1 Calcul différentiel

Soient (E, || - ||g) et (F,]| - ||r) deux espaces vectoriels normés sur R ou C. Pour simplifier la
notation, on ne mettra pas d’indicea la norme || - || lorsqu’il n’y a pas de risque de confusion. Dans
le cas de R™ on utilisera toujours la norme euclidienne ||z| = /2% + 22 + - - - + 22.

1.1 Définitions et premiéres propriétés

Définition 1.1. Soit U un ouvert de E, a € U et f : U — F. On dit que f est différentiable en a
s’ existe une application linéaire et continue L : E — F telle que

fla+h) = f(a)+ L(h) + o(]|h]]) quand h — 0.

(On a utilisé la notation habituelle X = o(||h]|) ssi ﬁ — 0 quand h — 0.)

Remarques.

a) Pour pouvoir étudier la différentiabilité d’une fonction en un point il faut que la fonction soit
définie au voisinage de ce point.

b) La notion de différentiabilité ne change pas quand on remplace les normes de E et F' par des
normes équivalentes.

¢) En dimension finie le théoréme de Riesz affirme que toutes les normes sont équivalentes. Par
conséquent, si F et F' sont de dimension finie alors la notion de différentiabilité ne change pas
quand on change les normes de F et F'.

d) En dimension finie, il est également vrai que toutes les applications linéaires sont continues.
On n’a donc pas a se soucier de la continuité de L dans la définition de différentiabilité.

Proposition 1.2. L’application linéaire et continue L qui apparait dans la définition 1.1 est unique.
On appelle L la différentielle de f au point a et on note L = D f(a) ou encore L = f'(a) lorsqu’il n’y
a pas de risque de confusion avec la dérivée usuelle.

Proposition 1.3. Une fonction différentiable en a est continue en a.

Proposition 1.4. Si E = F' =R, alors une fonction f est différentiable en un point a si et seulement
si elle est dérivable. De plus, la différentielle D f(a) est l'application linéaire et continue donnée par
la multiplication par la dérivée f'(a) :

Df(a)(h) = hf'(a).

Exemples.

a) Toute application linéaire et continue entre deux espaces normés est différentiable en tout
point et sa différentielle en un point arbitraire est elle-méme.

b) L’application f : R? — R, f(x) = x 2, est différentiable en tout point et sa différentielle est
donnée par
Df(a)(h) = a1hy + ashy.

c) Soient Ey, F5 et F' des espaces normés, B : E) X E; — F une application bilinéaire et continue
(i.e. ||B(z1,x2)| < Cllz]l||z2]|). Alors B est différentiable en tout point et DB(a)(h) =
B(G,l, h2> + B(hl, ag).

d) Soit E l'espace des fonctions continues sur [0,1]a valeurs dans R muni de la norme || - |-

1 1
L’application T': E — R, T(f) = | f? est partout différentiable et DT'(f)(h) =2 [ fh.
0 0
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Nous avons que la composition de deux applications différentiables est différentiable et la diffé-
rentielle de la composition est la composition des différentielles.

Proposition 1.5. Soient E, F' et G trois espaces normés, U un ouvert de E, V un ouvert de F,
f:U—Fetg:V — G. On suppose que [ est différentiable en a € U, que f(a) € V et que g est
différentiable en f(a). Alors go f est différentiable en a et

D(g o f)(a) = Dg(f(a)) o Df(a).

Remarque. Cet énoncé concernant la composition peut étre utilisé avec I’'exemple b) ci-dessus pour
prouver que le produit de deux fonctions différentiables (a valeur dans R) est aussi différentiable
et retrouver la formule usuelle pour sa différentielle. D’autre part, la somme de deux fonctions
différentiables (a valeur dans un méme espace vectoriel normé arbitraire ) est aussi différentiable
et sa difféntielle est la somme des deux difféntielles, ce qui prouve qu’on peut finalement traiter
toutes les fonctions construites a partir des fonctions usuelles.

(@)
Définition 1.6. Soit U un ouvert de E, a € U, %re Eetf:U— F. On dit que f admet au point

a une dérwée directionnelle dans la direction v, et on la note par %(a), st la limite suivante existe :
Lo ) — 020 5@ — L f ) )
- [@—(a) = lim = Mo
ov e\0 € &30 E

En d’autres termes, la dérivée directionnelle %(a) est la dériwéea droite en 0 de la fonction t —
fla+tv).

Proposition 1.7. 5v [ est différentiable en a alors f admet des dérivées directionnelles en a suivant
toute direction et nous avons de plus que dime : %(aﬂﬂ—g(a\ - M = &feW) 1o (1)
=

6 < :—:?e A o\('u)
2 () = D) (o).

Exemples.

a) L’existence des dérivées directionnelles suivant toute direction n’entraine pas forcément la
différentiabilité de la fonction. Ni méme la continuité. La fonction f : R? — R

1 siy>a?
flzy) =41 siy<0
0 sinon

admet des dérivées directionnelles en 0 qui sont nulles en toute direction. Mais f n’est pas
continue en 0, et a fortior: n’est pas différentiable en 0.

b) Méme si la fonction est continue et que toutes ses dérivées directionnelles existent en un point
cela n’implique toujours pas que la fonction est différentiable. La fonction f : R? — R

Fag) = {Q si (2.) # (0.0)

0 si (z,y) = (0,0)

est continue en 0 et toutes ses dérivées directionnelles en 0 existent :

of
ov

Elle n’est cependant pas différentiable en 0 car les dérivées directionnelles en 0 ne sont pas
linéaires en v.

(0)=f(v) VveR.
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1.2 Le cas de la dimension finie

On passe maintenant au cas de la dimension finie. Plus précisément, on suppose dans cette partie
que E est de dimension finie : £ = R".

1.2.1 Dérivées partielles

Définition 1.8. Soit U un ouvert de R", a € U et f: U — F. On dit que f admet au point a une
dérivée partielle par rapporta la variable x; si la fonction suivante
t— f(al, ag, ... ,aj,l,t, Ajyly--- ,an)
est dérwable en t = a;. Sa dérivée partielle par rapporta la variable x; est la valeur de cette dérivée,
et on la note par %(a).
J
Ainsi, cette dérivée partielle est également donnée par la limite suivante (si elle existe, sinon la

onction f n’admet pas de dérivée partielle) : n
Jonction f P particllc) e, = (9,/1,06)c R

e—0 g 7

ot on a noté par e; le j-eme €élément de la base canonique de R™ : toutes les composantes de e; sont
nulles sauf la j-éme qui est égaled 1.

La différentielle peut s’exprimer en fonction des dérivées partielles de la maniére suivante.

Proposition 1.9. Soit U un ouvert de R", a € U et f : U — F une fonction différentiable en a.
Alors .
Dr@)(h) = > by (a)
=1 T

On peut se demander quelle est la relation entre dérivées partielles et dérivées directionnelles
et si l'existence des unes implique l'existence des autres. On remarque d’abord que les dérivées
directionnelles concernent toutes les directions, et pas seulement celles des axes coordonnés. On
pourrait donc penser que 'existence de toutes les dérivées directionnelles implique celles de toutes les
dérivées partielles, mais ce n’est pas le cas a cause d’une subtilité : les dérivées directionnelles ne sont
pas définies comme une limite pour e — 0, mais seulement d'un coté (¢ — 01); elles correspondent
donc & une dérivée droite ou gauche seulement ; il serait donc possible que la restriction d’une fonction
aux axes cordonnées passant par un point admette des dérivées droite et gauche mais différentes, et
donc pas de dérivée tout court. On peut considérer les deux exemples suivants.

Exemples.

a) L’existence des dérivées directionnelles suivant toute direction n’entraine pas forcément celle
des dérivées partielles. La fonction f : R" — R donnée par f(z) := ||z|| (en utlisant, par
exemple, la norme euclidienne) admet des dérivées directionnelles en a = 0 données par
g—f(()) = ||v|| mais chaque fonction ¢t — f(ay,as,...,a;-1,t,a;41,...,a,) coincide avec |t| et

n’est donc pas érivable en ¢ = 0 = a;.
b) L’existence des dérivées partielles n’entraine pas non plus celle des dérivées directionnelles,
comme on peut voir dans I’exemple suivant d'une fontion f : R? — R.

0 sizy=0
fla,y) = .
1 sizy#0

Comme la restriction de f & chaque axe cordonnée passant par l'orogine a = (0,0) est la
fonction nulle, les dérivées partielles existent et sont nulles. D’autre part, si on prend un
vecteur v qui n’est pas orienté comme les axes (par exemple v = (1,1)) on a f(a+¢cv) =1 et
f(a) =0, ce qui entraine que la limite définissant %(O) vaut +oo et la fonction n’admet donc
pas de dérivées dirctionnells sauf pour certains v.



1.2.2 DMatrice jacobienne et gradient

Supposons maintenant que F' est lui aussi de dimension finie : F' = R™. Une fonction f a valeurs
dans F' admet m composantes
fi
f2
=1
fm
Comme la limite dans R™ se fait composante par composante et que les dérivées partielles sont
définies via une limite, nous avons que f admet des dérivées partielles ssi chaque composante de f
admet des dérivées partielles et la dérivée partielle de f s’obtient en prenant les dérivées partielles
des composantes.
La différentielle est une application linéaire de R™ dans R™. Elle s’identifie donca une matrice.
On peut exprimer cette matrice en fonction des dérivées partielles des composantes de f.

Proposition 1.10. Soit U un ouvert de R", a € U et f: U — R™ une fonction différentiable en a.
La matrice de D f(a) dans les bases canoniques de R™ et R™ est donnée par la matrice suivante

%Eai g—;gai . %Ea;
of; 672 a 8—; a) ... 672 a
Mi(a) = (@) ciem =1 " . "
G gz = | :
%fT’r(a) ‘ng’;(a) . ng’:(a)

On appelle cette matrice la matrice jacobienne en a.

Une fonction f : R? — R? peut aussi étre vue comme une fonction définie de C dans C. Nous avons
alors deux notions de différentiabilité. D’une part la notion de différentiabilité sur R? vu comme un R-
espace vectoriel. Et d’autre part la notion de différentiabilité sur C vu comme un C-espace vectoriel.
Ces deux notions sont-elles les mémes ? La réponse est non. Plus précisément, la C différentiabilité
implique la R différentiabilité mais la réciproque est fausse. Cela vient du fait qu’une application
linéaire sur C est aussi linéaire sur R? mais une application linéaire sur R? ne 1’est pas forcément sur

C.

Définition 1.11. Soit U un ouvert de R", a € U et f : U — R une fonction différentiable en a. On
appelle gradient de f en a le vecteur ligne

VI@) = (20 5 @), (@),

Le gradient coincide avec la matrice jacobienne. On peut facilement voir que le gradient est la
direction ot f augmente le plus vite.

1.2.3 Continuité des dérivées partielles et différentiabilité

Le critére le plus important pour la différentiabilité d’une fonction est celui de la continuité des
dérivées partielles.

Théoréme 1.12. Soit U un ouvert de R", a € U et f : U — R™. On suppose que les dérivées
partielles de f existent dans un voisinage de a et sont continues en a. Alors f est différentiable en a.

Si la continuité des dérivées partielles est une condition suffisante de différentiabilité, ce n’est pas
une condition nécessaire (seule 'existence des dérivées partielles est une condition nécessaire). En
pratique, lorsqu’on veut décider de la différentiabilité d’une fonction concréte (qui a en général des
points de singularité) on peut procéder de la maniére suivante :
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