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Cursus prépa 2A : Mathématiques 3 15 décembre 2025

Devoir commun no 4

La rédaction mathématique et la présentation de votre copie seront prises en compte dans la notation.

Les quatre exercices sont à rédiger sur quatre copies doubles séparées.

Exercice 1.

1. Déterminer le rayon de convergence des séries entières suivantes :

(a)
∑
n⩾0

(3n)!

(n!)3
zn ; (b)

∑
n⩾1

lnn

n2
z3n+2 ; (c)

∑
n⩾1

sin(n)zn

2. En admettant que le rayon de convergence de la série entière suivante est 1, calculer la somme de

la série pour tout x ∈]− 1, 1[ : ∑
n⩾0

(−1)n+1nx2n+1.

Exercice 2. Soit f ∈ L(R3), dont la matrice dans la base canonique Bc est

A =

1 −16 8
1 −11 6
2 −16 9


On admet que le polynôme caractéristique de f est χf = (X + 3)(X − 1)2.

1. Montrer que f n’est pas diagonalisable.

2. Déterminer une base B de R3 telle que MatB(f) = D+N avec D une matrice diagonale et N une

matrice nilpotente triangulaire vérifiant ND = DN .

3. Notons P la matrice de passage de Bc à B. Déterminer une expression de A5 en fonction de P , N

et D.

Exercice 3. Soit (E) l’équation différentielle :

xy′′(x) + (2− x)y′(x)− y(x) = 3.

1. On suppose qu’il existe une série entière
∑
n∈N

anx
n de rayon de convergence R > 0 dont la fonction

somme S est solution de (E) sur R.

(a) Déterminer une relation de récurrence satisfaite par les coefficients an pour n ≥ 1.

(b) En déduire une expression explicite de an pour n ∈ N en fonction de n et a0.

2. On pose désormais les coefficients an comme étant ceux trouvés ci-dessus. Déterminer le rayon de

convergence R de la série entière
∑

anx
n.

3. Déterminer l’ensemble des séries entières dont la fonction somme est solution de (E), et exprimer

leurs sommes à l’aide de fonctions usuelles.
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Exercice 4. Soit a ∈ R∗. On considère la matrice suivante dans M3(R) :

A =


0 a a2

1
a 0 a

1
a2

1
a 0

 .

1. Vérifier que A2 = A+ 2I. La matrice A est-elle diagonalisable ?

2. Déterminer le polynôme minimal de A.

3. Calculer la trace de A et en déduire le polynôme caractéristique de A.

4. Justifier que la matrice A est inversible, et exprimer A−1 comme combinaison linéaire de A et I3.

5. Déterminer un polynôme annulateur de degré 2 de B = A+A−1.

6. BONUS : Montrer que si X est un vecteur propre de A associé à la valeur propre −1, alors X est

vecteur propre de A−1 et en déduire la multiplicité algébrique de −2 en tant que valeur propre de

B.
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Correction du Devoir Surveillé commun 4

Exercice 1

1. (a) Pour tout n ⩾ 0, soit an =
(3n)!

(n!)3
. Comme an ̸= 0 pour tout n, on peut utiliser la règle de

D’Alembert pour les séries entières. On a :∣∣∣∣an+1

an

∣∣∣∣ = (3n+ 3)!

(n+ 3)!3
· n!3

(3n)!
=

(3n+ 3)(3n+ 2)(3n+ 1)

((n+ 3)(n+ 2)(n+ 1))3
∼ 27n3

n3
= 27.

On a donc
∣∣∣an+1

an

∣∣∣→ 27 et le rayon de convergence de
∑

anz
n est ainsi R = 1

27 .

(b) Soit z ∈ C∗. Pour tout n ⩾ 1, posons an = lnn
n2 z

3n+2. On a an ̸= 0 pour tout n ⩾ 2 et∣∣∣∣an+1

an

∣∣∣∣ = ln(n+ 1)

(n+ 1)2
|z|3n+5 · n2

lnn

1

|z|3n+2
=

ln(n+ 1)

lnn
· n2

(n+ 1)2
· |z|3.

Or, on a ln(n+1) ∼ lnn car ln(n+1) = lnn+ ln(1+ 1
n) = lnn+ o(1) = lnn+ o(lnn). Ainsi,∣∣∣∣an+1

an

∣∣∣∣ ∼ |z|3 → |z|3.

Ainsi, d’après la règle de D’Alembert pour les séries numériques, la série
∑

an est absolument

convergente (donc convergente) si |z|3 < 1, c’est-à-dire |z| < 1. Ainsi le rayon de convergence

R de la série entière proposée vérifie R ⩾ 1. Par ailleurs, toujours par la règle de D’Alembert,

la série
∑

an est grossièrement divergente si |z|3 > 1, c’est-à-dire |z| > 1, et donc R ⩽ 1. On

a donc R = 1.

(c) Soit r ⩾ 0. Si r ⩽ 1, on a | sin(n)rn| ⩽ 1 pour tout n ⩾ 1. Cela montre que la suite

(sin(n)rn)n⩾0 est bornée pour tout r ⩽ 1, et donc que le rayon de convergence R de
∑

sin(n)zn

vérifie R ⩾ 1. Par ailleurs, on a sin(n) · 1n = sinn ̸→ 0 quand n → +∞, ce qui montre que

R ⩽ 1. Finalement, cela montre que R = 1.

Remarque : pour démontrer que sinn ̸→ 0, on peut procéder de la manière suivante. Puisque

sin(n + 1) − sin(n − 1) = 2 cos(n) sin 1, si on avait sinn → 0, on aurait aussi cosn → 0. On

aurait ensuite 1 = cos2 n+ sin2 n → 0, ce qui est absurde.

2. Soit x ∈]− 1, 1[. On a alors

+∞∑
n=0

(−1)n+1nx2n+1 = −x
+∞∑
n=0

n(−x2)n = −x
+∞∑
n=0

nXn,

avec X = −x2. Or,
+∞∑
n=0

nXn =
+∞∑
n=1

nXn = X
+∞∑
n=1

nXn−1.

La somme

+∞∑
n=1

nXn−1 est la somme en X de la série dérivée de
∑
n⩾0

zn, dont la somme vaut
1

1− z

pour tout |z| < 1. Pour de tels z, on a donc

+∞∑
n=1

nzn−1 =
1

(1− z)2
.
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Puisque X = −x2 ∈]− 1, 1[, on peut remplacer z par X = −x2, et on obtient finalement

+∞∑
n=0

(−1)n+1nx2n+1 = −x · (−x2) · 1

(1− (−x2))2

=
x3

(1 + x2)2
.

Exercice 2

1. Déterminons le polynôme minimale de f , que l’on note πf . Nous savons que πf = πA, et par

le théorème de Cayley-Hamilton, χA(A) = 0, ainsi πA divise le polynôme χA. De plus, toute

valeur propre de A est racine de πA, et Sp(A) = {−3, 1}, donc πA = (X + 3)(X − 1) ou πA =

(X + 3)(X − 1)2.

Cependant, (A+ 3I3) · (A− I3) =

4 −16 8
1 −8 6
2 −16 12

 ·

0 −16 8
1 −12 6
2 −16 8

 =

0 0 0
4 −16 8
8 −32 16

 ̸= 0 Donc le

polynôme (X+3)(X−1) n’annule pas la matrice A, de ce fait πA = (X+3)(X−1)2. Le polynôme

minimal n’est pas à racine simple, donc A n’est pas diagonalisable.

2. Pour déterminer la base B souhaitez, nous commençons par calculer les espaces propres de A, puis

nous en déduisons ceux de f . Soit v =

a
b
c

 ∈ M3,1(R).

v ∈ E−3(A) ⇔ Av + 3v =

0
0
0

 ⇔

 4a− 16b+ 8c
a− 8b+ 6c

2a− 16b+ 12c

 =

0
0
0



⇔


a− 4b+ 2c = 0

a− 8b+ 6c = 0

a− 8b+ 6c = 0

⇔

{
c = b

a = 2b

⇔ v ∈ Vect


2
1
1


Notons v1 = (2, 1, 1). On montre de même que E1(A) = Vect


0
1
2

, notons v2 = (0, 1, 2). Nous

avons obtenu les deux premiers éléments de B, les triplets v1 et v2. Nous cherchons maintenant à

compléter cette base par un vecteur de Ker
(
(f − id)2) car la dimension de E1(A) n’est pas égale

à la multiplicité algébrique de la valeur propre 1.

v ∈ Ker
(
(A− I3)

2) ⇔ (A− I3)
2 · v = 0 ⇔

0 64 −32
0 32 −16
0 32 −16

 ·

a
b
c

 =

0
0
0



⇔


64b− 32c = 0

32b− 16c = 0

32b− 16c = 0

⇔ c = 2b

⇔ v ∈ Vect


0
1
2

 ,

1
0
0


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Nous pouvons donc prendre v3 = (1, 0, 0). Nous avons f(v3) = v2 + v3, la matrice de f dans la

base B = (v1, v2, v3) est donc T =

−3 0 0
0 1 1
0 0 1

 = D +N , avec N =

0 0 0
0 0 1
0 0 0

.

De plus nous avons bien ND = DN , à vérifier par le calcul ou en justifiant car elles sont diagonales

par blocs. La matrice de passage P vérifiant P−1AP = T est ici P =

2 0 1
1 1 0
1 2 0

.

3. Nous savons que A = P ·MatB(f)·P−1 = P (N+D)P−1, donc par récurrence, A5 = P (N+D)5P−1.

De plus, ND = DN , donc d’après le binôme de Newton :

(N +D)5 =
5∑

k=0

(
5
k

)
NkD5−k = D5 + 5ND4

La somme précédente s’arrêtant au terme k = 2 car N2 = 0. Ainsi, A5 = P (D5 + 5ND4)P−1.

Exercice 3

1. (a) Comme R > 0, la fonction somme S est de classe C∞ sur ]−R;R[ et ses dérivées successives

s’obtiennent par dérivation terme à terme. Ainsi, pour tout x ∈]−R;R[,

S(x) =
+∞∑
n=0

anx
n, S′(x) =

+∞∑
n=1

nanx
n−1 et S′′(x) =

+∞∑
n=2

n(n− 1)anx
n−2.

Par conséquent, pour tout x ∈]−R;R[,

xS′′(x) + (2− x)S′(x)− S(x)

= x
+∞∑
n=2

n(n− 1)anx
n−2 + (2− x)

+∞∑
n=1

nanx
n−1 −

+∞∑
n=0

anx
n

=
+∞∑
n=2

n(n− 1)anx
n−1 + 2

+∞∑
n=1

nanx
n−1 −

+∞∑
n=1

nanx
n −

+∞∑
n=0

anx
n

=
+∞∑
p=1

(p+ 1)pap+1x
p + 2

+∞∑
p=0

(p+ 1)ap+1x
p −

+∞∑
n=1

nanx
n −

+∞∑
n=0

anx
n

par le changement d’indice p = n− 1

=
+∞∑
n=1

((n+ 1)nan+1 + 2(n+ 1)an+1 − nan − an)x
n + 2a1 − a0

=

+∞∑
n=1

(n+ 1) ((n+ 2)an+1 − an)x
n + 2a1 − a0

Ainsi,

S est solution de (E) sur ]−R;R[

⇐⇒ ∀x ∈]−R;R[,

+∞∑
n=1

(n+ 1) ((n+ 2)an+1 − an)x
n + 2a1 − a0 = 3

⇐⇒
{

∀n ∈ N∗, (n+ 1) ((n+ 2)an+1 − an) = 0
2a1 − a0 = 3

par unicité du développement en série entière

⇐⇒

 ∀n ∈ N∗, an+1 =
an

n+ 2

a1 =
a0 + 3

2

(∗)
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(b) Soit n ∈ N∗. Notons Hn l’assertion “an =
a0 + 3

(n+ 1)!
”. Puisque a1 =

a0 + 3

2
, l’assertion H1

est vraie. Soit n ∈ N∗, supposons que l’assertion Hn est vérifiée, alors par la relation de

récurrence,

an+1 =
an

n+ 2
=

a0 + 3

(n+ 2)(n+ 1)!
=

a0 + 3

(n+ 2)!

ce qui démontre que Hn est aussi vérifiée. Par le principe de récurrence, on en conclut que

an =
a0 + 3

(n+ 1)!
pour tout n ∈ N∗ (et a0 = a0).

2. On pose a0 ∈ C et pour tout n ∈ N∗, an =
a0 + 3

(n+ 1)!
. Si a0 = −3, alors pour tout n ∈ N∗, an = 0

donc le rayon de convergence R de la série entière
∑

anx
n vaut R = +∞ (en effet, pour tout

r ∈ R+, la suite (anr
n)n converge vers 0). Si a0 ̸= −3, alors pour tout n ∈ N∗, an ̸= 0 et

|an+1|
|an|

=
|a0 + 3|
(n+ 2)!

(n+ 1)!

|a0 + 3|
=

1

n+ 2
−→

n→+∞
0.

Par la règle de d’Alembert (pour les séries entières), le rayon de convergence R recherché vaut

aussi +∞.

3. On a vu que si
∑

anx
n est une série entière dont la fonction somme est solution de (E), alors

les coefficients vérifient a0 ∈ C et pour tout n ∈ N∗, an =
a0 + 3

(n+ 1)!
. Réciproquement, pour une

telle suite (an)n∈N, le rayon de convergence de la série entière associée vaut R = +∞ qui est bien

strictement positif, et

∀n ∈ N∗, an+1 =
a0 + 3

(n+ 2)!
=

an
n+ 2

avec a1 =
a0 + 3

2

donc la suite (an)n satisfait la condition (∗). On peut donc remonter les équivalences obtenues à

la question 1a pour obtenir que la fonction somme S de cette série entière est solution de (E) sur

R. Par conséquent, l’ensemble des séries entières dont la fonction somme est solution de (E) est{
a0 +

∑
n∈N∗

a0 + 3

(n+ 1)!
xn | a0 ∈ C

}
.

Soit a0 ∈ C. Pour tout x ∈ R, avec x ̸= 0,

S(x) = a0 +
1

x

+∞∑
n=1

a0 + 3

(n+ 1)!
xn+1

= a0 +
a0 + 3

x

+∞∑
n=2

xn

n!

= a0 +
a0 + 3

x

(
+∞∑
n=0

xn

n!
− 1− x

)

= a0 +
a0 + 3

x
(ex − 1− x)

Enfin

S(0) = a0 +

+∞∑
n=1

a0 + 3

(n+ 1)!
0n = a0.
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Exercice 4.

1. Via un simple produit, on obtient A2 = A + 2I3. Par conséquent, le polynôme X2 − X − 2 =

(X + 1)(X − 2) est annulateur de A. Ce polynôme est scindé à racines simples dans R donc A est

diagonalisable.

2. Le polynôme minimal πA de A divise le polynôme obtenu à la question précédente. Donc πA ∈
{X+1, X−2, (X+1)(X−2)}. Si πA = X+1 alors A+I3 = 0 i.e. A = −I3 ce qui est absurde. De

la même façon, πA = X−2 implique A = 2I3 ce qui est faux. Par conséquent, πA = (X+1)(X−2).

3. Le polynôme caractéristique χA a les mêmes racines que πA donc χA = (X + 1)2(X − 2) ou bien

χA = (X + 1)(X − 2)2. Si on était dans le deuxième cas, on obtiendrait tr(A) = −1 + 2 + 2 = 3

or la trace de A est égale à tr(A) = 0 + 0 + 0 = 0. Donc χA = (X + 1)2(X − 2).

4. Par la question 1, on a : A(A − I3) = A2 − A = 2I3 ou encore A · 1
2(A − I3) = I3. Cette égalité

implique det(A) · det(12(A− I3)) = det(I3) = 1 ce qui entrâıne det(A) ̸= 0 d’où l’inversibilité de A

d’une part et d’autre part, A−1 = 1
2(A− I3).

5. Pour commencer, on a : B = A+A−1 = A+ 1
2A− 1

2I3 =
3
2A− 1

2I3. On a alors

B2 =
(3
2
A− 1

2
I3

)2
=

9

4
A2 − 2× 3

2
× 1

2
A+

1

4
I3 (A et I3 commutent)

=
9

4
(A+ 2I3)−

3

2
A+

1

4
I3 (par la question 1)

=
3

4
A+

19

4
I3

=
1

2

(3
2
A− 1

2
I3 +

1

2
I3

)
+

19

4
I3

=
1

2

(3
2
A− 1

2
I3

)
+ 5I3

=
1

2
B + 5I3.

Par conséquent, le polynôme X2 − 1
2X − 5 est annulateur de B.

6. Remarquons que X2 − 1
2X − 5 = (X +2)(X − 5

2). L’égalité B = 3
2A− 1

2I3 montre que B n’est pas

diagonale. Donc le polynôme minimal de B ne peut pas être de degré 1 et donc πB = (X+2)(X− 5
2).

Ainsi χB = (X + 2)2(X − 5
2) ou bien χB = (X + 2)(X − 5

2)
2.

Montrons que la multiplicité géométrique de −2 en tant que valeur propre de B est au moins

2. Cela montrera que la multiplicité algébrique aussi et donc cette dernière sera égale à 2 ce qui

signifiera que χB = (X + 2)2(X − 5
2).

Soit X ∈ M3×1(R)∖ {0} un vecteur propre de A pour la valeur propre −1. On a alors AX = −X.

On multiplie par A−1 et on obtient X = −A−1X i.e. A−1X = −X. Par conséquent BX =

(A + A−1)X = AX + A−1X = −X − X = −2X. Ainsi, X est un vecteur propre de B pour la

valeur propre −2. On a donc l’inclusion E−1(A) ⊆ E−2(B). Or la dimension de E−1(A) est 2 donc

celle de E−2(B) est au moins égale à 2.
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