
Université LYON 1
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Question 1 (4 pts)

(1) Enoncer le principe de récurrence (simple) sur N.

(2) Enoncer le théorème de division euclidienne dans Z.

(3) Enoncer le théorème de factorisation en premiers dans N. Dresser la liste des diviseurs
d’un entier n ∈ N.

(4) Dans Z, définir la notion de congruence modulo un entier n ∈ N. Enoncer ses propriétés
par rapport à l’addition + et la multiplication × des entiers relatifs.

Enoncés:

(1) soit P (n) une assertion portant sur l’ entier naturel n ∈ N. Pour que P (n) soit vraie
pour tout n ≥ n0 il faut et il suffit que
- P (n0) soit vraie
- P (n) ⇒ P (n + 1) soit vraie pour tout n ≥ n0.

(2) Pour tout a ∈ Z et b ∈ N \ {0}, il existe un unique couple (q, r) ∈ Z×N tel que

a = bq + r, 0 ≤ r < b.

(3) Voici une manière d’écrire ce théorème (qui diffère quelque peu de celle du cours):
pour tout entier n ∈ N \ {0, 1} il existe d’uniques nombres premiers p1 < p2 < · · · < ps et
d’uniques entiers r1, r2, . . . , rs ∈ N \ {0} tels que

n = pr1
1 pr2

2 · · · prs
s .

L’ensemble des diviseurs positifs de n est

Div+(n) = {pm1
1 pm2

2 · · · pms
s , 0 ≤ mi ≤ ri pour tout i ∈ {1, . . . , s}}.

(4) Deux entiers relatifs a et b sont dits congrus modulo n ∈ N \ {0} si n divise b− a. On
écrit alors a ≡ b[n].
Si a ≡ a′[n] et b ≡ b′[n] alors (a + b) ≡ (a′ + b′)[n] et ab ≡ a′b′[n].
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Question 2 (6 pts)

Répondre par vrai ou faux aux assertions suivantes en justifiant votre choix par un bref
argument ou un contre-exemple.

(1) Il y a une infinité de nombres premiers p ∈ N:
C’est vrai. Voici une preuve par l’absurde: on sait que tout entier n ≥ 2 admet un
facteur premier. S’il n’existait qu’un nombre fini de nombres premiers, disons p1, . . . , pl,
l’entier p1p2 · · · pl+1, n’étant divisible par aucun des p1, . . . , pl, n’admettrait aucun facteur
premier.

(2) si 33 et 77 divisent l’entier n ∈ N alors 231 divise aussi n:
C’est vrai. On a 33 = 3 · 11 et 77 = 7 · 11, dès lors 3, 7, 11 divisent n. Comme ils sont deux
à deux étrangers, le lemme de Gauss implique que 3 · 7 · 11 = 231 divise aussi n.

(3) 21111 a 1112 diviseurs positifs:
C’est vrai. Par l’énoncé (3) de la question 1, les diviseurs de 21111 sont les entiers 2m pour
0 ≤ m ≤ 1111. Il y en a 1 + 1111 = 1112.

(4) 444444444 est un multiple de 6:
C’est vrai. C’est clairement un multiple de 2. C’est aussi un multiple de 3 car l’entier n
dont l’écriture décimale est aNaN−1 · · · a1a0, 0 ≤ ai ≤ 9, aN 6= 0, est un multiple de 3 ssi
la somme

∑N
i=0 ai est un multiple de 3 (dans notre cas, cette somme vaut 36). Par Gauss,

c’est donc un multiple de 2 · 3 = 6.

(5) quelquesoit l’entier strictement positif n ≤ 10, 11 divise n10 − 1 et 13 divise n6 − 1 ou
n6 + 1:
C’est vrai. Par Fermat, pour tout nombre premier p et tout entier n 6= 0 non multiple de
p, on a np−1 ≡ 1[p] i.e. p divise np−1 − 1. En particulier 11 divise n10 − 1 et 13 divise
n12 − 1 = (n6 − 1)(n6 + 1) ce qui implique (parcequ’il est premier) que 13 divise l’un des
facteurs (n6 − 1) , (n6 + 1).

(6) Il y a une infinité d’entiers n ∈ Z pour lesquels le reste de la division par 2 est égal au
reste de la division par 3:
C’est vrai. Par restes chinois, on sait que pour p et q étrangers le système de congruences
x ≡ a[p] et x ≡ b[q] admet une infinité de solutions x ∈ Z. Dans notre cas a = b ∈ {0, 1}
et p = 2, q = 3.
Il se fait qu’il s’agit d’un cas particulièrement simple de restes chinois que l’on peut résoudre
immédiatement par Gauss: 2 | x− r et 3 | x− r équivaut à 6 | x− r i.e. x = r +6k, k ∈ Z.
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Question 3 (5 pts)

(1) Déterminer tous les entiers u, v ∈ Z tels que 11 u + 7 v = 1.

(2) Déterminer le reste de la division euclidienne de 23333 par 7 et par 11.

(3) En déduire le reste de la division euclidienne de 23333 par 77.

Solution:

(1) Par l’algorithme d’ Euclide ou par simple observation, on voit que (u, v) = (2,−3)
est solution. Supposons que (u′, v′) soit une autre solution i.e. que 11u′ + 7v′ = 1. Par
soustraction, il vient

11 (u′ − u) + 7 (v′ − v) = 0 (E)

dès lors 7 | 11(u′−u) et par Gauss 7 | (u′−u). Il existe donc m ∈ Z tel que (u′−u) = 7m
et (E) devient 11 · 7m = −7 · (v′ − v) i.e. (v′ − v) = −11m.
Conclusion: les solutions sont de la forme (2 + 7m,−3 − 11m) pour m ∈ Z. On vérifie
ensuite que tout m convient.

(2) Par Fermat 26 ≡ 1[7]. En écrivant 3333 = 6 · 555 + 3, on voit que

23333 = (26)
555

23 ≡ 8[7] = 1[7].

On aurait pu observer directement 23 ≡ 1[7] et utiliser 3333 = 3 · 1111.

A nouveau par Fermat, 210 ≡ 1[11]. En écrivant 3333 = 10 · 333 + 3, on trouve

23333 ≡ 23[11] = 8[11].

(3) L’entier N = 23333 satisfait le système de congruences N ≡ 1[7], N ≡ 8[11] dont on
sait (cf cours) que les solutions sont de la forme r + 77m, m ∈ Z. Reste à trouver r. Pour
ce faire, on peut soit résoudre explicitement le système comme fait en tds, soit observer
directement que r = 8 convient: en effet, 7 | N − 8 et 11 | N − 8 équivaut à 77 | N − 8.
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