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CHAPITRE 11

1- Rappel sur les formes bilinéaires

Dans ce chapitre, on désigne par V un espace vectoriel réel de dimension finie 7 et par
B:VxV —R
une forme bilinéaire (1), symétrique (2), non-dégénérée (3):
(I)Vu,v’,v,v" € V,a, 8 € R,
Blu+ au',v) = B(u,v) + aB(u',v) Blu,v+ f') = B(u,v) + 3B{u,v')
(2) Vu,v € V, B(u,v) = B(v,u)
B)Vue V,Blu,v) =0Vo e V=u=0
Remarque: Soit V* = {l: V — R, [ linéaire } I'espace dual de V et
B:V = V*:iuw Blu)

Papplication linéaire définie par B(u)(v) = B(u,v). La condition (3) équivaut & B est
injective.

Si (bi)lgz‘gn est une base de V' on désigne par [B] la matrice carrée de taille n dont la
composante iy vaut B(b;,b;).

Voici un grand classique

Théoréme Il existe une base de V' et un entier p € N, tels que la matrice [B] soit donnée
par

1 0

ot 1, est la matrice identité de taille p.

L'entier p dépend seulement de B.
Le couple (p, ¢} est appelé la signature de B.

Démo: La preuve qui suit est elle aussi trés classique.

¢) Existence de la base: On procéde par récurrence sur la dimension n.
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(est vrai pour n = 1. Montrons vrai pour n = vrai pour n + 1:

Etape 1. Il existe un élément a; € V tel que B(ay,01) # 0. En effet, si B(u,u) =0 pour
tout v € V, identité de polarisation 4B(u,v) = Blu +v,u + v) — B(u — v,u — v) montre
que B(u,v) = 0 pour tout u,v € V ce qui contredit la propriété (3).

Etape 2. On considere le sous-espace
<ay > ={z €V | Blz,a1) = 0}

On a
Vo<a > <a > (*)

Eneffet,siz = Agy €< ar >N < >+ alors 0 = B(z,a1) = AB(ay,ay) d'ott A = 0.
D’autre part quelque soit u € V on a

B{z,a1)

B(‘q"val) a B( - )
ay, 01

m 1+ (T —

U = Gl)
et le second terme appartient a < a; >+

Etape 3. Observer que la restriction de B au sous-espace < a; >1 satisfait (1), (2), (3).
Par hypothése de récurrence, on peut trouver une base (ay,as,a3,...,0,) de V adaptée &
la somme directe () dans laquelle

B(al,al) On-1
[B] = 1 1z 0
Oﬂ'—l O _“177_

ol +G=n—1et Op.y est une ligne de 0. Pour conclure, il suffit de diviser @i par
E£B(a;,a;) selon le signe de B(ar,a1): si B(ay,a1) > 0, la matrice de B dans la base

2l qq....,an) est I5117
( Blas,al) 2y 3 n) p+iyg

st B(ay,a1) <0, la matrice de B dans la base (as, ..., 6541, ——_\/_“—‘—,a-m+o, ...,an} est
= —B(ﬂ_l'al) P = 3
g

i) Unicité de U'entier p: Solent (a;)1<i<n une base olt [B] = Ipq et (af)1<i<n une base ou
[B] = pqu,

Siaz= Y1, w0 €<ar,...,ap >, Bla,z) = P et z0et B(z,2)=0=>2=0.

P ol .. ) = n 2 ) —

Siaw =) iy Ti €< Ahoggse - n > Bla,a) = =) impm v S 0et B(z,2) =0=

v =

Dés lors < a1, .., ap > N < ahyq,-- - 0y >= {0} On a donc
<a1,...,ap>@<a§,r+1,...a;>CV

et en comptant les dimensions,
p+(n—p)<dimV =n,
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ie. p <p'. En échangeant le role des bases, on a aussi p’ < p.

Terminologie: Si B est de signature (p, ¢), toute base (g;)1<i<n de V' dans laquelle la

matrice [B] = I, sera dite B— adaptée. Dans une telle base on a
P n
B(z,y) = B(Z wia;,Zyjaj) = Zi‘ﬂi — Z 25
1 7 =1 i=p+1

Vecteurs isotropes

L'ensernble des éléments v € V tels que B(v,v) = 0 est appelé le cone isofrope de la forme

B.

Exemple On a célébré en 2005 le centenaire de la parution de l'article d’A. Einstein sur
la relativité restreinte. Dans cette théorie, intervient la forme bilinéaire sur R*

B((z,y,z,1), (=',y', 2", t) = za’ +yy' + 22" — ¢
de signature (3,1). En guise d’exemple analogue, considérons sur R? la forme bilinéaire
B((z,1), (&/,¢) = ' — tt

de signature (1,1). En terminologie physicienne, 2 est appelé coordonnée d’espace et ¢
coordonnée de temps. La droite © = vt représente la trajectoire d'une particule en mou-
vement uniforme & vitesse v avec | v |[< 1 (ol par convention la vitesse de la lumiere dans
le vide est de valeur absolue 1). Le cone isotrope de B est Uensemble des {2, ) tels que
g2 —t? = (z —t)(z +t) = 0. Cest donc la réunion des trajectoires z = 1 & vitesse £1.
(Vest pourquoi le cone isotrope est appelé céne de Jumiére. Les trajectoires de particules
matérielles sont localisées dans les régions | z |<| ¢ | appelées futur et passé. Les régions
inacessibles aux trajectoires de particules | @ |>| ¢ | sont appelées I’ ailleurs.

Groupe des endomorphismes de V' qui préservent B.

Proposition : L'’ensemble Op(V) des applications linéaires f : V — V telles que
B(f(u), f(v)} = B{u,v), Yu,v € V est un sous-groupe de GI{(1").
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Démeo: 5i f € Og(V) et u € Kerf alors f(u) =0 = 0= B(f(u), f(v)) = Blu,v), Vv €
V = u = 0 par la propriété (3). Donc f est injective et dés lors bijective.

Clairement, Idy € Og(V) et f,g € Og(V) = foge Og(V).

Enfin B(f~(u), 7' (v)) = B(f(f 7 (u)), f(f ' (v)) = B(u,v).

Proposition Le groupe Og(V) agit de fagon transitive et simple sur U'ensemble B des

bases B— adaptées.

Démo: Soit a = (ai)i1<i<n une base B— adaptée et f € Og(V). On a B(f(ai), f(a;)) =
B(ai.aj), dés lors la base f{a) = (f{a;))i1<i<n est aussi B— adaptée. L’application

$p:0p(V)xB—=>B:a— fla)

définit clairement une action.

Pour vérifier que ¢ est transitive et simple, il suffit d’observer que pour toute paire de
bases a,a’ € B, 'unique bijection linéaire f € GI{V) telle que f(a) = o’ appartient a
Op(V): en effet, pour u = 37, zi05,0 =} yja; on a

B(f(u), f(v)) = > 2ay; B(f(ai), f(aj)) = Y wiyiBlas,a5) = Blu,v).

iLf 1,f

B— adjoint d’un endomorphisme A tout endomorphisme f : V — 1/ on peut associer

un endomorphisme dual
ffrvVr=sViiam ffa)

en posant f*(a)(u) = a(f(u)), Vu € V. (V* désigne le dual linéaire de V)
Soit
B:V =V :ur— Bu)

la bijection linéaire définie par B(u)(v) = Blu,v),Vv € V.
L’endomorphisme
FV—V:iu—BlofoB

est appelé le B— adjoint de f.
La relation Bo f* = f* o B s’écrit

B(f(u),v) = B(u, f*(v)), Yw,veV

Oun a les propriétés: Idy, = Idy, (f+g) = f"+g*, (gof)*=f"og".
Un endomorphisme f de V est dit B—symétrique ou auto-adjoint si f* = f. Il est dit

B-antisymétrique si f* = —f.

Op(V) en terme de ’adjoint
Les 3 proprietés suivantes
tyfe0p(VY w)frof=1Idy wi)foef*=1Idy sont équivalentes.
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Démo: ¢} < w):

7€ 0p(V) & Yu,v,B(fu, fv) = Blu,v)
& Yu, v, B(u, (fF e flv) = Bu,v)
< Yu,v, Blu,(f o f—Idy)v) =0
& o f=Idy.

L) = L)
f*of =1Idy = f est bijectif = f* = f~' = fo f* = Idyv. Pour la réciproque permuter
les roles de f et f*.

Ecriture dans une base:

Soit (bi)1<i<n une base de V, [B] la matrice dont la composante ij vaut B(b;,b;), [f] et
[£*] les matrices de f et f* dans cette base. On a

[F*] = [BI7* '[/11B]
En particulier, si (b;);<i<a est une base B— adaptée (i.e. [B] =I,, =[B]™') on a

f S OB(V) S Ipq t[f] Ipq [f] =1,
F=%f e [fl=2Ly '[f] 1y

Quelques conséquences importantes:

Soit f € Op(V), (ai)1<i<n une base B— adaptée de V et [f] la matrice de f dans cette
base.
On a 1 = Det(I,, '[f] Ipg [f]) = (Det[f])? dés lors

Op(V)=0p(V)tu0s(V)”
Op(V)* = {f € Op(V) | Det(f) = £1}

Remarquer que Og(V)* C Og(V) est un sous-groupe distingué; par contre Og(V)™ C
Og(V) n’est pas un sous-groupe. {Pourquoi?)

Soit O(p, q) le sous-groupe de GI,(R) défini par
Olp,q) = {A € MR | I, "AT, A=1,}.
L’écriture dans une base B— adaptée montre que 'application
End(V) = MR : f = [f]

établit une bijection entre Og(V) et O(p, g).
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Quadriques associées
Soit
g:V =R :v— Blv,v)

la forme quadratique associée & B. Pour un réel » € R l'ensemble
Qr={veV|qv)=r}
est appelé une quadrique. Quelque soit f € Og(V) ona f(Q,) C Q..

exemples en dimension 3: (1) g(x,y,z) = 2* + y* + z?. Q) est la sphére unité.
(2) g(z,y,2) = 2* + y? ~ 2%, Q; est un cylindre hyperbolique, Qg est un cone (le cone
isotrope en signature (2,1)), @_; est un hyperboloide & deux nappes.

Interméde de géométriec hyperbolique: On considére 'hyperboloide Q.1 de 'exemple (2).
Soit
Q1=QTuQ”

Q* :={(z,y,2) € Q_1, | £z > 0}

sa décomposition en nappes supérieure et inférieure.

Soient n = (0,0,1) € Q% et s = (0,0,—1) € Q les 'poles’ nord et sud et soit P le plan
équatorial’ d’équation z =

Pour un point m = (z,y,2) € @%, I"'unique point d’intersection de la droite (sm) et du
plan P est appelé la projection stéréographique de m sur P. Cette projection est notee

p(m).
Il est aisé de voir a l'aide d'une représentation paramétrique de la droite (sm) que

oy 2) = (2 Y
ple,y,2) = (1 7o 0)

De plus, || p(z,y, 2) [|*= %z;—i; <let lim:_mc,z% = 1 montrent que p est & valeur dans le

disque unité ouvert D = {(a,5,0) | a® +4* <1} C P.
Propriété: La projection stéréographique

p:Q*—}D:mz—)p(m)
est une bijection (en fait un homéomorphisme).
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Demo: 1! suffit de donner
p~tD Q.

Mais p~1{a,b,0) est l'unique point d’intersection de la droite passant par les points s,
(a,5,0) et la nappe Q7. Un calcul donne

p t(a,b,0) = (2a, 2b, 1 + (a® +b%)).

1— (a2 +2)

Avant de poursuivre, une définition (pour des rappels euclidiens voir le paragraphe suiv-
ant):

Cercles orthogonaux du plan: Deux cercles C et C’ du plan euclidien sont dits orthogonaux
si C'NC' < (et si aux points d'intersection les tangentes aux deux cercles sont orthogonales.

Des cercles orthogonaux du plan équatorial P apparaissent naturellement en considérant
I'image par la projection stéréographique p de certaines courbes coniques tracées sur QF,
Voici comment faire:

Soit P’ un plan vectoriel de R® d’équation az + by +cz =0, ¢,b,c € R. On suppose que

P'nat #4§.
Clette intersection est le lieu des points m = (=, y, z) qui satisfont le systeme d’équations

eyt -2t =1
ar + by + cz =

Propriéte:

L’image de P’ N Q% par la projection stérégraphique p est

- un diameétre du disque unité du plan équatorial F lorsque ¢ =0

- un arc de cercle orthogonal au bord du disque unité de P lorsque ¢ # 0.
(La démo revient & un calcul qui sera fait en TD.)

Ce sont précisément ces diamétres et ces arcs de cercles qui jouent le réle de droites en
géométrie hyperbolique du disque unité D. Ils sont utilisés par 'artiste néerlandais Escher
dans ses représentations (quelque peu fantastiques) de pavages du disque.
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2 - Rappel sur les Espaces euclidiens

Cette section rassemble les définitions et constructions de base de la géométrie vectorielle
euclidienne.

Produit scalaire

Un produit scalaire sur 'espace vectoriel réel V' est une forme
VXV — R:(u,v)~ (u]|v)

bilinéaire (1), symétrique (2), définie positive (3’):

VeeV,(z|a)20et(z|z)=0=2=0

Un produit scalaire est donc une forme vérifiant les conditions (1), (2), (3) de la section 1
de signature (p = n,0).

Espace vectoriel euclidien

Tout espace vectoriel réel V' de dimension finie muni d’un produit scalaire (|) est appelé
un espace euclidien.

‘Tout espace euclidien de dimension n est isomorphe a R™ muni du produit scalaire

n
((.’L‘]_,""-Tn_) | (yl')”'?yﬂ-)) - Zl’i'li.
i=1

(Trouvez un isomorphismel)

Norme

Une norme sur V est une application V' — R : v —|| v || vérifiant
(N)VueV, llul|l20et [|u]l=0&u=0.

(N2) Vu e V\IVAER, || Aull=| A ||| v |-

(N3) Vu,v' e V|Ju+u' ||<|]u]] + || e |-

Proposition Si (V,(]|)) est euclidien, I'application
VaR:ve|v||l=vV(v]|v)

est une norme.

Démo: (N1} et (N2) sont évidentes. Pour vérifier (N3), observer qu’elle est équivalente &
I'inégalité de Cauchy-Schwarz:

(uy2e") <[l e || ]
qui se démontre comme suit: Si u = 0, c’est clair. Si u # 0, expression

POA) =[] du+u' |
=M [ [P 427 [ ') [’ |

8



est un polynéme de degré 2 en la variable réelle A qui est positif. Il a done au plus une
racine réelle, i.e. son discriminant 4(u | u')? —~ 4 || w ||* || v’ [|*< 0.

Distance

Une distance sur ua ensemble X est une application d : X x X — R telle que
(D1} Va,z2' € X, d(a,2') = d(2', z)

(D2) Vz,z' € X, d(z,2") =0z =2’

(D3) Va,z' 2" € X, d(z,2") <d(z,2') + d(z, z")

Proposition Toute norme || || sur V induit la distance

dy : V xV = R:(u,v) =||u—v|]

Orthonormalisation de Gram-Schmidt

O1i dit que deux vecteurs u,v € V sont orthogonaux si (u | v) = 0.

Le théoréme de la section 1 appliqué au cas de signature (n,0) assure I'existence d’une
base {ai)i<i<a de V telle que

(ai | aj) = dij
Une telle base est dite orthonormée.

Dautre part le caractére défini positif du produit scalaire montre que le cdne isotrope est
réduit & {0}, ce qui permet une construction itérative (le procédé de Gram-Schmit) d’une
base orthormée & partir de toute base de V:

Proposition Soit (b;)1<i<n une base de V. Il existe une base orthonormée (a;)1
V telle que pour tout j € {1,2,...,n} les sous-espaces vectoriels < by,bs,...,
< a1,4z,...,0; > coincident.

' construits avec (a} | a}) = 0 pour k # [ et

Démo: Poser af = by. Supposer aj,...,a}

< bpy.., by >=< a.’l,...,a} >,

Chercher a, sous la forme
@iq = b+ May 4ok \ja)
Les conditions d’orthogonalité (aj,; | a}) = 0 pour k € {1,... , 7} donnent

(bjq1 | a)

Lol k<g
CACAR =

Ap = —

N . . . il .
1l reste & normer la base ainsi construite en posant a; = —w=te,1 <7 < n.

Groupe Orthogonal, isométries linéaires
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Le groupe orthogonal (V) est le groupe des endomorphismes de V' qui préservent le
produit scalaire:

O(V)={f:V =V | flindaire et (f(u) | f(v)) = (u|v), Yu,v € V}.

Il s’agit donc du groupe Op(V) de la section 1 pour B de signature (n,0).

Le groupe O(n,0) = {4 € M,R | '44 = 1,} de la section 1 est simplement noté O,.
Par la section 1, l'application O(V) — Oy : f — [f] qui & f € O(V) associe sa matrice [f]
dans une hase orthonormée est une bijectlon.

Remarque: Si A est une valeur propre réelle d’'un endomorphisme orthogona.l 7 e O(I )
alors A € {+1,—1}. En effet: Pour v € V' \ {0} tel que f(u) = Au on a (u | u) = (f(u) |
f(w)) = (M| Au) = A%(u | ). Puisque (u | w) 2 0 il vient A% = 1.

Une application linéaire f: V' — V est une isométrie si elle préserve la distance dy:
Vu,v €V, dv(f(u), f(v)) = dv(u,v)

L’ensemble Tsom(V') des isométries linéaires est un sous-groupe de GI(V').
On vérifie aisément a Vaide de 'identité de polarisation

dulv)={(u+v|utv)—(u—v|u—"0)

que
Isom (V) = O(V).

3 - Symeétries orthogonales, engendrement de O(V) par les réflexions

Soit (V, ( | )) un espace euclidien de dimension n.

Deux sous-espaces vectoriels W, W/ C V sont dits orthogonaux (on écrit W L W) si
(w|w') =0, YVwe W,w € W'

Somme directe orthogonale: Soit W C V un sous-espace vectoriel. L’ensemble
Wht={ueV | (u|w)=0,Ywe W}
est un sous-espace vectoriel de V et

V=W wi

Démo: Soit (bi)1<i<n une base de V telle que (bi)i<i<dim w soit une base de W et
soit (a;)1<i<n la base orthonormée obtenue en appliquant orthonormalisation de Gram-
Schnudt & (b;)1<i<n. Ona

W =< b], A ,bd,‘m W 2>=< Q... qdim W >
V=Wa& < agim Wealye oy tln >
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Pour conclure il suffit d’observer que cette décomposition en somme directe est celle de
I’énoncé. Ea effet,

n
w = Zl‘iai eEWt e (u|a)=0Vee{l,...,dimW}
=1
e =0,V e {1,...,dim W}
S U< ddim Wl -3 On >

Exercice: Si W, W' C V sont deux sous-espaces vectoriels, on a (W + W)+ =W Law'+,

Symeétries orthogonales

Soit 5 : V — V une symétrie vectorielle (s est linéaire et s 0 s = Idy) et soit
V=VaV:

la décomposition de V en sous-espaces propres Vi = {v € V | s{v) = v},

Lemme s € O(V) & V_ﬁi‘ =V

Démo: Dans un sens, s € O(V) < (s(u) | s(v)) = (u,v), Yu,v € V = —(uy [ju-) =
(s{us) | s(u-))y = (ug | u_), Vur € Vi = V2 C VjJ‘ d’olt I'égalité car ils sont de méme
dimension.

Dans l'autre sens, écrire 4 = uq + u_ et v = vy + v_ avec ug,vx € VE. On a (s(u) |
S(0)) = (1 — - | 03— v) = (g [ vg) + (| 0=) = (s + 1 | vg +02) = (] v).
Réflexions Une réflexion est une symétrie orthogonale s € O(V') pour laquelle dim V=
n-—1.

Remarque: le déterminant d’une symétrie s vaut (—1)dimV2,

Le déterminant d’'une réflexion vaut donc —1.

Lemme Soient f € O(V). Pour tout sous-espace W C V, f(W) C W = fwtycwt,
Démo: f € O(V) = f est bijective = f(W) = W. Scient w € W,w' € W et ue W tel
que w = f(u). Ona0=(ulw)=(flu)|flw)=(w]|flv)),ie. fwvLy cw

Théoréme {Les réflexions engendrent le groupe orthogonal)
Si f € O(V) il existe p(< n) réflexions s1,...,8, € O(V) telles que f =87 0...05p.

Démo: On procéde par récurrence sur dirn V = n. Sin =1 alors ¥V ~ R muni du produit
scalaire (z | #') = 22’. Un endo f : R = R : @ ++ ax est orthogonal ssi a € {+1,-1}, i.e
O(R) = {Id,—Id}. L’identité est composée de 0 réflexion et —Id est une réflexion.

On suppose la propriété vraie pour tout espace euclidien V' de dimension < n — 1. Soit
alors f € O(V)\ {Idy} et &imV =n.
Etape 1: Puisque f # Idy, il existe v € V tel que f{v) # v. Considérons la décomposition

Ve<v—flo)>@® <v-— flv) >+
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et la réflexion s telle que Vi =< v — f(v) > et dés lors V¥ =< v — f(v) > . Observer que
s(v) = f(v) et dés lors
ve=slof(v)=s0f(v) (pusques ™ =s).
Etape 2: Soit
V=<v>@<o>t

La transformation orthogonale s o f fixe v et donc , par le lemme, elle stabilise son
supplémentaire orthogonal, i.e.

sof(xv>t)cco>t,

On peut donc appliquer I'hypothése de récurrence & la restriction (sof N.os €E0(< 2 >4y,

En clair, on peut trouver & réflexions a1,...,04 € O(< v >1) avec k < n ~ 1 telles que

(sof)

l<u>J- =ad; 0...C0L.
Etape 3: Pour conclure on va relever les réflexions o; en des réflexions s; € O(V). Il suffit
de définir s; sur les facteurs de la somme directe V =< v > & < v >1 comme suit:

5i(v) = v et s;(w) = oy (w), Yw e< v >+

Onas;jos; =Idy car o007 = Id .

Dautre part V' =< v > @(< v >1)7 est un hyperplan et V%% = (< » >1)7, Ces
sous-espaces sont orthogonaux, dés lors s; € O(V'). Enfin observer que so f = s, 0...0s;
des lors

f=s0s30...0s5;.

C’est 'énoncé & la numérotation prés.

4 - Formes normales matricielles

Pour rappel (cf section 1) O%(V) = {f € O(V) | Det(f) = +1}.

Le cas du plan euclidien
Soit (V,{])} un espace euclidien de dimension 2.

La matrice de f € O(V') dans toute base orthonormée de V s’écrit

si f € OFH(V):
=5 )

si f € 0~(V):

pour des réels a, b tels que a® + 5% = 1.



Démo: Soit (a1, as) une base orthonormée.

Ecrivons f(a;) = aa; +bag et flaz) = a’ay + b as. Les conditions (f(a;) | f(a;)) = &
s'écrivent a2 + 82 = 1 = a’> + 1'% et aa’ + b6 = 0. Ces équations admettent deux solutions
(a' = —b, b = a) et (a’ = b, b' = —a). Dans le premier cas Det(f) = +1 et dans le second
Det(f) = —1.

Pour f € OF (V) en choisissant § € R tel que a = cos(f) et b = sin(8), il vient
] = cos(f) —sin(8)
‘ sin(d) cos(8) /-

C’est la matrice d’une rotation d’angle 8. (Pour une étude plus précise de la notion d’angle
voir infra.)
Pour f € O~ (V), fo f = Idy et le polyndme caractéristique de f est z* — 1. Dés lors

—_ v f
v=viev

et f est une réflexion de droite fixe V_ij_c. Dans toute base (by.,b-) € Y.”_;J_t x V! ona

1=(5 %)

On retiendra: Si dim{V) = 2, f € O(V) est une rotation ssi Det(f) = 1 et f est une
réflexion ssi Det{f) = —1.

L’assertion suivante est laissée au lecteur:

Tout endomorphisme symétrique f du plan euclidien est de spectre réel et diagonalisable
dans une base orthonormée.

Le cas de dimension n > 2

Lemme: Soit V un espace vectoriel réel et f: V — V un endomorphisme. Il existe un
sous-espace W C V de dimension au plus 2 tel que f(1W) C W.

Démo: Le polynéme caractéristique y;(X) € R{X], dés lors ses racines sont soit réelles,
soit viennent par paire de racines complexes conjuguées. Il y a deux cas

(1) xs a une racine réelle . Poser alors W =< wy > olt f(va) = Ava.

(2) x5 n’a pas de racine réelle. Soit alors

W(X) = p(X) . pe(X), =2

la décomposition de vy en polyndmes irréductibles de degré 2 : p;(X) = (X — A;)(X — A,
Par Cayley-Hamilton,



Si pour tout ¢ € {1,...,r} lendomorphisme p;(f) était injectif alors x;(f) aussi, en
particulier il ne serait pas nul. Il doit donc exister un polyndéme p; tel que p;(f) ne soit
pas Injectif. Soit alors v € V' non nul tel que pi(f)(v) = 0. En développant on a

)= M+ FF [ A Po=0

et le sous-espace
W =<u, fv) >

est un sous-espace f— stable de dimension 2.

Proposition Si f est un endomorphisme symeétrique ou orthogonal d'un espace euclidien
V', il existe une décomposition

V=W d...eW,

en sous-espaces f— stables de dimension au plus 2 deux a deux orthogonaux i.e. tels que
i#Ej=W; LW;.

Démo: Par récwrrence sur dim (V') = n. Pour n = 1 c’est trivial. Montrons vrai pour n =
vrai pour n+ 1. Soit W € V un sous-espace f— stable de dimension au plus 2 comme dans
le lemme. On sait que si f € O(V) alors f(W) C W = f(W-+) C W+, il est facile de voir
qu'il en est de méme si f est symétrique. On a donc une décomposition en somime directe
V =W @& W de sous-espace orthogonaux f— stables. Pour conclure il suffit d’appliquer
I'hypothese de récurrence a la restriction f| .

Corollaire (forme normale matricielle)
(1) Si f est symétrique, f est & spectre réel et il existe une base orthonormée constituée
de vecteurs propres de f.

(2) Si f € O(V) il existe une bhase orthonormée dans laquelle la matrice de f s’écrit

/1“_ 0 0
0 ~1,. ‘ :
=1+ " Re)
: - 0
0 0 R(6:)

o py +p- 20 = dim(V) = n et R(6)) =  S) E)).

Ceci résulte du cas n = 2 et de la proposition qui précede.
Forme du corollaire pour une matrice: La matrice P de passage d'une base or-
thonormée A & une autre base orthonormée A’ de V' appartient & O,. En effet: Soit A

I'endomorphisme de V' dont la matrice {i] dans la base A vaut P. h transforme la base A
en la base A’ et donc h € O(V) et dés lors sa matrice [h] € O,.
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On peut réexprimer le corollaire en termes matriciels comme suit: VM € O, il existe
P e (O, telle que

1o, 0 0

0 -1, :
M=PFP R(B]) IP.

: .. T, . 4]

0 0 R(6,)

(Pour rappel P € O, &' P = P71
Description en dimension 3

On convient de ne pas écrire les 0 dans les matrices.

(1) f € OT(V)\{Idy}. Onal = Det(f)=(—1)"~ déslors p- =0 oup_ =2.

Sip-=0,{fl= (l R(Q)

siv-=2 =" _,)=(" pm)

1l s’agit done d’une rotation autour d’un axe dans un plan orthogonal a cet axe.
(2) fe O (V). Ona~1=Det(f)=(-1)P- = p_=1oup_ =3
&pﬂﬂLLHZ(_

Si p— =3, [f] = (_1 _12> = (ﬂl R(w)>'

' . , . . . —1
Il s’agit de la composée d’'une réflexion s de maftrice [s] =
g P .

avec éventuellement 8 = 0[27).

) et d’une rotation

d’axe V® dans le plan fixe de la réflexion.

5 - Questions de connexité par arcs

Soit (V,( | )) un espace euclidien de dimension n et dy : V x V — R la distance induite
par le produit scalaire (cf section 2).
Pour rappel une application f: V' — V’ entre espaces euclidiens est dite continue au point
u €V sl

Ve>0,3n >0 Ve eV, dviu,z) < n=dv(flz) flu)) <e¢

f est dite continue sur V si elle est continue en tout point u € V.

Arcs et connexité par arcs



Un arc dans P'espace V' est une application continue
a:[0,]]CR— V.

Une partie P C V est dite connexe par arcs si quels que soient p,q € P il existe un arc
a:[0,1] = P CV tel que p=af0) et ¢ = (1).

Composition: Si e, 3 : [0,1] = V sont deux arcs avec a(l) = #(0), on peut les composer
par concaténation comme suit

Arc inverse: W (t) = a(l —1t)

Soit P C Vet pe P. P est connexe par arcs ssi quel que soit ¢ € P il existe un arc
tpg 1 [0,1] = P tel que a,,(0) = pet apg(l) =gq.

Remarque: Un lacet au point v € V est un arc a tel que a(0) = v = a(1).
M,(R) est euclidien

L’ensemble M, (R) des matrices carrées réelles de taille n est isomorphe & R" et dés lors
euclidien pour le produit scalaire usuel: 5i A = (a;;) et A" = {a};},

(A | A") = Z Ch‘ja;j.
1<i7<n

Remarquer que

(A]A) =#r(*AA").
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Il s’ensuit que M, (R) est naturellement un espace métrique et des lors I'ensemble des
matrices inversibles GI,(R) C M,(R) ainsi que ensemble des matrices orthogonales O,, C
M, (R) sont munis d'une distance.

Raffinements: 1 se fait que GI,R est ouvert dans AM,R tandis que O, C M,R est un
fermé borné, i.e. un compact. Toutefois nous n'utiliserons pas ces propriétés (cf M1 I'an
prochain).

Théoréme
Of ={M € 0, | Det(M) = +1} C M,(R) sont des espaces métriques connexes par arcs.

Démo: On utilise la forme normale matricielle de la section 4. Soit M € O} et

1;u+ 0 0
0 1,
. . . . i
M=F : . R(Gl) . : P,
: . . . 0
0 0 R(&l,)

sa forme normale.
on a

Det(M) = +1 = (=1)P- DetR(6;) - - DetR(6,) = (~1)P-

Il s’ensuit que p— € 2N. On peut donc écrire la matrice —1,_ qui apparait dans la forme
normale en regroupant les —1 deux par deux:

-1, 0 0
1, 0 =1
0
0 0 =1z

Observer ensuite que

1, = (‘3"‘3(”) “’”’:”(W)> — R(m).

sin{m) cos(m)

Considérer le chemin M : [0,1] = OF : ¢ — M(t) défini par

Lo, 0 cee e e e 0
0 R(tr)
M(t) =P . Rtw) . ; 'P.
R(t8,)
' 0
0 0 R(t6,) )



On a WVt € [0,1],M(t) € OF et M(0) = 1,, M(1) = M. Enfin I'arc M(t) est continu
puisque chaque composante est continue (en fait de classe C'™°).
-1 0

0 ]-n—l) . Clairement

Il reste & vérifier la connexité par arcs de O, ,n > 2. Soit () = (
Q€ 07 et @ =1,. L'application
O, = OF : M_ — QM_

est un homéomorphisme de réciproque M4 — QM. Dés lors si T'y : [0,1] — O est un
arc connectant @M_ & 1,, 'arc T'_ : [0,1] —» O : t — QL(t) connecte M_ a Q.

Remarques: Pour n = 2,3, la connexité par arcs des groupes de rotations OF et OF est
bienstir intuitive: on peut continument faire pivoter un objet autour d’un axe.

On vient de voir que le groupe O, a deux composantes connexes par arcs homéomorphes.
Par contraste, le groupe unitaire U,, des matrices U de type n x n a coefficients complexes
vérifiant ‘U = I,, est connexe par arcs. Ici U7 désigne la conjugaison complexe.

Application: Pour n > 2, la sphére
Spr={Ze€R"| [[7[=1}
est un espace métrique connexe par arcs.

Démo:
La sphere S;,..7 est munie de la distance induite de R".
Pour n = 2, c'est le cercle de centre (0,0) de R?. C’est donc un arc.

Soit n > 2 et ¥ € S,,_1. On va montrer qu’il existe un arc sur la sphére connectant & au
premier vecteur €; € S,-1 de la base canonique de R".

Puisque # # 0 (il est de norme 1), il existe une (en fait une infinité de) base(s) de R™
de premier vecteur Z. En appliquant Gram-Schmidt & cette base on obtient une base
orthonormée A de premier vecteur 7.

On sait que la matrice P de passage de la base canonique (€})1<i<n & la base A appartient
a 0. Quitte a permuter les deux derniers vecteurs de la base A, on peut supposer que

PO}

Puisque OF est connexe par arcs, il existe un arc

r:[0,1]— oOf
tel que I'(0) = 1, et T'(1) = P.
On définit alors un arc
~:[0,1] = R”
en posant
1
0
() =T(@)- | .
0
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Il reste & vérifier que + convient: Puisque I'{t) € O,, on a bien ¥{t) € S,_; pour tout
1

0
te[0,1]. Enfiny(0) =& et y(1)=P -] . | =4.

6 - Orientation d’un espace euclidien

Soient B et B’ deux bases de V et P = [Idy,B’,B] € GI,R la matrice de passage de 5 a
B'. On définit une relation d’équivalence sur ’ensemble des bases de V' en posant B ~ B’
ssi Det(P) > 0.

Il v a deux classes d’équivalence et chacune d’elle est appelée une orientation de V.

Choisir une orientation c’est donc choisir une base.

Remarque importante: L orientation est liée au fait que R* a deux composantes connexes
Ro et Rep. On ne peut pas orienter un espace complexe car G est connexe par arcs.

Produit mixte, produit vectoriel

Fixons l'orientation en choisissant une base orthonormée A = (a;)1<i<n de V' (st V' = R,
on prendra souvent la base canonique). Une base sera dite directe si elle appartient ala

classe de A.
Soit X = (v1,vs,...,vs) € V" un n— uplet d’éléments de V' et, par abus de langage,
notons [Idy, X,.A] la matrice des composantes des vecteurs vy, ..., v, dans la base A.

Observation: Si A’ est une base orthonormée directe

Det[ldy, X, A'] = Det[Idy, X, Al
En effet
[Idv,X,A’] = [ICI{V’A,, A’][Idv’_X, A]

et la matrice de passage [[dy, A, A'] € Of et dés lors son déterminant vaut 1.

Le réel
[U], {25 FUPEN 7Uﬂ_1,Un] = Det[Idv, .X', A]

est done indépendant du choix de la base orthonormée dans une classe d’orientation fixée.
Ce réel s’appelle le produit mixte des v, 1 < ¢ < n. Clest I'unique forme n— linéaire
alternée

p: V"' — R

telle que ¢(ay,as,...,ay) = L.

Pour rappel, l'application B : V = V* 1 u — (u | ) est un isomorphisme, i.e. pour toute
application linéaire o : V — R il existe un unique vecteur uy € V tel que

alv) = (ua |v), Vv eV (*)
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Pour vy,...,v,-1 € V fixés, Papplication
a:V—=aR:ve [vg,ve,.. . vn-1, 0]

est linéaire en v. L'unique vecteur u, € V satisfaisant (*) est noté vy Avg A ... Av,_y et

est appelé le produit vectoriel de vy, ..., vp—1.

Remarque: Si (v1,...,v5-1) est libre et v €< vy, ve,..., 001 >, alors (v1 Ava ... Avp_y |
v) = [vg,02,...,0p_1,v] # 0. Par contre, (vi Avs... Ava_y | vj) = 0 pour tout j €
{1,...,n—1}. Dés lors < vy,...,v5—1 St=< v AvgA. .. AUp_y > .

Exemple: Soit (&), &,¢3) la base canonique de R*. On a & Aéy = &, € A ey = &,
€3 A €1 = €3 (observer la permutation cyclique) et ¥ A§ = —§ A ¥ pour tout &, € R2.

C’est le produit vectoriel usuel dans espace.

Pour d’autres propriétés ¢f TD.

7- Espace afline euclidien, groupe des isométries affines

Un espace afline (X, V) réel de dimension finie n est appelé euclidien si (V,(|)) est un
espace vectoriel euclidien.

L’application
d: X xX - R:(z,y) = +/ (27| 70)
est (on le sait ¢f Chapitre 1) une distance sur X.

Isométries affines

Si (X, V) et (X', V') sont affines euclidiens une application affine f: X — X' est appelée
une jsométrie si d'(f(a), f(y)) = d{z,y), Ve, y € X.

Il est facile de voir que f est une isométrie ssi Ly : V — V' est une isométrie vectorielle.
En particulier, une application affine f : X — X est une isométrie ss1 Ly € O(V).

Proposition: L’ensemble 7s(X) des isométries affines de X est un sous-groupe du groupe
affine GA(X). Is(X) est en bijection avec Pensemble V' x O(V).

Démo: Le fait que fs{X') est un sous-groupe résulte de f € I's{(X) & Ly € O(V).

Pour la bijection, on sait (¢f Chapitre 1) que pour tout point o € X 'application

o :GAX) =2V xGUV): f—r (of(oi,Lf)
est une bijection. La bijection recherchée est simplement la restriction de ¢ aux isométries

affines i.e.

Ore(Xx): IS(..X') -V x O(V)
Comme pour le groupe orthogonal on considére
Is*(X) = {f € Is(X) | DetL; = £1}
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On a Is(X) = IsT(X)U Is—(X). IsT(X) C Is(X) est un sous-groupe distingué appelé
le groupe des déplacements de X tandis que Js—(X) C Is(X), appelé 'ensemble des
antidéplacements de X, n'est pas un sous-groupe.

Connexité par arcs

Remarques: Pour les étudiants peu familiers avec les notions topologiques, il n’est pas
indispensable (pour ce cours) de détailler la preuve de la connexité par arcs de Is*(X) qui
suit.

Remarquer toutefois que celle-ci reflete une propriété bien naturelle de nos déplacements
quotidiens: on peut les faire et les défaire continument.

Quelques observations générales:
(1) Si (X,dx) est un espace métrique, ¥ un ensemble et ¢ : ¥ — X est une bijection,
alors 'application
dy 1Y xY = R (y,5') = dx(o(y), ¢(y")
est une distance sur ¥

(2) Si (X,dx) et (X', dx) sont des espaces métrigques alors X x X' aussi pour la distance

d: (‘Y x —Xr) x (‘Y x "X—’) — R (('T7$’)1(y1yf)) = \/d?\'(lﬁy) +d?\"($,ay,)

Si X et X' sont connexes par arcs, alors X x X' aussi. En effet, si v est un arc dans X
joignant e & b et +' est un arc dans X' joignant o' & ', Papplication

0,1] = X x X'+t (v(£),7'(t))

est un arc connectant (a,a’) a (b,b).

(3) Choisissons une base orthonormée 4 de V. Puisque Papplication qui & f € End(V)
associe la matrice [f] dans la base A est une bijection de End(V') sur M, R, par (1) End(V)
est muni d’une distance. Dés lors O(V) C End(V) Vest aussi . Par (2), le produit ¥V x O(V)
est métrique. Enfin, puisque Is(X) est en bijection avee V' x O(V'), Is(X) admet lui aussi
une distance et dés lors Tst(X) C Is(X) aussi.

Proposition Les espaces métriques Is®(X) sont connexes par arcs.

Démo: Par construction, o : Is(X)F = V x O(V)* est une isométrie. D’autre part, V
est un espace vectoriel réel donc il est convexe et donc connexe par arcs et O*(V) sont
connexes par arcs car ils sont en bijection avec OF qui sont connexes par arcs. Dés lors
V x O%(V) est connexe par arcs et done Is*(X) aussi.

Décomposition des isométries affines

Théoreme: Pour toute f € Is(X) il existe un unique ¢ € V et une unique isométrie affine
g € Is{X) admettant au moins un point fixe, tels que

f=mzog=goTy.
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De plus f admet un point fixe ssi @ = 0.

Démo: On commence par quelques observations:
(1) f=reog= Ly =L,
(2) On sait que gorg o g™ = 71 _(z). Dés lors go7zg = 7309 = i € Ker(L, — Idy) =
Ker(Ly — Idv).
(3) Si a est un point fixe de g, f(a) =(rzo0g)(a) =gla)+ T =a+d, ie af(a) =d.
(4) Quel que soit f € Is(X), Im(L; — Idy) = Ker(L; ~ Idy)*t.
Vérifions cette affirmation: Soit v € Ker(Ly — Idy) et v’ = Ly(w) —w € Im(Ly — Idy).
Ona{v|v')=(|Lflw))—(v|w)=(Lyv)] Li(w))—(v] w)=0pusque Ly € (V).
Dés lors Im(Ly — Idy) C Ker(Ly — Idy)t. Enfin, le thm du rang appliqué & L; — Idy
montre que ces deux sous-espaces ont méme dimension.
En particulier,

V =Ker(L; — Idy)® Ker(Ly — Idy)* )
= Ifer(Lf - Idy) @B ITTL(Lf — Idy)

Au travail maintenant: Existence: Par (2) et (3), on cherche ¢ € X tel que a,f(a_i €
Ker(Ly — Idy). Pour ce faire on choisit un point m € X arbitraire et on décompose

mf(m) comme en (4 (*)):
mf(mi =u+ Lpw)-weViecKer(Ly—Idy),weV

Ona f(m) =m-+mf(m) d'ot f(m—u0) = f(m)— L (&) = m—1w+i. Dés lors a = m—1
convient.
Posons g = 7_go f. Ona Ly = Ly € O(V) dés lors ¢ € Is(X); aussi gla) = a et

Lyg=Lpi=u=gotTg=750g.
A

Unicité: Supposons f = ;09 = 150h avec 4 = a.f(as,ﬁ' =bf(b) € Ker(L;— Idv),g{a) =

a, h(b) =b. Alors
@ -3 = af(a) — b7}
= b+ bf(a) + T)b

= b+ F(6)F(a)
= (Idv — Ly)(ab)

des lors § — v € Rer(Lp — Idy)NIm(Ly — Idy) = {0}. Dol @ = ¥ et dés lors g = h.

Reste & étudier 'existence de points fixes de f: St & = 5, alors f = g ef admet donc un
point fixe.

Réciproquement: si f admet un point fixe o, a'f(a'i =0¢€ Ker(Ly—Idy). On peut done

Isométries affines en dimensions 2 et 3.
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Soit (X, V) un espace affine euclidien. Le théoreme qui précéde ainsi que la forme normale
des endomorphismes orthogonaux permet de faire la liste des types d’isométries de X
lorsque dim(X) = 2, 3.

Voici cette liste (pour les détails of TD)

n=2:

Is¥(X): sans point fixe: les translations; avec point fixe: les rotations autour de ce point.
Is~(X): avec point fixe: les réflexions affines qui sont les symétries affines s telles que L,
soit une réflexion linéaire; sans point fixe: les réflexions (ou symétries) glissées qui sont la
composée d’une réflexion affine s et d’une translation Ty de vecteur @ € Ker(L,—Idy)\{0}.

n=3:

Ist(X) : sans point fixe: les translations, les vissages qui sont la composée d’une rotation
r autour d'un axe D de direction Ker(Ly — Idy) et d’une translation t de vecteur 7 €
Ker(Ly — IdV)\ {0}; avec point fixe: les rotations autour d’un axe,

Is7(X) : avec point fixe: les réflexions affines, les composées d'une réfiexion affine s et
d’'une rotation r d’axe D de direction Ker(L, + Idy); sans point fixe: les réflexions {ou
symétries) glissées.

8- Notion d’angle

Préambule: Si (V,(1)) est un espace vectoriel euclidien, I'inégalité de Cauchy-Schwarz

| (| o) €]l w [ ]] vl
montre qu’il existe un unique # € {0, 7| tel que

_ (v
T[T

Le réel 8 est communément appelé angle non orienté des vecteurs u et v.

cos(f)

Lorsque dim(V) = 2, on peut définir une notion d’ angle orienté intimement liée au groupe
(commutatif en dimension 2} des rotations O* (V) :

Angles orientés dans le plan euclidien

Lemme: Soient u,v € V de norme 1. Il existe une unique rotation f € O1 (V) telle que
flu) =v.

Démo: Complétons u en une base orthonormée (1,%). Dans cette base la matrice de

. C se e . —b . - .
toute rotation f s’écrit [f] = (g . ), avec a® + 0% = 1. Dés lors la condition v = f(u) =
au + bu détermine f.

Soit A = {(u,v) |||« ||=1=||v ||} Vensemble des couples de vecteurs unitaires de V.

On définit une relation d’équivalence sur A en déclarant que (u,v) ~ (u',v') ssiil existe une
rotation r € OT (V) telle que r{u) = v’ et r(v) = v’ et on appelle angle orienté de vecteurs
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toute classe d’équivalence [u,v] pour cette relation. On notera A = A/ ~ ’ensemble des
angles orientés.

Remarque: Cete définition refléte l'idée intuitive que les couples (u,v} et (r(u),r(v))
définissent bien le méme angle.

Par le lemme, on a une application ¢ : A = OF(V) qui au couple (u,v) associe 'unigue
rotation f telle que f(u) = v. Cette application est surjective puisque quel que soit u
unitaire, ¢(u, f(u)) = f, ce qui montre aussi qu’elle n’est pas injective.

Lemme: d(u,v) = ¢(u’,v') ssi (u,v) ~ (u',v").

Démo: Supposons qu'il existe f € OT(V) telle que f(u) =
r € OF(V) 'unique rotation telle r(u) = v'. On a f(r(u)) = f
puisque 07 (V) est commutatif en dimension 2, on a aussi v’ = f
Le. (u',v") = (r(u),r(v)).

La réciproque est identique: si r € OV (V) est telle que (r(u),r(v)) = (v/,v') alors pour
I'unique rotation f telle que v = f(u), on a v’ = r(v) = r(f(u)) = f{r{u)) = f(u'), e

$u,v) = du’,v").

Ce lemme implique que ¢ passe au quotient i.e. induit une application

et f(u') = v et soit
"y = v'. D’autre part,

r(u)) =r(f(u)) = r(v),

¢:A—= O (V) [u,v] = F.
¢ est une bijection de réciproque f = [w, f(w)] ol w € V est un vecteur unitaire arbitraire.

Les angles orientés forment un groupe.

On définit addition + : A x A — A en transportant la composition o de O (V) sur 4 au
moyen de la bijection ¢ :

[, v] + [, 0] = 7 (g, v] 0 Blu’, 0"])

En clair: Si w,u’,u” € V sont unitaires

[, Fu)] + [, f/(u)] = [, (F o f)(u")].

On sait (¢f Chapitre 1) que (4, +) est un groupe commutatif (puisque (O (V),0) lest).
Le neutre pour + est V'angle nul [u, u]. On appelle angle plat I'angle [u, —u]; on a [u, —u| +
[w, —u] = lu, (~Idy o —Idy)(u)] = [u,u]. Un angle [u,v] tel que 2[u, v] soit plat est appelé
angle droit.

Relation de Chasles: Quels que soient u,v,w € V unitaires, [u,v] + [v,w] = [u,w].
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Remarque: 1l est important de remarquer que la notion d’angle a été introduite sans utiliser
de mesure d'un angle, i.e. sans attacher un nombre réel a une classe [u,v]. Cest ce qu'on
se propose de faire & présent:

Orientation et mesure d’un angle orienté.

Choisissons une orientation, i.e. une base orthonormée A = (a;,a2) de V. Observer que
la matrice d'une rotation f € O (V) est indépendante du choix de la base orthonormée
dans la classe de A: En eflet, si A’ est une base orthonormeée directe

[, A A = [Tdy, A, A [f, A, A [Tdy, A, A
Et chacune de ces matrices appartient & OF qui est commutatif, dés lors
[F, AL, A1) = [Tdy, A, A) [Tdy, A, Al [, A A] = (f, A, Al
On a donc une hijection de A sur O;’ :

A= 0T (V)= 0f
[u, f(w)] = = [f] = [, A A

qui est indépendante du choix de la base orthonormée dans une orientation donnée.

cos(8) —sin(f) ) _

On appelle mesure de [u, f{u)] tout réel 8 tel que [f] = R{F) = (3?.??(9) cos(6)

Si 6 est une mesure de [u, f(u)], 'ensemble des mesures de [u, f(u)] est 8 + 27Z.

0 est une mesure de Usnele nul [u,u]. 7 est une mesure de angle plat [u, —u], T et =%
) ? ) bl 2 D

sont des mesures d'un angle droit. Si 8 est une mesure de [u,v], —€ est une mesure de
[v,u].

On appelle angle géométrique I'angle obtenu en oubliant de distinguer [u,v] et [v,u] et
mesure de I'angle géométrique I'unique réel 8 € [0, 7] tel que # soit une mesure de [u, v] ou
de [v,u}. Ce # est ce que mesure un rapporteur.

Remarquer que la mesure de I'angle géométrique coincide avec l'angle non orienté du
préambule.

Un diagramme de groupes

Soit S = {z € C || z |= 1} le cercle unité de C ~ R*. Pour rappel §' C C* est
un sous-groupe pour la multiplication complexe. Il est facile de vérifier que I'application
a

b

Par ailleurs, I'application

S' = OF o+ib— _ab> est un isomorphisme de groupes.

R — S': 8 cos(8) +isin(f)
est un morphisme surjectif de groupes de noyau 2rZ. Dés lors, elle induit un isomorphisme
de groupes:

R/27Z — S 1 8 + 277 + cos(f) + i sin(6).
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Iei, (R/27Z, +) est le groupe quotient i.e. I'espace quotient pour la relation d’équivalence
sur R définie par ¢ ~ 2’ ssi z — 2’ € 27Z muni de Vaddition (8 + 27Z) + (¢ + 27Z) =
(8 +8') 4+ 2xZ. On a donc la suite d’isomorphismes:

R/27Z = §' - 0 = A

ou la derniére fleche est la réciproque de @.
Quelques propriétés des angles.

(1) Les réflexions vectorielles renversent les angles orientés i.e. pour toute paire u,v de
vecteurs unitaires,
[s(w), s(v)] = [v, u].

Démo: Soit s’ la réflexion de droite fixe < u—v >+, Ona s'(u) = v et dés lors s'(v) = u.
Puisque s0s’ € OF (V) on a [v,u] = [s 08’ (v),s 08 (u)] = [s(u), s(v)].

(2) Pour trois points distincts 4, B, C' la somme
[AB,AC) + [BC, BA) + [TATH

est un angle plat.

La démo utilise [u,v] = [~u,—v] car en dimension 2, —Idy € O (V) et la relation de
Chasles pour les angles.

(3) (Angles inscrits) 51 A, B, C sont trois points distincts d'un cercle de centre O, on a

(04,08 = 2[CA, TH)

Similitudes

Soit (V,(|)) un espace vectoriel euclidien de dimension n et f : V' — V une application
linéaire.

f est une similitude s'il existe un réel k& > 0 appelé le rapport de la similitude tel que quel
quesoit u € V, || fluw) [|[=k ]| w]l.

Les similitudes vectorielles forment un groupe pour la composition.

Proposition: Soit f une similitude vectorielle de rapport & > 0 et h; homothétie hy =
k Idy. 1l existe une unique isométrie g € O(V) tel que f = hyog.

Démo: 1l suffit de poser g = h% o f.



Une similitude est dite directe si Det(f) > 0 et indirecte si Det(f) < 0.

Soit (X, V) un espace affine euclidien et f : X — X une application affine. f est appelée
une similitude affine de rapport & > 0 si Ly est une similitude vectorielle.

On dira qu'une similitude affine est directe (indirecte) si Ly est directe (indirecte).
Propriétés:

(1) Supposons dim(X) = 2. Les similitudes affines directes conservent les angles orientés
de vecteurs.

Démo: Il faut montrer que quels que solent 4, B,C € X on a

hY LN

m;* A—c*r N (EVE) B (Vi (eI
I FCAFB) I 11 FEDE) |

Ceci résulte immeédiatement de la définition d’une similitude directe.

(2) Plus généralement, si dim(X) = n, les similitudes conservent les angles non orientés
ou géomeéiriques.

(3) Supposons dim(X) = 2. Soit A, B, A", B’ € X avec A # B et A’ # B'. Alors il existe
une unique similitude afline directe telle que f{4) = A’ et f(B) = B'.
I

Démo: La condition L ¢{ Jﬁ — 4B montre que le rapport k = “”LZ%T:[ et Ly = (kIdv)ol

AB AR

olt | € OF(V) est I'unique rotation telle que ( ”4 ”) = A

ce qui détermine L

univoquement et done f puisque f(A4) = A"

(O3
~I






CHAPITRE I1I

Pour rappel (cf Chapitre 1), un polyédre convexe d’un espace affine (euclidien) X est une
partie P C X qui est I'intersection d'un nombre fini de demi-espaces fermés

P = ﬂ fiWI(RZO)
icl
ou pour chaque ¢ de U'ensemble fini 7, f; : X — R est une application affine non constante.

Un Polytope de X est un polyédre convexe, compact, d’intérieur non vide. En dimension
2 un polytope est appelé un polygone.

On se propose dans ce chapitre d’esquisser la classification des polytopes réguliers en
dimension 2 et 3.

Polygones réguliers

Soit P un polygone du plan affine euclidien R? ayant [ sommets Sy, So,...,.S (pour faire
court soit P un [~ gone).

P est dit régulier si tous ses cOtés ont la méme longueur a et tous ses angles géométrigues
ont la méme mesure #, par exemple:

@ = < T
3

Lemme Si P est un [— gone de R?, la somme des mesures de ses angles géométriques
vaut (I — 2)w. Dés lors si P est régulier, la mesure commune de ces angles vaut 6 = t—Tz .

Démo: Choisir un sommet S de P et décomposer P en [ — 2 triangles comme dans la
figure (Une telle décomposition est appelée une triangulation de P.) et observer que pour
chaque triangle la somme des mesures des angles vaut .

S5

Proposition Quel que soit 'entier [ > 3 il existe un [—gone régulier de R?. Deux [—gones
réguliers sont semblables. '

Démo: Pour l'existence, il suffit de prendre le [~ gone P dont les sommets sont les racines
[— itme de 'unité dans C ~ R






Soit maintenant deux /- gones réguliers P et P’ de sommets respectifs Si,....S; et

12---2 97 et de longueur de cdtés respective a et a’. On veut montrer qu’il existe une
similitude affine f : R? — R? telle que f(5;) = 5! pour tout i € {1,...,{}. Pour ce faire,
considérer 'unique similitude affine f telle que f(51) = S et f(S;) = Sj. L'ensemble f(P)
est un [—gone régulier de longueur de cotés a’ et de mesure d’angles {27 entidrement situé
dans 'un des deux demi-espaces définis par la droite < 57, 5% >.

‘S;.l \\\‘--.,,___,-« forr?

5’1l est situé dans le méme demi-espace que P’, 1'égalité des longueurs et des angles donne
f(P) = P'. Sinon, soit s la réflexion affine de droite fixe < S}, 5} >. La similitude affine

s o0 f envole alors P sur P’

Polytopes réguliers en dimension 3.

Soient P C R® un polytope, S le nombre de ses sommets, 4 le nombre de ses arétes et F
Ie nombre de ses faces.

Théoréme d'Euler
S—A4+F=2

Démo: On a
P = ﬂ fiﬁl(RZU)

1<i<F

Choisir une face de P, par exemple Fiy C f;'(0), et un point a de R® \ P tel que a
n’appartienne & aucun des plans f7'(0),1 < < F. Enfin choisir un plan II paralléle & la

face Fi, comme dans la figure

o
'\_'“"""""\T—T\
;o
\ .
L
N
\/D/

b






Considérer I’application

f:P—=T:p—yp
ou p' est I'unique point d’'intersection de la droite < a,p > avec le plan II. L’application
f établit une bijection entre les sommets, les arétes et les faces de P autres que Fy et un

ensemble de points, de segments et de polygones convexes du plan II. Pour le cube:
o

A
////!1\ .

Pour obtenir la formule d’Euler, on va sommer les mesures des angles géométriques des

polygones de f(P) C II de deux maniéres différentes.
Soit ny le nombre de k— gones de f(F) autres que f(F). Puisque chaque face de P

correspond & un polygone de f{P), ona ., ng = F — 1. Pour le cube:

\ | Z’LA‘:’L:&'

Puisque la somme des angles d'un k— gone est (b — 2)w, la somune ¥ des angles des
polygones de f(P) exceptés ceux de f(Fi) vaut
E:an(kwmﬂzﬂ'z Eng —2n{F —1) (%)
k %
Pour le cube:

o (5‘-4/}17’ = fo T

Par ailleurs, on peut calculer ¥ en considérant que les Sy sommets extérieurs (ceux de
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f(Fy)) contribuent (S; — 2)7 et les (S — S)) sommets intérieurs de f(P) contribuent
chacun 27 1.e. '

E'—‘QTF(SWS})-{- 71’(51 —2)=7T(25—51 -—2) (-J:—k)

Pour le cube:

1l reste & évaluer 3, kmng. C'est le nombre d’arétes projetées comptées avec multiplicités:
les arétes intérieures sont comptées deux fois et les arétes extérieures (celles de f{F)) sont
comptées une seule fois. Comme chaqgue face a autant d’arétes que de sommets, on a

Y o kng=2A-5)+5 =24—5
k

Pour le cube:

/

En comparant (x) et (#x) il vient S — 4 4 F' = 2.

Corollaire: Soit f,s € N. Supposons que le polytope P soit tel que (1) chague sommet
de P porte f arétes, (2) chaque face a s sommets. Alors s, f € {3,4,5} et (f,s,4,F,5)
peut prendre cing valeurs distinctes.

Démo: Quelques remarques préalables:

(1} Toute face a au moins trois sommets i.e. s > 3.

{(2) Chaque sommet porte au moins trois arétes i.e. f > 3.

(3) Chaque face a s sommets donc s arétes et chaque arétes appartient a deux faces:
24 = sF.

(4) Chaque sommet porte f arétes et chaque aréte a deux sommets: S5 = 2A.

Passons & la preuve: La formule d’Euler et les remarques (3) et (4) donnent la relation







qui est équivalente a

et dés lors (cf remarques (1) et (2)) f < 6

B2 p—=

Comme A est un nombre fini il vient jlf + % >
et s < 6. D'ou s, f € {3,4,5}.

1 F £ o 1 1 -~ 7 s - g p x
Sifzd4onaz:>5—7ie s<4 Le méme argument donne s > 4 = f < 4. Des lors

12 f—

(f,5) € {(3,3),(3,4),(3,5),{4,3),(5,3)}.

Pour chacune des valeurs de (f,s), F = 25, S = QF et la formule d'Euler déterminent
A RS
Il y a donc cing valeurs de (f,s, A, F, S):

f s A F 8§

3 6 4 4

3 4 12 6 8

3 5 30 12 20

4 3 12 8 6

5 3 30 20 12

Polytopes réguliers

Le polytope P C R? est dit régulier de type {f, ) si

(1) toutes ses faces sont des s—gones réguliers isométriques, le. chaque face est une copie
du méme s— gone régulier.

(2) chaque sommet appartient a f faces, i.e. porte f aretes.

Par ce qui précéde, un tel polytope régulier peut-étre assembler d’au plus cing manieres
combinatoires distinctes.

Théoréme (Les cing polytopes réguliers de R?)

Pour chacune des valeurs de (f,s, 4, F,S) du tableau qui précede il existe un polytope
régulier P constitué de F polygones réguliers & s cotés qui sont assemblés de maniere & ce
que chacun de ses S sommets appartienne a f faces.

Deux polytopes réguliers de méme type combinatoire sont semblables.

Démo: Pour Uexistence, il suffit de les construire (voir figures ci-apreés). Quant & la nomen-
clature, 11 s'agit dans Pordre du tableau, du tétraédre régulier (assemblage de 4 triangles
équilatéraux), de I'hexaddre régulier i.e. du cube, du dodécaddre régulier (assemblage de
12 pentagones réguliers), de I'octaédre régulier (assemblage de 8 triangles équilatéraux) et
enfin de Vicosaddre (assemblage de 20 triangles équilatéraux),

Nous ne ferons pas ici la preuve de Punicité de ces polytopes & similitude pres.

o






Construction des polytopes réguliers

Il est facile de construire un cube C' et ensuite en choisissant quatre sommets équidistants
de €, d'y inscrire un tétracdre régulier 7' :

L’octaedre régulier C, est 'enveloppe convexe des centres des faces du cube €' :

7

o s

DN

Une méthode de construction dn dodécasdre végulier DD consiste A observer que on peut
assembler douze faces pentagonales sur les sommets d'un cube €' :







Enfin voici une figure de 'icosaédre régulier D,

KR

Remarque: Uicosaédre régulier peut étre réalisé comme enveloppe convexe des centres des
faces du dodécaedre.

Le lecteur intéressé par toutes ces questions pourra consulter Uexcellente réference

- Giéométrie 3/convexes et polytopes, polyedres réguliers, aires et volumes - de Marcel
Berger. Ed. Nathan

Il y trouvera notamment une autre (méme plusicurs) définition(s) équivalente(s) de la
régularité d'un polytope.

Pour conclure voici une application plus ludique de la formule d’Euler.

Le ballon de Foot
Un ballon de foot est un polytope de RY constitué de faces pentagonales et hexag-
onales régulicres assemblées de telle maniere a ce que chaque sommet appartienne a 3

faces.
Combien faui-il de pentagones pour confectionner un ballon?

Soient p le nombre de pentagones, h le nombre d’hexagones et S, A, F' comimne dans la
formule d’Euler.

Puisque chaque sommet appartient a 3 faces
35 = 5p -+ 6h

Puisque chaque aréte appartient & 2 faces et chaque face a autant d’aretes que de sommets
24 = bp + 6h

La formule d'Euler § — A + F = 2 appliguée au ballon s’écrit donc

5p+6h  Sp+0hk
iﬂg__i_ﬂﬂa_w__;rp_}_,ﬂd:g

1e,
p =12,
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Voici un ballon de foot dessiné par Leonard de Vinci (extrait du livre de Marcel Bergercité
plus haut)







