
1 Calcul diérentiel

Soient (E, ‖ · ‖E) et (F, ‖ · ‖F ) deux espaces vectoriels normés sur R ou C. Pour simplier la
notation, on ne mettra pas d’indiceà la norme ‖ · ‖ lorsqu’il n’y a pas de risque de confusion. Dans
le cas de R

n on utilisera toujours la norme euclidienne ‖x‖ =


x2
1 + x2

2 + · · ·+ x2
n.

1.1 Dénitions et premières propriétés

Dénition 1.1. Soit U un ouvert de E, a ∈ U et f : U → F . On dit que f est diérentiable en a
s’il existe une application linéaire et continue L : E → F telle que

f(a+ h) = f(a) + L(h) + o(‖h‖) quand h → 0.

(On a utilisé la notation habituelle X = o(‖h‖) ssi X
‖h‖

→ 0 quand h → 0.)

Remarques.

a) Pour pouvoir étudier la diérentiabilité d’une fonction en un point il faut que la fonction soit
dénie au voisinage de ce point.

b) La notion de diérentiabilité ne change pas quand on remplace les normes de E et F par des
normes équivalentes.

c) En dimension nie le théorème de Riesz arme que toutes les normes sont équivalentes. Par
conséquent, si E et F sont de dimension nie alors la notion de diérentiabilité ne change pas
quand on change les normes de E et F .

d) En dimension nie, il est également vrai que toutes les applications linéaires sont continues.
On n’a donc pas à se soucier de la continuité de L dans la dénition de diérentiabilité.

Proposition 1.2. L’application linéaire et continue L qui apparaît dans la dénition 1.1 est unique.
On appelle L la diérentielle de f au point a et on note L = Df(a) ou encore L = f ′(a) lorsqu’il n’y
a pas de risque de confusion avec la dérivée usuelle.

Proposition 1.3. Une fonction diérentiable en a est continue en a.

Proposition 1.4. Si E = F = R, alors une fonction f est diérentiable en un point a si et seulement
si elle est dérivable. De plus, la diérentielle Df(a) est l’application linéaire et continue donnée par
la multiplication par la dérivée f ′(a) :

Df(a)(h) = hf ′(a).

Exemples.

a) Toute application linéaire et continue entre deux espaces normés est diérentiable en tout
point et sa diérentielle en un point arbitraire est elle-même.

b) L’application f : R2 → R, f(x) = x1x2 est diérentiable en tout point et sa diérentielle est
donnée par

Df(a)(h) = a1h2 + a2h1.

c) Soient E1, E2 et F des espaces normés, B : E1×E2 → F une application bilinéaire et continue
(i.e. ‖B(x1, x2)‖ ≤ C‖x1‖‖x2‖). Alors B est diérentiable en tout point et DB(a)(h) =
B(a1, h2) + B(h1, a2).

d) Soit E l’espace des fonctions continues sur [0, 1]à valeurs dans R muni de la norme ‖ · ‖∞.

L’application T : E → R, T (f) =
1


0

f 2 est partout diérentiable et DT (f)(h) = 2
1


0

fh.







Nous avons que la composition de deux applications diérentiables est diérentiable et la dié-
rentielle de la composition est la composition des diérentielles.

Proposition 1.5. Soient E, F et G trois espaces normés, U un ouvert de E, V un ouvert de F ,
f : U → F et g : V → G. On suppose que f est diérentiable en a ∈ U , que f(a) ∈ V et que g est
diérentiable en f(a). Alors g ◦ f est diérentiable en a et

D(g ◦ f)(a) = Dg(f(a)) ◦Df(a).

Remarque. Cet énoncé concernant la composition peut être utilisé avec l’exemple b) ci-dessus pour
prouver que le produit de deux fonctions diérentiables (à valeur dans R) est aussi diérentiable
et retrouver la formule usuelle pour sa diérentielle. D’autre part, la somme de deux fonctions
diérentiables (à valeur dans un même espace vectoriel normé arbitraire ) est aussi diérentiable
et sa diéntielle est la somme des deux diéntielles, ce qui prouve qu’on peut nalement traiter
toutes les fonctions construites à partir des fonctions usuelles.

Dénition 1.6. Soit U un ouvert de E, a ∈ U , v ∈ E et f : U → F . On dit que f admet au point
a une dérivée directionnelle dans la direction v, et on la note par ∂f

∂v
(a), si la limite suivante existe :

∂f

∂v
(a) = lim

ε↘0

f(a+ εv)− f(a)

ε
.

En d’autres termes, la dérivée directionnelle ∂f

∂v
(a) est la dérivéeà droite en 0 de la fonction t 7→

f(a+ tv).

Proposition 1.7. Si f est diérentiable en a alors f admet des dérivées directionnelles en a suivant
toute direction et nous avons de plus que

∂f

∂v
(a) = Df(a)(v).

Exemples.

a) L’existence des dérivées directionnelles suivant toute direction n’entraîne pas forcément la
diérentiabilité de la fonction. Ni même la continuité. La fonction f : R2 → R

f(x, y) =











1 si y ≥ x2

1 si y ≤ 0

0 sinon

admet des dérivées directionnelles en 0 qui sont nulles en toute direction. Mais f n’est pas
continue en 0, et a fortiori n’est pas diérentiable en 0.

b) Même si la fonction est continue et que toutes ses dérivées directionnelles existent en un point
cela n’implique toujours pas que la fonction est diérentiable. La fonction f : R2 → R

f(x, y) =

{

x(x2−3y2)
x2+y2

si (x, y) 6= (0, 0)

0 si (x, y) = (0, 0)

est continue en 0 et toutes ses dérivées directionnelles en 0 existent :

∂f

∂v
(0) = f(v) ∀v ∈ R

2.

Elle n’est cependant pas diérentiable en 0 car les dérivées directionnelles en 0 ne sont pas
linéaires en v.





1.2 Le cas de la dimension nie

On passe maintenant au cas de la dimension nie. Plus précisément, on suppose dans cette partie
que E est de dimension nie : E = R

n.

1.2.1 Dérivées partielles

Dénition 1.8. Soit U un ouvert de R
n, a ∈ U et f : U → F . On dit que f admet au point a une

dérivée partielle par rapportà la variable xj si la fonction suivante

t 7→ f(a1, a2, . . . , aj−1, t, aj+1, . . . , an)

est dérivable en t = aj. Sa dérivée partielle par rapportà la variable xj est la valeur de cette dérivée,
et on la note par ∂f

∂xj
(a).

Ainsi, cette dérivée partielle est également donnée par la limite suivante (si elle existe, sinon la
fonction f n’admet pas de dérivée partielle) :

∂f

∂xj

(a) = lim
ε→0

f(a+ εej)− f(a)

ε

où on a noté par ej le j-ème élément de la base canonique de R
n : toutes les composantes de ej sont

nulles sauf la j-ème qui est égaleà 1.

La diérentielle peut s’exprimer en fonction des dérivées partielles de la manière suivante.

Proposition 1.9. Soit U un ouvert de R
n, a ∈ U et f : U → F une fonction diérentiable en a.

Alors

Df(a)(h) =

n
∑

j=1

hj

∂f

∂xj

(a).

On peut se demander quelle est la relation entre dérivées partielles et dérivées directionnelles
et si l’existence des unes implique l’existence des autres. On remarque d’abord que les dérivées
directionnelles concernent toutes les directions, et pas seulement celles des axes coordonnés. On
pourrait donc penser que l’existence de toutes les dérivées directionnelles implique celles de toutes les
dérivées partielles, mais ce n’est pas le cas à cause d’une subtilité : les dérivées directionnelles ne sont
pas dénies comme une limite pour ε → 0, mais seulement d’un côté (ε → 0+) ; elles correspondent
donc à une dérivée droite ou gauche seulement ; il serait donc possible que la restriction d’une fonction
aux axes cordonnées passant par un point admette des dérivées droite et gauche mais diérentes, et
donc pas de dérivée tout court. On peut considérer les deux exemples suivants.

Exemples.

a) L’existence des dérivées directionnelles suivant toute direction n’entraîne pas forcément celle
des dérivées partielles. La fonction f : Rn → R donnée par f(x) := ||x|| (en utlisant, par
exemple, la norme euclidienne) admet des dérivées directionnelles en a = 0 données par
∂f

∂v
(0) = ||v|| mais chaque fonction t 7→ f(a1, a2, . . . , aj−1, t, aj+1, . . . , an) coïncide avec |t| et

n’est donc pas érivable en t = 0 = aj .

b) L’existence des dérivées partielles n’entraine pas non plus celle des dérivées directionnelles,
comme on peut voir dans l’exemple suivant d’une fontion f : R2 → R.

f(x, y) =

{

0 si xy = 0

1 si xy 6= 0

Comme la restriction de f à chaque axe cordonnée passant par l’orogine a = (0, 0) est la
fonction nulle, les dérivées partielles existent et sont nulles. D’autre part, si on prend un
vecteur v qui n’est pas orienté comme les axes (par exemple v = (1, 1)) on a f(a+ εv) = 1 et
f(a) = 0, ce qui entraine que la limite dénissant ∂f

∂v
(0) vaut +∞ et la fonction n’admet donc

pas de dérivées dirctionnells sauf pour certains v.



1.2.2 Matrice jacobienne et gradient

Supposons maintenant que F est lui aussi de dimension nie : F = R
m. Une fonction f à valeurs

dans F admet m composantes

f =











f1
f2
...
fm











Comme la limite dans R
m se fait composante par composante et que les dérivées partielles sont

dénies via une limite, nous avons que f admet des dérivées partielles ssi chaque composante de f
admet des dérivées partielles et la dérivée partielle de f s’obtient en prenant les dérivées partielles
des composantes.

La diérentielle est une application linéaire de R
n dans Rm. Elle s’identie doncà une matrice.

On peut exprimer cette matrice en fonction des dérivées partielles des composantes de f .

Proposition 1.10. Soit U un ouvert de R
n, a ∈ U et f : U → R

m une fonction diérentiable en a.
La matrice de Df(a) dans les bases canoniques de R

n et Rm est donnée par la matrice suivante

Mf (a) =
 ∂fi
∂xj

(a)


1≤i≤m
1≤j≤n

=











∂f1
∂x1

(a) ∂f1
∂x2

(a) . . . ∂f1
∂xn

(a)
∂f2
∂x1

(a) ∂f2
∂x2

(a) . . . ∂f2
∂xn

(a)
...

...
...

∂fm
∂x1

(a) ∂fm
∂x2

(a) . . . ∂fm
∂xn

(a)











On appelle cette matrice la matrice jacobienne en a.

Une fonction f : R2 → R
2 peut aussi être vue comme une fonction dénie de C dans C. Nous avons

alors deux notions de diérentiabilité. D’une part la notion de diérentiabilité sur R2 vu comme un R-
espace vectoriel. Et d’autre part la notion de diérentiabilité sur C vu comme un C-espace vectoriel.
Ces deux notions sont-elles les mêmes ? La réponse est non. Plus précisément, la C diérentiabilité
implique la R diérentiabilité mais la réciproque est fausse. Cela vient du fait qu’une application
linéaire sur C est aussi linéaire sur R2 mais une application linéaire sur R2 ne l’est pas forcément sur
C.

Dénition 1.11. Soit U un ouvert de R
n, a ∈ U et f : U → R une fonction diérentiable en a. On

appelle gradient de f en a le vecteur ligne

∇f(a) =
 ∂f

∂x1

(a),
∂f

∂x2

(a), . . . ,
∂f

∂xn

(a)


.

Le gradient coïncide avec la matrice jacobienne. On peut facilement voir que le gradient est la
direction où f augmente le plus vite.

1.2.3 Continuité des dérivées partielles et diérentiabilité

Le critère le plus important pour la diérentiabilité d’une fonction est celui de la continuité des
dérivées partielles.

Théorème 1.12. Soit U un ouvert de R
n, a ∈ U et f : U → R

m. On suppose que les dérivées
partielles de f existent dans un voisinage de a et sont continues en a. Alors f est diérentiable en a.

Si la continuité des dérivées partielles est une condition susante de diérentiabilité, ce n’est pas
une condition nécessaire (seule l’existence des dérivées partielles est une condition nécessaire). En
pratique, lorsqu’on veut décider de la diérentiabilité d’une fonction concrète (qui a en général des
points de singularité) on peut procéder de la manière suivante :




