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Chapitre 1

Anneaux

1 Anneaux, sous-anneaux et idéaux

Définition 1.1. Un anneau est une structure de domaine un ensemble A avec une
constante 0 et deux lois binaires + et x satisfaisant
— (A,0,+) est un groupe abélien.
— (A, X) est un semi-groupe, c’est-a~dire x est associatif : (a x b) x ¢ = a x (bx ¢)
pour tout a, b, c € A.
— On a les lois distributives : Pour tout a,b,c € A on a

ax(b+c)=axb+axc et (b+c)xa=bxa+cxa.

Si A posséde un élément 1 tel que ax 1 = 1xa = a pour tout a € A, alors (4,0, 1, +, X)
est un anneau unitaire, ou unifére.
Si x est commutatif, alors A est un anneau commutatif.

Pour une notation plus compacte, on supprime généralement la multiplication x, et la
multiplication est prioritaire sur ’addition. On note A* = A\ {0}.

Remarque 1.2. Dans un anneau unitaire I’addition est automatiquement commuta-
tive : On a

a+b+a+b = (a+b)x1+(a+b)x1 = (a+b)x (14+1) = ax (1+1)+bx (1+1) = a+a+b+b,

ce qui implique b+ a = a + b.

Remarque 1.3. Dans un anneau on a 0 X a = a x 0 = 0 pour tout a € A. En fait,
ax0=ax(0+0)=ax0+ax0,

d’ott @ x 0 = 0. L’égalité 0 x a = 0 se montre de maniére analogue.

Exemple 1.4. — Les corps rationnels Q, réels R et complexes C.
— Les anneaux de polynémes sur ces corps Q[X], R[X] et C[X].
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— Les entiers relatifs Z, ou 'anneau des polyndmes avec coefficients entiers Z[X].

— Les entiers relatifs multiples de k, pour un entier k£ > 1, noté kZ.

— L’anneau des matrices carrées sur un corps M, (Q), M, (R) et M, (C).

— L’anneau des matrices carrées sur les entiers relatifs M,,(Z).

— L’anneau des matrices carrées sur kZ, soit M,,(kZ), pour des entiers n, k > 1.
Ils sont tous unitaires sauf les kZ et M, (kZ) (pour k > 1), et commutatifs sauf les
M,, (pour n > 1).

Définition 1.5. Un anneau est nul si ab = 0 pour tout a,b € A.
Ainsi tout groupe abélien peut étre considéré comme groupe additif d’'un anneau nul.

Exemple 1.6. Si A est un anneau, I’ensemble A[X] des polynomes avec coefficients
dans A est encore un anneau; si A est commutatif et/ou unitaire, A[X] 'est aussi.

Démonstration. Si P =%, a; X" et Q =Y. b; X" (ou presque tous les coefficients sont
0) sont deux polynomes dans A[X], on pose P+ Q = >, (a; + b;) X" et PQ =Y, ¢; X",
avec ¢; = ZZ:O arb;_i (et on note que presque tous les ¢; sont 0). On vérifié comme
pour les polynomes avec coefficients réels que c¢’est un anneau dont le zéro est celui de
A. Si A est unitaire, alors 'unité 1 de A est aussi unité pour A[X]; si A est commutatif,
on voit facilement que A[X] est commutatif. O

Convention. A partir de maintenant, tous les anneaux seront commutatifs (sauf men-
tion au contraire).

Définition 1.7. Une partie non-vide B C A est un sous-anneau si B est un sous-
groupe additif, et clos par multiplication. C’est-a-dire, si a,b € B alors a —b € B et
ab € B. On le note B < A.

Un sous-anneau B < A est un idéal si ab € B pour tout a € A et b € B. On le note
I <A

Remarque 1.8. Si A n’est pas commutatif, pour qu’un sous-anneau B soit un idéal,
il faut aussi demander ba € B pour tout a € Aet b € B.

Exemple 1.9. L’anneau des entiers de Gauss est 'anneau Z[i] = {a +ib € C: a,b €
Z}. C’est un sous-anneau de C.

Exemple 1.10. Si A est un anneau (commutatif), I’ensemble X - A[X] des polynomes
non-constants ou 0 forme un idéal.

Définition 1.11. Soient A et B deux anneaux. L’anneau produit A x B est 'anneau
dont le groupe additif est la somme directe A & B des groupes additifs de A et de
B, c’est-a-dire avec zéro (0,0) et addition (a,b) + (a/,0') = (a + a/,b+ V'), et dont la
multiplication est donnée par (a,b) (a’,0’) = (ad’, bl).
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Définition 1.12. Soit A un anneau et X C A une partie. L’anneau engendré par X
est le plus petit sous-anneaux de A qui contient X ; il est noté (X). L’idéal engendré
par X est le plus petit idéal de A qui contient X ; il est noté (X).

Si X = {wg,...,2,} est fini, on note (X) = (zg,...,z,) et (X) = (zo,...,z,).
Soient X et Y deux parties de A.
— Onpose XY = {zy: 2z € X, y € Y}, 'ensemble des produit d'un élément de X
avec un élément d’Y.
— On définit récursivement X! = X, et X" = X X"
— (X)), est le sous-groupe additif engendré par X.

Proposition 1.13. On a (X) = (X" :n e N*), et (X) = (X, AX), ; sia € A alors
(a) = Aa+ Za. Si A est unitaire, (X) = (AX),, et pour a € A on a (a) = Aa.

Démonstration. Ce sont des sous-groupes additifs par définition, et par distributivité
pour Aa + Za et Aa. Par associativité et distributivité, (X" : n € N*), est clos par
produit, et (X, AX), ainsi que Aa + Za sont clos par multiplication par des éléments
de A (et donc clos par produit). Ainsi (X™ : n € N*), est un sous-anneau et (X, AX)
et Aa + Za sont des un idéaux. Les deux contiennent X, et tous leurs éléments sont
dans tous les sous-anneaux/idéaux qui contiennent X ; si A est unitaire, X C AX et
Za < Aa. O

Exemple 1.14. On va étudier les petits anneau de cardinalité n.

1. Le seul anneau de cardinal 1 est ’anneau trivial {0}.

2. Soit A = {0,a} un anneau de cardinal 2. Alors le groupe additif est isomorphe
a 7/27, donc a + a = 0. Pour le groupe multiplicatif, il y a deux options : Soit
a® =0 et A est nul, soit > =1 et A= Z/2Z en tant qu’anneau.

3. Soit A un anneau de cardinal 3. Son groupe additif est isomorphe a Z/3Z, le
seul groupe de cardinal 3. Si A est unitaire, on a A = {0,1,a} avec 1 + 1 = q,
douna?>=(1+1)(1+1)=1+1+1+1=1.

Exercice 1.15. Classifier tous les anneaux de cardinal 3.

Exercice 1.16. Classifier tous les anneaux commutatifs unitaires de cardinal 4.

2 Morphismes et anneau quotient

Définition 2.1. Soit A un anneau et I < A un idéal. Le quotient A/I est 'anneau dont
le groupe additif est le groupe quotient A/I, avec multiplication (a+1) (b+1) = (ab+1).

Démonstration. 11 faut montrer que la multiplication est bien définie. On considére
donc a,a’,b,b' € Aaveca+I1=a +Tetb+I1=b+1. Alorsa—d €letb—0V €1,
ce qui donne

ab—a'V =alb—V)+ab —db =alb—b)+(a—ad ) €al + 1V C I.

5



Ainsi ab+ I = a’b/ + I et la multiplication ne dépend pas du choix de représentant.
L’associativité en découle, puisque

((a+1)(b+1)) (c+1) = (ab+1)(c+1) = abe+I = (a+I)(be+1) = (a+I)((b+I)(c+I)) L.

Remarque 2.2. Si A est commutatif et/ou unitaire, A/I aussi. Si 1 € A est 'unité,
1+ 1 est I'unité de A/I.

Définition 2.3. Soient A et B deux anneaux. Un homomorphisme de groupes additifs
f:A— B est un morphisme d’anneau si f(aa’) = f(a) f(a’) pour tout a,a’ € A.

Si f est bijectif, alors f est un isomorphisme (d’anneaux). Si de plus A = B, alors f
est un automorphisme (d’anneaux).

Si A et B sont unitaires, f est un homomorphisme (d’anneaux) unitaire(s)s si en plus

f(14) = 15.
Remarque 2.4. Il est clair que I'image im f est un sous-anneau de B.

Exemple 2.5. Les applications suivantes sont des morphismes d’anneau.

1. Si A est commutatif et a € A, Papplication

fot AIX] — A, P P(a).
2. Si A et B sont deux anneaux, ’application

T:AXx B — A, (a,b) — a.
3. Si A et B sont deux anneaux, ’application

t:A— Ax B, a— (a,0).

Cependant, si A et B sont unitaires, A x B l'est aussi avec unité (1,1), mais

f(1) =(1,0) # (1,1). Ainsi f n’est pas un homomorphisme unitaire.
L’application R x R — C donné par (z,y) — x + iy ne préserve pas la multiplication.
Ce n’est donc pas un morphisme d’anneau.

Définition 2.6. Soit f : A — B un morphisme d’anneau. Son noyau est ker f = {a €
A : f(a) = 0}, c’est-a-dire son noyau en tant que homomorphisme additif.

Proposition 2.7. Soit f : A — B un morphisme d’anneau. Alors ker f est un idéal
dans A, et imf = A/ker f.

Démonstration. C’est un sous-groupe additif. Si a € ker f ou a’ € ker f, alors f(a) =0
ou f(b) =0, d’on f(ab) = f(a)f(b) = 0. Ainsi ker f est clos par multiplication & gauche
et a droit par des éléments de A, et en particulier clos par multiplication. Ainsi ker f
est un idéal.

L’application a + ker f +— f(a) est une bijection de groupes additifs entre A/ker f et
im f. Elle préserve la multiplication. C’est donc un isomorphisme d’anneaux. ]
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Remarque 2.8. Si A est unitaire, alors imf est un sous-anneau unitaire de B, mais
son unité f(14) n’est pas forcément unité de B.

Théoréme 2.9. Soient A et B deur anneauz, f : A — B un morphisme d’anneauz,
et I < A un idéal de A. Soit m : A — A/I la projection canonique. Alors il y a un
morphisme g : A/I — B tel que f = gom si et seulement si I < ker f.

Démonstration. S'il y a g : A/l — B avec f = gom et a € I, alors m(a) = 0y, et
g(0;) = 0p. Donc f(a) = (gom)(a) =0p et a € ker f. Ainsi I < ker f.

Réciproquement, soit I < ker f. Pour a +1 € A/I on pose g(a+ I) = f(a) € B. On
vérifie que g est bien défini : Sia’ € Aaveca+ 1 =a' + 1, alorsa—a’ € I <ker f, et

fla) = fla—d +d) = fla—d)+ f(d) =0+ fd) = f(d).

Donc g : A/I — B est bien défini, et pour tout a € A on a bien (gow)(a) =gla+1) =
f(a),dou f=gom. O

Proposition 2.10. Soit I < A. Alors m : a — a + I induit une bijection entre les
idéaux de A qui contiennent I et les idéauzx de A/I.

Démonstration. Soit I < J < A. Alors f[J] = J/I est un sous-groupe additif de A qui
est clos par multiplication par des éléments de A/I, puisque (a + I)J = aJ = J. Donc
7[J] est un idéal de A/I.

Réciproquement, si J est un idéal de A/I, soit J = 71[J] son image réciproque. C’est
un groupe additif, et pour tout a € A on a w[aJ] = 7w(a)n[J] = 7(a)] = J, don
aJ < J. Ainsi J est un idéal de A.

Enfin, 7 induit une bijection entre les sous-groupes additifs de A qui contiennent I et
les sous-groupes additifs de A/I, qui se restreint en une bijection entre ceux qui sont
des idéaux. ]

3 Ideaux

Soit X un ensemble. Une famille (Y; : ¢ € I) de parties de X est une chaine si pour
touti,j€fonaY; CY;ouY; CY,

Proposition 3.1. Soit A un anneau, et {B; : i € I} une famille non-vide de sous-
anneaus de A.

1. L’intersection (\;c; B; est un sous-anneau de A.

2. Si tous les B; sont des idéauz, alors ﬂiel B; est un idéal.

3. Siles {B; :i € I} forment une chaine, la réunion |J,; B; est un sous-anneau

de A.

4. Siles {B; i€ I} forment une chaine d’idéaus, la réunion | J,c; B; est un idéal.
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Démonstration. 1. Ona0 € B;pourtouti € I,dot0 e ()., B;i. Sib,b' € ,; Bi,
alors b,b' € B; pour tout i € I; puisque les B; sont des sous-anneaux, on a
b—b,bb" € B; pour tout i € I, et b— ¥, bV € (,; B;. Ainsi (,.; B; est un
sous-anneau.

el

2. Siles B; sont des idéaux, alors pour tout b € (),.; B; et a € Aon a b € B; pour
tout ¢ € I, d’ott ab € B;, et ab € (),c; B;. Ainsi [),; B; est un idéal.

3. Puisque la chaine n’est pas vide, (J,c; B; # 0. Si b,0' € J,c; Bi, alors il y a
i,j € Iavecbhe B;etl € B;. On peut supposer que B; C B;. Alors b,0' € Bj,
et donc b — b, bV € B; C |J,; Bi- Ainsi | J,.; B; est un sous-anneau.

4. Si de plus tous les B; sont des idéaux, alors pour tout b € J,.; Biet a € Aily
at € laveche€ By, dotab e B;etab € |J,.; B;. Ainsi (J,; B; est unidéal. [

el

i€l
En particulier 'intersection de deux idéaux est un idéal.
Définition 3.2. Soit A un anneau, et [ et J deux idéaux.

1. La sommede [ et Jestl'idéal I +J ={a+b:a€l, be J}.
2. Le produit de I et J est I'idéal IJ = {(ab:a €I, b€ J),.

On note que I 4+ J = (I, J) est le plus petit idéal contenant [ et .J.

Remarque 3.3. Pour deux ensembles X,Y C A on avait défini XY comme I’ensemble
{zy:x € X, y € Y}. Pour deux idéauz I,J <9 A on prend 1'idéal engendré.

Exemple 3.4. Si A=Z et n €N, alors (n) =nZ. Sim € Non a
(m,n) = (m) + (n) = mZ +nZ = (m An)Z,

(m) (n) = mZnZ = mnZ, et
(m)N(n) = (mVn)Z.

Définition 3.5. Soit A un anneau. Deux idéaux [ et J sont étrangers (ou premiers
entre eux) si I +J = A.

Proposition 3.6. Soit A un anneau unitaire, et I, J deux idéauz étrangers. Alors

IJ=1NJ.

Démonstration. Puisque I et J sont des idéaux,ona lJ < [lTetlJ < J,doulJ < INJ.
Réciproquement, puisque A=T+Jilyaieletje Javeci+j=1. SoitaelINJ.
Alors a = (i + jla=1ia+ja € IJ, don INJ < 1J et on a égalité. O

Théoréme 3.7 (Théoréme des restes chinois). Soit A un anneau unitaire, et Iy, ..., I,
des idéaur deux-a-deux étrangers. Alors le morphisme d’anneaux

o AJLN--N1L)— AL x - AJI,
c+(LN--NL)— (e+L,...,2+1,)

est un isomorphisme.



Démonstration. Par récurrence sur n, le cas n = 1 étant trivial. On suppose donc que
Ii,...,I,,J sont deux-a-deux étrangers, et que = + I +— (x + I1,...,z + I,) est un
isomorphisme, ou I = I; N--- N I,. Puisque J est étranger a chaque I, il y a i, € I}
et ji € J avec iy, + ji, = 1. Alors 1 = [[}_, (i + Jjx) € @142+ i, +J C I+ J. Donc I et
J sont étrangers. On considére donc

Al(Ln---NnI,NJ)=A/(INJ)— A/l xAJJ — A/} x --- x AT, x A/ J;

d’aprés 'hypothése de récurrence il suffit de montrer que p : A/(INJ) — A/I x A/J
est un isomorphisme. On est donc réduit au cas n = 2.
Il est clair que le morphisme est injectif. On considére (x + I,y + J) € A/I x A/J.
Soient i € I et j € J tels que ¢ + j = 1. On pose z = iy + jx. Alors
z+l=iy+je+l=iv+je+I=0G+jz+1=x+1, et
2+ J=wy+jr+J=iy+jy+J=>(+jy+J=y+J

Ceci montre la surjectivité. O

On note que si zg € A est une solution particuliére du systéme de congruences z € ag+1j

pour k = 1,... n, alors 'ensemble des solutions est précisément zy + (I;y N --- N 1,).
Exemple 3.8. Soient ny,...,n; € Z deux-a-deux premiers entre eux. Alors pour tout
ai,...,ap €EZilyax €Ztel que x =a; modn; pouri=1,..., k.

Démonstration. Sin; et n; sont premiers entre eux, d’apres la relation de Bézout il y
au,v € Z avec n;u+n;v = 1. Donc (n;) + (n;) = Z, et (n;) et (n;) sont étrangers. On
conclut avec le théoréme des restes chinois. O

4 Inversibilité, anneaux intégres

Définition 4.1. Soit A un anneau (commutatif). Un élément a € A* est un diviseur
de zéro s’ily a b € A* avec ab = 0. Dans ce cas, b est aussi un diviseur de zéro.

Un anneau sans diviseur de zéro est un anneau intégre. Attention : Parfois on demande
en plus que ’anneau soit unitaire !

Si A est unitaire, un élément a € A est inversible s’il y a b € A avec ab = 1.
L’ensemble des éléments inversibles est noté A*. C’est un groupe multiplicatif.

Un anneau commutatif non-trivial dont tous les éléments non-nuls sont inversibles est
un corps. Dans ce cas A* = A*.

Remarque 4.2. Ne pas confondre A* et A* = A\ {0}.

Lemme 4.3. 1. Un élément inversible n’est pas diviseur de zéro. En particulier un
corps est integre.

2. Si a n’est pas diviseur de zéro et ab = ac, alors b = c. En particulier un anneau
integre a simplification multiplicative.



3. Un anneau (commutatif) A est un corps ssi A* est un groupe.

Démonstration. 1. Si ab=0 et a est inversible, alors b = a ab = a~'0 = 0.
2. Si ab = ac alors a(b — ¢) = 0. Comme a n’est pas diviseur de zéro, b —c = 0 et
b=rc.
3. Evident. O

Lemme 4.4. Soit A un anneau intégre. Alors un ideal I est propre (c’est-a-dire [ # A)
sst I me contient pas d’élément inversible. En particulier un corps n’a pas d’idéal propre
non-trivial.

Démonstration. Si I = A alors 1 € I et I contient un élément inversible.
Réciproquement, si a € I est inversible, alors 1 =ala € T et A= A1 C I. n

Définition 4.5. Soit A un anneau, et I < A un idéal.
— I est premier si pour tous a,b € A,siabe [ alorsa € [ oubel.
— I est maxzimal si I est propre et il n’y a pas d’idéal J avec I < J < A.

Théoréme 4.6. Soit A un anneau, et I < A un idéal.
1. I est premier si et seulement si A/I est intégre.
2. Si A/I est un corps, alors I est mazimal.

3. Si A est unitaire et I mazimal, alors A/I est un corps.

Démonstration. 1. Soit I premier, et a,a’ € A avec (a+ I)(a'+ 1) =0+ 1. Alors
ad' +1 = (a+I)(a + 1) =1 et ad’ € I. Puisque I est premier, soit a € I et
a+1=0+1,soita €leta +1=0+1I. Donc A/I est integre.
Réciproquement, soit A/I intégre et a,a’ € A avec aa’ € I. Donc (a+1)(a'+1) =
0+ I; puisque A/I est intégre, soit a+1 =0+ 1T eta € I, soita’ +1=0+1
et ' € I. Ainsi [ est premier.

2. Soit A/I un corps. Alors A/I n’a pas d’idéal non-trivial propre. D’aprés la

proposition il n’y a pas d’idéal strictement entre I et A. Donc [ est maximal.
De plus A/I contient au moins deux éléments, et I est propre.

3. Soit A unitaire et I maximal. Soit a + 1 € (A/I)*, donc a ¢ I. Par maximalité,
I <(a,])=Aa+1=A llyadonca € Aetcel avec a'a+ c= 1. Donc
(@ +1I)(a+1)=1+1eta+ I estinversible dans A/I. O

Remarque 4.7 (Hors programme). En fait, pour le dernier point il suffit de supposer
que A/I est non-nul : Soit / maximal et A/I non-nul. Soit a+1 € (A/I)*. Alors a ¢ 1,
et I <(a,I)don A= (a,I)=(a)+ = Aa+ Za+ I par maximalité.

Si Aa < I, alors Za+1=A. Or, (za+I)(Za+1) = zz’aa+ 1 C Aa+ I = I pour tout
2,2 € Z, et A/I est un anneau nul, une contradiction. Donc Aa £ I et Aa + I = A.
Alorsilyacée I et e € A avec ea + ¢ = a. Ainsi

(e+DNa+I)=ea+I=a—c+I=a+1.
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De méme, pour tout o’ € Ailyac € [ etV € Aavecba+c =d',dou (V+1)(a+1) =
Va+I=d —c+1=d+1 Donc

e+ D@+ =(e+DHV+Da+) =0V +1)(a+1)=0d+1.

Ainsi A/T est unitaire, avec unité e+ 1. Alorsily a ¢’ € I et a” € A avec a’a+ " = e,
et (a"+1)(a+1)=d"a+1=e—"+1=e+1. Donca+ I est inversible dans A/I,
et A/l est un corps.

Remarque 4.8. Le groupe additif Z/pZ pour p premier considéré comme anneau
nul n’est pas un corps, mais I = (0) est le seul sous-groupe propre et donc un ideal
maximal, ce qui montre que la condition A/I non-nul est nécessaire.

Corollaire 4.9. Si A est unitaire, tout idéal maximal est premier.
Démonstration. Si I est maximal, A/I est un corps, donc intégre, et I est premier. []

Théoréme 4.10. Soit A un anneau unitaire et I < A un idéal propre. Alors I est
contenu dans un idéal maximal.

Avant la démonstration il nous faut introduire un peu de terminologie.

Définition 4.11. Soit X un ensemble. Une partie F C P(X) est inductive si toute
chaine (Y; : ¢ € I) dans F a un majorant dans F, c’est & dire un élément Y € F tel
que Y; CY pour tout 2 € I.

Fait 4.12 (Lemme de Zorn). Si F est inductive, alors F a des éléments mazimaux.

Ce fait est une des 1001 versions équivalentes de ’axiome du choix. Sauf dans des cas
particuliers (ot 'on n’en a pas vraiment besoin), il est donc impossible d’obtenir un
tel élément maximal explicitement.

Démonstration du Théoreme[{.10. Soit X = A et F ={J <A : I < J} 'ensemble des
idéaux propres de A contenant I.

Soit (J; : s € S§) une chaine non-vide dans F. Alors |J, g Js est un idéal dans A
contenant / majorant la chaine; puisque 1 ¢ J; pour tout s € Sonal ¢ J,.qJs et
Uses Js € F. Ainsi F est inductif et posséde un élément M maximal d’aprés le lemme
de Zorn. Alors M es un idéal maximal contenant I. O

[’exemple suivant montre que la condition que A soit unitaire est nécessaire.

Exemple 4.13. Soit A 'anneau des polynémes sur Z sans terme constant en variables
X, XV2 XVA XY augmenté de 0, avec bien sur (X1/2n+1)2 = XY?" pour
tout n € N. On note que pour tout P € A et n € N suffisamment grand il y a Q) € A
avec P = QX'/?".

Soit I,, = (X'/2"). Puisque X'/?" divise X'/?" pour k > n, on a (X/2") < (XV/?") et
les (I, : n € N) forment une chaine croissante. Or, A = |J, _n 1o Si Ip < <A avec [

neN -1
maximal, alors A/I est non-nul, puisque tout P € A\ I s’écrit comme P = QX'/?",
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Ainsi A/I est un corps d’aprés le théoréme . Puisque / < Aet J,cyIn = Ailya
n € N minimal tel que I,, £ I'; on note que n > 0. Soit P € I,\I. Alors P> € I,,_; < I.
Comme [ est maximal, il est premier, et P € I, une contradiction. Donc Iy n’est pas
contenu dans un idéal maximal.

Exemple 4.14. Soit n € N. Alors nZ est un idéal dans Z, et Z/nZ est un anneau
commutatif unitaire. Sin =0 on anZ = {0} et Z/nZ =7Z.Sin=1on anZ = Z et
Z/nZ = {0}, Panneau trivial. On supposera donc n > 2.

Lemme 4.15. Z/nZ est intégre si et seulement si Z/nZ est un corps si et seulement
st m est premier, pour n > 2.

Démonstration. Supposons d’abord n = kf composé, avec 1 < k, ¢ < n. Alors k+nZ #
0+ nZ, et L +nZ # 0+ nZ, mais

(k+nZ)(l+nZ)=kl+nZ =n+nZ =0+ nZ.

Donc Z/nZ n’est pas intégre.

Réciproquement, supposons n premier. Alors pour tout & € Z soit n divise k et k+nZ =
0+ nZ, soit k et n sont premiers entre eux. Dans ce cas, d’apreés le théoréme de Bézout
il y a des entiers relatifs s,t € Z tels que sk + tn = pged(k,n) = 1. Alors

(s +nZ)(k+nZ)=(sk+nZ)=1—kn+nZ=1+nZ.
Ainsi tout k + nZ non-nul est inversible, et Z/nZ est un corps. O
C’est un cas particulier d’un théoréme plus général.
Proposition 4.16. Un anneau intégre fini est un corps.

Démonstration. Soit a € A*. Alors 'application A, : x — ax est injective : Si ax = ax’,
alors d’aprés lemme [£.3]2 on a x = 2’. Or, A est fini, et toute application A — A
injective est surjective. Par surjectivité de A, il y a un élément e € A avec ae = a. Si
b € A est quelconque, alors ab = aeb, d’ou b = eb encore par lemme [£.3]2. Ainsi e est
une unité multiplicative.

Encore par surjectivité de A, il y a @’ € A avec aa’ = e. Donc a posséde un inverse
multiplicatif a=! = a’, et A est un corps. O]

En fait, le Théoréeme de Wedderburn asserte qu’on a pas besoin de supposer la com-
mutativité : Tout anneau fini sans diviseur de zéro est un corps.

On va maintenant généraliser la construction de Q & partir de Z a un anneau intégre
quelconque.

Théoréme 4.17 (Corps des fractions). Soit A un anneau intégre. Alors il y a un unique
(a isomorphisme pres) plus petit corps K contenant A. Tout élément de K s’écrit de
la forme ab™' avec a,b € A (inverse et produit calculé dans K ). C’est le corps des
fractions de A. Si f : A — L est un morphisme d’anneauz injectif avec L un corps, il
se prolonge en morphisme f: K — L.
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Démonstration. On imagine que A se plonge dans un corps K. Alors K contient tous
les éléments de la forme ab~! avec a € A et b € A*. On note que la collection de tels
quotients est clos par addition, soustraction, multiplication et réciproque, c¢’est donc
un sous-corps. Par minimalité K = {ab™' : a € A, b € A*}. On va coder I'élément ab~*
par la paire (a,b). Or, ce codage n’est pas unique; on appellera paires qui donnent le
méme quotient ~-équivalents : (a,b) ~ (a'l') < ab™' = d'V/™! & abl = d'b.

Pour ce faire, on n’a pas besoin de 'existence a priori de K — on le construira. Sur
A x A* on définit une relation d’équivalence par (a,b) ~ (da’,b') si et seulement si
all = a’b. On note que (a, b) ~ (ac, bc) pour ¢ # 0, et que ~ est réflexif et symétrique.
On vérifie la transitivité : si (a,b) ~ (a/,b") ~ (a”,V"), alors ab' = a'b et a'b" = a"¥V,
d'ott ab'b” = a’bb" = bl et ab” = a"b par simplification, ce qui donne (a,b) ~ (a”,V").
Ainsi ~ est une relation d’équivalence, dont on note la classe de (a, b) par [a, b].

On pose K = (A x A*)/~, et définit une addition & et une multiplication ® sur K par
les formules qu’on connait des quotients ab™! :

[a,b] @ [a’, ] = [ab' + a'b, D] et [a,b] @ [a’, V] = [ad’, bV'].

Il faut vérifier que la somme et le produit ne dépendent pas du choix des représentants.
Par symeétrie il suffit de vérifier sur la gauche. Soit donc [a, b] = [a”, "], et donc ab” =
CLHb. AlOI‘S {a//7b//] @ [a/7b/] — [a//b/ _|_ a//b//7 b//b/] et I:a//, b//} ® I:a//’ b/] _ [ // / b//b/] OI‘,

[ab’ + a'b, bb] = [ab'V" + a'bb", bb'b"] = [a"V'b + a'bb", bb'V"] = [a"V + a'V", V'] et

[aa//7 bb/] — [a/a/b//, bb/b//] — [a//alb, bb/b//] [ " ! b//b/]

Donc @ et ® sont bien définis.
On fixe ¢ € A* et pose 0 = [0,c] et 1 = [¢,c|. Ces classes ne dépendent pas du choix
de c. Pour [a,b] € K on pose —[a,b] = [—a,b], et si a # 0 on pose [a,b]™* = [b,a]. On
vérifie facilement que ceci ne dépend pas du choix des représentants. Alors

la,b] & [0, ¢] = [ac + 0b, bc] = [a, D] et [a,b] ® [c, c] = [ac, be] = [a, 1],
et donc
la,b] & (—|a,b]) = [a,b] & [—a,b] = [ab — ab,bb] = [0,bb] =0, et
[a,b] ® [a,b] " = [a,b] ® [b,a] = [ab, ab] = 1.

Il est évident de la définition que @ et ® sont commutatifs. On vérifie I’associativité :

([a,b] & [a',V]) ® [a",b"] = [ab + a'b, bb'] & [a", V"] = [ab'V" + a'bb" + a" DV, bB'V"]
= [a,b] ® [a'V" + a"V',b'V"] = [a,b] ® ([d', V] & [a”",b"]), et
[aa’, bb']| @ [[a”,0"] = [ad'a”, bV'D"] = [a,b] @ [a'a”, V'b"]
= [a,b] ® ([, V] ® [a",V"])

([a,0] ® [a,b]) @ [a", V"]

et la distributivité :
([a,b] + [a',V]) @ [a”", "] = [ab' + a'b, bV] @ [a”, V"] = [aad"b' + a'a"b, bb'V"]
= [ad"Vb" + d'a" b, BHB"E"] = [aa”, bb") @ [a'a”, BV
=[a,b] @ [a", V"] & [d, V] @ [a",b"].
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Ainsi (K,0,1,®,®) est bien un corps.

On considére f: A — K défini par a — [ac, ] (on note que f(a) ne dépend pas de c).
Si f(a) = f(a') alors [ac, ] = [d'c, ], soit ac® = d'c® et a = d’; ainsi f est injectif. On
a f(0)=1[0c,c] =0, f(1) =[lc,c] =1 (si A est unitaire), et f préserve I’addition et la
multiplication :

fla+b) =[(a+Db)c,c] = lacc+ bee, cc] = [ac, ] + [be, c] = f(a) B f(b), et
f(ab) = [abe, c] = [acbe, cc] = [ac, ¢] & [be, c] = f(a) @ f(b).

Ainsi f plonge A dans K, et tout élément [a,b] € K est de la forme
F(@) ® £()™ = [ac, ] @ [be, o ™ = [ac, e, be] = [ac®, be*) = [a, ).

On identifie donc A avec son image dans K.

Si L est un autre corps et g : A — L est un plongement, on prolonge g sur K par
g : la,b] = g(a)g(b)~!; on vérifie que g ne dépend pas des choix des représentants,
que g(0) = 0 et que g prolonge g et préserve 1'addition et la multiplication. Ainsi g est
un homomorphisme de K dans L. Or, ker g est un idéal de K qui ne peut pas étre K
entier puisque ker gN A = {0}. Mais un idéal d'un corps est soit (0) soit le corps entier.
Ainsi ker g = (0) et g est injectif, ce qui montre que K est minimal et unique. O

5 Divisibilité, anneaux principaux

Définition 5.1. Soit A un anneau intégre unitaire.
— Soient a,b € A. On dit que a divise b, noté a | b, s’il y a ¢ € A avec ac = b. On
note que a | b ssi b € (a)
— Un élément a € A* non-inversible est irréductible si pour tous b, c € A, si a = bc
alors b ou c est inversible.
— Un élément p € A* non-inversible est premier si pour tous b,c € A, si p | be
alors p | boup | ec.

Ceci généralise les notions bien connues de Z et R[X].

Exemple 5.2. Soit A = Z[iv/5] = {a +ibv/5 : a,b € Z}, un sous-anneau de C. On a
6=2x3=(1+14V5)(1—iV5).

Pour tout @ € A on a |a]*> € N. Si a € A est inversible, alors |a]? [a7!? = |aa™!]? =

112 =1, d’ott |a|> = 1 et |a] = 1. Si z = a +iv/5b € Z[i/5] avec |z|> < 5, ona b =0
et 2 € Z. En particulier les seuls éléments z avec |z|*> = 1 sont +1, et il n’y a pas
d’élément z avec |2]? € {2, 3}.

On va montrer que 14i+/5, 2 et 3 sont irréductibles. Si zz' = 14iv/5, alors |2|?|2/|? = 6;
si 22/ = 2, alors [2]?]2/|> = 4, et si 22’ = 3, alors |z[%|2|* = 9. Dans tous les cas, |2]? < 3
ou |2|> < 3, donc vaut 1, et 1 £4v/5, 2 et 3 sont tous irréductibles. Il n'y a donc pas
factorisation unique en irréductibles dans A.
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On va montrer que ni 144+/5 ni 2 ni 3 sont premiers. On a 1+iv/5 | 2-3, mais 1:|:z'\/3+ 2
et 144513 puisque |1 +iv5]2 =61 |22 =4 et |1 £iv5]2 =61 |32 = 9. Donc
14 4v/5 n'est pas premier. De méme, 2 | (14 iv/5)(1 —iv/5) et 3| (1 +4v/5)(1 —iV/5),
mais ni 2 ni 3 divisent 1 & 4v/5 puisque ni |2|> = 4 ni |3]|? = 9 divisent |1 +iv/5]> = 6.
Ainsi ni 2 ni 3 sont premiers.

Proposition 5.3. Soit A un anneau intégre unitaire. Alors tout élément premier est
irréductible.

Démonstration. Soit a € A premier, et b,c € A avec a = bc. Alors a # 0 implique
b # 0 # c. Puisque A est unitaire, a | bc; comme a est premier, on a a | b ou a | ¢. Par
symétrie on peut supposer a | b, etilyad € A avec ad = b. Donc bed = ad = bet ed = 1
d’apreés le lemme Ainsi ¢ est inversible. Ceci montre que a est irréductible. O

Remarque 5.4. La réciproque est fausse, comme on a vu dans I'exemple [5.2]

Définition 5.5. Soit A un anneau intégre unitaire. Deux éléments a,b € A sont asso-
ciés s’il y a ¢ € A inversible avec a = ¢b. On le notera a ~ b.

Remarque 5.6. 'association est une relation d’équivalence : On a a = a - 1, donc ~
est réflexif. Sia ~ bil y a c € AX avec a = be, et donc ¢t € AX avec b = ac™ !,
c’est-a-dire b ~ a et ~ est symétrique. Enfin, sia ~b~c,ilyad,d € A* avec a = bd

et b=cd, doudd € A* et a = cdd', ¢’est-a-dire a ~ ¢ et ~ est transitif.

Lemme 5.7. Soit A un anneau intégre unitaire, et a,b € A. Deux éléments a,b € A
sont associés si et seulement si (a) = (b).

Démonstration. S'il y a ¢ € A inversible avec ac = b, alors bc™* = a. Donc b € (a) et
a € (b), dou (a) = (b).

Réciproquement, supposons (a) = (b). Puisque b € (a) = aA, il y a c € A avec ac = b.
De méme, il y a d € A avec bd = a. Donc a = bd = acd. Alors soit a = 0, soit a # 0 et
cd = 1. Dans le premier cas (b) = (0) implique b = 0 = a - 1; dans le deuxiéme cas ¢
est inversible avec ac = b. O

Proposition 5.8. Soit A un anneau intégre unitaire, et a € A* non-inversible.
1. L’élément a est premier si et seulement si l’idéal (a) est premier.
2. L’élément a est irréductible si et seulement s’il n’eziste pas de b € A avec (a) <

(b) < A.

Démonstration. 1. Soit (a) premier, et b,c € A avec a | bc. Donc be € (a) ; puisque
(a) est premier, soit b € (a) et a | b, soit ¢ € (a) et a | c. Ainsi a est premier.
Réciproquement, soit a premier, et soient b, c € A avec bc € (a). Puisque (a) est
premier, soit b € (a) et a | b, soit ¢ € (a) et a | c. Ainsi a est premier.
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2. Soit @ irréductible, et b € A avec (a) < (b)) < A. Donca € (b) etilyace A
avec a = be. Par irréducibilité de a, soit b est inversible et (b) = A, soit ¢ est
inversible et (a) = (b).

Réciproquement, supposons qu’il n’existe aucun b € A avec (a) < (b) < A.
Soient ¢,d € A avec a = cd; notons que a # 0 implique ¢ # 0 # d. Alors
(a) < (¢) < A. Si (¢) = A alors ¢ est inversible; si (¢) = (a) alors a et ¢ sont
associés. Il y a donc d’ € Ax avec a = cd’, ce qui donne ¢(d —d)=a—a =0
et d = d' est inversible. Ainsi a est irréductible. O

Définition 5.9. Un idéal I dans un anneau A est principals’il y aa € A avec I = (a).
Un anneau intégre unitaire A est principal si tout idéal dans A est principal.

Exemple 5.10. On va voir plus bas des exemples d’anneaux principaux. On note que
Z|X] n’est pas principal : I'idéal (2, X') n’est pas principal (exercice).
Proposition 5.11. Soit A un anneau principal, et a € A*\ A*. Sont équivalents :

1. a est premier.

2. a est irréductible.

3. (a) est premier.

4. (a) est maximal.

Démonstration. On sait déja que 4.=3.=1.=2 méme sans hypothése de principalité.
Enfin, 2.=4. découle de la proposition [5.82, sachant que tout idéal est principal. [J

Définition 5.12. Un anneau intégre unitaire est euclidien s’il y a une fonction N :
A\ {0} — N telle que

1. On a N(ab) > N(a) pour tout a,b € A\ {0}.

2. Pour tout a,b € Aavecb#0ily aq,r € A avec a = bq + r et soit r = 0, soit
N(r) < N(b).
La fonction N est la norme euclidienne; g et r sont le quotient et le reste de la division
euclidienne de a par b. En général ils ne sont pas uniques.

Exemple 5.13. — Z avec la norme N(z) = |z|.

— K[X] avec la norme N(P) = deg(P).

— Les entiers de Gauss Z[i] avec la norme N(z + iy) = 2% + y*.
Pour vérifier la condition 2., on considére a,b € Z[i] avec b # 0. Les points de
Z[i] forment un réseau rectangulaire de distance horizontale et verticale 1. Pour
tout point z € C on trouve donc un point de Z[i] de distance au plus v/2/2 de 2
(avec égalité si z est le milieu d’un carré unitaire dont les coins sont dans Z[i]).
En particulier il y a ¢ € Z[i] avec |§ — q| < \/75 On pose r = a — bq. Alors soit
r = 0, soit

1
N(r) = |r[* = la = bg| < 5 [b" < [o" = N (b).
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Lemme 5.14. Soit A un anneau euclidien. Alors N(1) = minim(N) est la valeur
minimale de la norme. Un élément a € A est inversible si et seulement si N(a) = N(1).

Démonstration. Pour b € A* on a N(b) = N(1-b) > N(1).

Si a est inversible, disons ¢ € A satisfait ac = 1, alors N(1) = N(ac) > N(a) > N(1)
et on a égalité. Réciproquement, si N(a) = N(1), alors a # 0 et il y a ¢,r € A avec
1 =aq+r et soit N(r) < N(1) our = 0. Le premier cas est impossible. Donc r = 0 et
aq = 1, ce qui veut dire que a est inversible. O

Théoréme 5.15. Un anneau euclidien est principal.

Démonstration. Soit (0) # I < A. On choisit 0 # a € I avec N(a) minimal possible.
Alors pour tout b € I il y a gq,r € A avec b = aq + r, et soit r = 0, soit N(r) < N(a).
Or,r=b—aq € I, dou N(r) > N(a) par minimalité. Donc r = 0 et b = aq € (a).
Ainsi I = (a) est principal. O

1+v19
2

Exemple 5.16. L’anneau Z| | est principal, mais pas euclidien.

Si on peut deviner la norme, il est généralement facile de montrer qu’'un anneau est
euclidien. Sinon, il est souvent plus facile de montrer qu'un anneau est principal.

Définition 5.17. Soit A un anneau principal, et ay,...,a, € A*.

— Un élément § € A tel que (§) = (aq,...,a,) est un pged de aq,...,a,. On le
note 6 = pged(ay,...,a,) = ag A -+ A a,. D’aprés le lemme un pged est
déterminé a association preés.

— Un élément A € A tel que (A) = (a1)N---N(a,) est un ppem de 1, ..., a,. 11
est noté § = ppem(ay,...,a,) =a; V-V a,, et déterminé a association pres.

Remarque 5.18. Dans Z et K[X] on peut éliminer 'ambiguité dans le définition du
pged et du ppem en demandant qu'il soit positif (dans Z) ou unitaire (dans K[X]). En
général il n’y a pas de choix canonique.

Théoréme 5.19 (Relation de Bézout). Soit § = a;A---Aa,. Alorsilyacy,...,cp, € A
avec § = cra1 + - + Cply,.

Démonstration. On a § € (ay,...,a,) = a1 A+ -+ a,A. O
Remarque 5.20. Les éléments cq, ..., ¢, sont des coefficients de Bézout.

Définition 5.21. Les éléments aq, ..., a, sont premiers entre eur si a; A--- A a, = 1.
Corollaire 5.22 (Théoréme de Bézout). Soit A principal. Les éléments ay, . . . , a, sont
premiers entre eux si et seulement s’il y a ¢q,...,¢, € A avec ajc; + -+ + apc, = 1.

Démonstration. L’existence est la relation de Bézout. Réciproquement, a; A -+ A ay,
doit diviser ajc; + - -+ + a,c, et est donc associé a 1. O

Théoréme 5.23 (Lemme de Gauss). Soient a,b,c non-nuls. Si a | bc et a Nb = 1,
alors a | c.
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Démonstration. Puisque aAb=1ilyau,v € A avec au+bv = 1. Alors ¢ = acu+ bcv.
Or, a | acu et a | bev, donc a | acu + bev = c. O

Théoréme 5.24. Soitd =a1 AN---Na, et A=aV---Va,.

1. Pour un élément b € A on a b | si et seulement sib | a; pouri=1,... n.
2. Pour un élément b€ A on a A | b si et seulement sia; | b pouri=1,....,n
Démonstration. 1. D’aprés Bézout ily a ¢q,...,¢c, € A avec § = cra1 + - - + ¢cpa,.
Donc si b | a; pour i =1,...,nalors b | cia; + -+ - + cpa, = 0.

Réciproquement, a; € (§) pour i = 1,...,n, donc il y a d; € A avec a; = dd;.
Donc si b | 0, alors b | 0d; = a;.

2. 0na A€ (aq)pouri=1,...,n,etilyac € Aavec A = a;c;. Donc si A | b,

alors a; | b pour i =1,...,n.
Réciproquement, si a; | b alors b € (a;) pour i = 1,...,n, et donc b € (a;) N
N (a,) = (A). Ainsi A | b. O

Remarque 5.25. Puisque a | b si et seulement ca | ¢b, on a ca; A -+ A ca, = ¢ (a3 A
o Aay)etcar Ve Vea, =clag Ve Vay).

Théoréme 5.26. Soit A un anneau principal, a,b € A*, § = ANb et A=aVb. Alors
(0) (A) = (ab), c’est-a-dire A ~ ab.

Remarque 5.27. Notons que (0) (A) = AJAA = AASA = ASA = (6A) : Dans un

anneau unitaire le produit de deux idéaux principaux est un idéal principal.

Démonstration. Soient a’,b' € A avec a = d’d et b = V4. Alors a’ AV = 1, et il suffit
de montrer que (a’ V') = (a'b’), puisque cela implique

(6A) =6(aVvb)=6(a'6 V) =6*(d V) =6*(a'b) = (a'6b/5) = (ab).

Puisque ¢/ | Ailyac € Aavecdc=A.Or, 0/ | A=dcetdV Nd =1doud |c
d’aprés Gauss et il y a ¢ € A avec b'd = ¢. Alors A = d'c = a'b'd et (A) < (a'V).
Réciproquement, a’'t’ € (a’) N (V') = (A), d’ou (a’d’) < (A). Ainsi on a égalité. O

Dans un anneau euclidien, on calcule le pged a 'aide de 1’algorithme d’Fuclide. Soient
ag,a; € A*. Alors on trouve q1,as € A avec ag = ai1q; + as et as = 0 ou N(az) < N(b).
Puisque (ag,a1) = (a1, az2),on aagAa; = a;Aag. Siag =0onaay | aget (ag,ar) = (ay),
d’ott ag A a3 = ay. Si ag # 0 on itére avec ay,ay. Puisque la suite d’entiers (N (a;))iso
décroit strictement, I'algorithme s’arréte. Pour calculer des coefficents de Bézout, on
calcule u,,v, € A tel que a,, = u,ag + v,a1. On pose ug = v = 1 et u; = vg = 0. Si
Ap_1 = Up_109 + Vp—1a1 €t a,, = u,ag + v,a;, on obtient

Apt1 = Ap—1 — ApQn
= Up_100 + Vp—101 — (Uno + UVpa1)qn

- (un—l - qnun)a0 + (Un—l - qnvn)al-

Ainsi U, = Up_1 — @uly €6 Vi1 = Uy 1 — @uU,. On itére.
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Exemple 5.28. Calculer 597 A 322, ainsi que des coefficients de Bézout.

N|ap_1 = ap X ¢n + Ap+1 U, Un,
0 597 322 1 0
1] 597 = 322 x 1 + 275 0 1
21 322 = 275 x 1 + 47 1 —1
3| 275 = 47 x 5 + 40| -1 2
4 47 = 40 x 1 + 7 6| —11
5! 40 = 7T X 5 + ) -7 13
6 7 5 x 1 + 2 41| —76
7 5 2 X 2 + 11 —48 89
8 2 = 1 x 2 + 0| 137 | —254

Ainsi 597 A 322 =1 = 597 x 137 — 322 x 254.

Définition 5.29. Un anneau est noetherien s’il n’y a pas de chaine Iy < [} < I, < ---
infinie strictement croissante d’idéaux.

Proposition 5.30. Un anneau est noethérien si et seulement si tout idéal a gauche ou
a droite est finiment engendré (c’est-a-dire engendré par un nombre fini d’éléments).

Démonstration. Supposons que A est noethérien, mais que I < A est un idéal qui
n’est pas finiment engendré. Supposons qu’on a trouvé ay,...,a, € I tel que (a1) <
(a1,a9) < -+ < (ag,...,a,) (pour n = 0 'hypothése est vide). Puisque I n’est pas
finiment engendré, on a (ay,...,a,) < [ etily a a,p1 € I\ (a1,...,a,). Alors
(a1,...,an) < (a1,...,Gn,an41) < I. Ainsi on trouve une chaine infinie strictement
croissante d’idéaux, une contradiction. Donc tout idéal & gauche de A est finiment
engendré.

Réciproquement, supposons que tout idéal est finiment engendré Soit Iy < [; < --- <1 A

une chaine infinie strictement croissante d’idéaux. Alors I = | J, o I, est un idéal dans

A, donc engendré par un nombre fini d’éléments ay,...,a; € I. Or, I = {J, oy Ini il y
a donc ng € N tel que ay,...,a; € I,,,. Alors I = (ay,...,a;) < Iy < Ingy1 < I, une
contradiction. Ainsi A est noethérien. n
Corollaire 5.31. Un anneau principal est noethérien. O]
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