R; R,
25" (x) + (2 —x)S(z) — S(x)
+o0 +o0 +o0o
= x Z n(n —Dapz™ 2 + (2 — x) Z nayz" "t — Z anz"
n=2 n=1 n=0

+oo +o0o +0o0o +oo

— Z n(n — l)anac"_l +2 Z nan,z" "t — Z na,r" — Z anpx"
n=2 n=1 n=1 n=0
+o00o +0o0 +00 “+o0o

= Z(p + 1)paysia?f + 2 Z(p + 1)ap12? — Z nanz’" — Z anz"
p=1 p=0 n=1 n=0
par le changement d’indice p=n — 1
“+o0o

= Z ((n+ Dnaps1 +2(n+ Vaps1 — nap, — ap) 2" 4 2a1 — ag
n=1
“+oo

= Z(n + 1) ((n+2)ans1 — an) 2" + 2a1 — ag
n=1

Ainsi,
S est solution de (F) sur | — R; R]
+oo
< Vre€|-R;R|, Z(n +1)((n+2)ant1 —an) z" + 2a1 —ap =3
n=1

* 1 2 — =
— { vn €N, (nt D((n+2)ant1 —an) =0 par unicité du développement en série entiere

2a1—a0:3
Qn
n+2 (*)

Vn e N*  api1 =
— _a0—|—3
2

a)p =



3 3
(ZO_;FD!”. Puisque a; = ao + , Vassertion H;

(b) Soit n € N*. Notons H,, Iassertion “a, = 5

est vraie. Soit n € N*, supposons que l’assertion H, est vérifiée, alors par la relation de

récurrence,

a apg+ 3 ap+ 3

n-:2 T m+2)(n+ 1) (n+2)!

an41 =

ce qui démontre que H,, est aussi vérifiée. Par le principe de récurrence, on en conclut que
ap+ 3

a, = —— pour tout n € N* (et ag = ag).
3
2. On pose ag € C et pour tout n € N*, a,, = (aoj_l)'. Si ag = —3, alors pour tout n € N*, a,, =0
n !

donc le rayon de convergence R de la série entiere Zanaj" vaut R = 400 (en effet, pour tout

r € RT, la suite (a,r™), converge vers 0). Si ag # —3, alors pour tout n € N*, a,, # 0 et

|@ns| _ Jao+3[(n+1! 1
|an| n+2)!ao+3] n+2n-sto0

Par la regle de d’Alembert (pour les séries entieres), le rayon de convergence R recherché vaut

aussi +oo.

3. On a vu que si g anx" est une série entiere dont la fonction somme est solution de (E), alors

. - ap + 3 L.
les coefficients vérifient a9 € C et pour tout n € N*| a,, = h. Réciproquement, pour une
n !

telle suite (an)nen, le rayon de convergence de la série entiere associée vaut R = 400 qui est bien

strictement positif, et

ap + 3 an ap + 3
V N* == — =
n e ,  Qpi1 (n n 2)! nto avec aq 5

donc la suite (ay,), satisfait la condition (*). On peut donc remonter les équivalences obtenues a
la question la pour obtenir que la fonction somme S de cette série entiere est solution de (F) sur

R. Par conséquent, l’ensemble des séries entieres dont la fonction somme est solution de (F) est

a+3
{GO‘FZMJU aoE(C}.

neN*

Soit ag € C. Pour tout « € R, avec x # 0,

S(z) = av+ —

Enfin



Exercice 4.

1.

Via un simple produit, on obtient A? = A + 2I3. Par conséquent, le polynome X? — X — 2 =
(X +1)(X — 2) est annulateur de A. Ce polynome est scindé a racines simples dans R donc A est

diagonalisable.

. Le polynéme minimal 74 de A divise le polynéme obtenu & la question précédente. Donc w4 €

{X+1, X—-2, (X+1)(X—2)}.Simg = X+1alors A+1I3 =0i.e. A= —I3 ce qui est absurde. De
la méme fagon, 74 = X —2 implique A = 213 ce qui est faux. Par conséquent, 74 = (X +1)(X —2).
Le polynéme caractéristique x4 a les mémes racines que 74 donc x4 = (X + 1)?(X — 2) ou bien
xA = (X +1)(X — 2)2. Si on était dans le deuxiéme cas, on obtiendrait tr(4) = -1 +2+2 =3
or la trace de A est égale & tr(A) =040+ 0= 0. Donc y4 = (X + 1)%(X —2).

. Par la question 1, on a : A(A — I3) = A> — A = 2]3 ou encore A - 3(A — I3) = I5. Cette égalité

implique det(A) - det(3(A — I3)) = det(I3) = 1 ce qui entraine det(A4) # 0 d’ot I'inversibilité de A
d’une part et d’autre part, A~ = %(A — I3).

Pour commencer,ona: B=A+ A=A+ %A — %13 = %A — %13. On a alors

1 \2
B = (§A—713)
2 2
9 , 3 1. 1
= EA —2><§><§A+113 (A et I3 commutent)
9 3 1 ‘
= Z( +21—3)—§A+113 (par la question 1)
3 19
= CA+
PRV
1/3 1 1 19
= S(5A-SB+5E)+
1/3 1
= S(54-5k) +51
2<2 513 + 513
1
= —B+5Is.
g ol

Par conséquent, le polynome X2 — %X — 5 est annulateur de B.

Remarquons que X2 — X —5 = (X +2)(X — 5). L'égalité B = 34 — 113 montre que B n’est pas
diagonale. Donc le polynéme minimal de B ne peut pas étre de degré 1 et donc 7 = (X+2)(X—3).
Ainsi xp = (X +2)%(X — 5) ou bien x5 = (X +2)(X — 3)2.

Montrons que la multiplicité géométrique de —2 en tant que valeur propre de B est au moins
2. Cela montrera que la multiplicité algébrique aussi et donc cette derniere sera égale a 2 ce qui
signifiera que yp = (X +2)%(X — 5).

Soit X € Msx1(R)~ {0} un vecteur propre de A pour la valeur propre —1. On a alors AX = —X.
On multiplie par A~ et on obtient X = —A"'X ie. A7'X = —X. Par conséquent BX =
(A+ A HX = AX + A7'X = —X — X = —2X. Ainsi, X est un vecteur propre de B pour la
valeur propre —2. On a donc l'inclusion E_;(A) C E_9(B). Or la dimension de E_;(A) est 2 donc

celle de E_5(B) est au moins égale a 2.



