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Chapitre 1

Anneaux

1 Anneaux, sous-anneaux et idéaux
Définition 1.1. Un anneau est une structure de domaine un ensemble A avec une
constante 0 et deux lois binaires + et × satisfaisant

— (A, 0,+) est un groupe abélien.
— (A,×) est un semi-groupe, c’est-à-dire × est associatif : (a× b)× c = a× (b× c)

pour tout a, b, c ∈ A.
— On a les lois distributives : Pour tout a, b, c ∈ A on a

a× (b+ c) = a× b+ a× c et (b+ c)× a = b× a+ c× a.

Si A possède un élément 1 tel que a×1 = 1×a = a pour tout a ∈ A, alors (A, 0, 1,+,×)
est un anneau unitaire, ou unifère.
Si × est commutatif, alors A est un anneau commutatif.

Pour une notation plus compacte, on supprime généralement la multiplication ×, et la
multiplication est prioritaire sur l’addition. On note A∗ = A \ {0}.

Remarque 1.2. Dans un anneau unitaire l’addition est automatiquement commuta-
tive : On a

a+b+a+b = (a+b)×1+(a+b)×1 = (a+b)×(1+1) = a×(1+1)+b×(1+1) = a+a+b+b,

ce qui implique b+ a = a+ b.

Remarque 1.3. Dans un anneau on a 0× a = a× 0 = 0 pour tout a ∈ A. En fait,

a× 0 = a× (0 + 0) = a× 0 + a× 0,

d’où a× 0 = 0. L’égalité 0× a = 0 se montre de manière analogue.

Exemple 1.4. — Les corps rationnels Q, réels R et complexes C.
— Les anneaux de polynômes sur ces corps Q[X], R[X] et C[X].
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— Les entiers relatifs Z, ou l’anneau des polynômes avec coefficients entiers Z[X].
— Les entiers relatifs multiples de k, pour un entier k > 1, noté kZ.
— L’anneau des matrices carrées sur un corpsMn(Q),Mn(R) etMn(C).
— L’anneau des matrices carrées sur les entiers relatifsMn(Z).
— L’anneau des matrices carrées sur kZ, soitMn(kZ), pour des entiers n, k > 1.

Ils sont tous unitaires sauf les kZ et Mn(kZ) (pour k > 1), et commutatifs sauf les
Mn (pour n > 1).

Définition 1.5. Un anneau est nul si ab = 0 pour tout a, b ∈ A.

Ainsi tout groupe abélien peut être considéré comme groupe additif d’un anneau nul.

Exemple 1.6. Si A est un anneau, l’ensemble A[X] des polynômes avec coefficients
dans A est encore un anneau ; si A est commutatif et/ou unitaire, A[X] l’est aussi.

Démonstration. Si P =
∑

i aiX
i et Q =

∑
i biX

i (ou presque tous les coefficients sont
0) sont deux polynômes dans A[X], on pose P +Q =

∑
i(ai + bi)X

i et PQ =
∑

i ciX
i,

avec ci =
∑i

k=0 akbi−k (et on note que presque tous les ci sont 0). On vérifié comme
pour les polynômes avec coefficients réels que c’est un anneau dont le zéro est celui de
A. Si A est unitaire, alors l’unité 1 de A est aussi unité pour A[X] ; si A est commutatif,
on voit facilement que A[X] est commutatif.

Convention. A partir de maintenant, tous les anneaux seront commutatifs (sauf men-
tion au contraire).

Définition 1.7. Une partie non-vide B ⊆ A est un sous-anneau si B est un sous-
groupe additif, et clos par multiplication. C’est-à-dire, si a, b ∈ B alors a − b ∈ B et
ab ∈ B. On le note B ≤ A.
Un sous-anneau B ≤ A est un idéal si ab ∈ B pour tout a ∈ A et b ∈ B. On le note
I E A.

Remarque 1.8. Si A n’est pas commutatif, pour qu’un sous-anneau B soit un idéal,
il faut aussi demander ba ∈ B pour tout a ∈ A et b ∈ B.

Exemple 1.9. L’anneau des entiers de Gauss est l’anneau Z[i] = {a + ib ∈ C : a, b ∈
Z}. C’est un sous-anneau de C.

Exemple 1.10. Si A est un anneau (commutatif), l’ensemble X ·A[X] des polynômes
non-constants ou 0 forme un idéal.

Définition 1.11. Soient A et B deux anneaux. L’anneau produit A × B est l’anneau
dont le groupe additif est la somme directe A ⊕ B des groupes additifs de A et de
B, c’est-à-dire avec zéro (0, 0) et addition (a, b) + (a′, b′) = (a + a′, b + b′), et dont la
multiplication est donnée par (a, b) (a′, b′) = (aa′, bb′).
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Définition 1.12. Soit A un anneau et X ⊆ A une partie. L’anneau engendré par X
est le plus petit sous-anneaux de A qui contient X ; il est noté 〈X〉. L’idéal engendré
par X est le plus petit idéal de A qui contient X ; il est noté (X).

Si X = {x0, . . . , xn} est fini, on note 〈X〉 = 〈x0, . . . , xn〉 et (X) = (x0, . . . , xn).
Soient X et Y deux parties de A.

— On pose XY = {xy : x ∈ X, y ∈ Y }, l’ensemble des produit d’un élément de X
avec un élément d’Y .

— On définit récursivement X1 = X, et Xn+1 = XXn.
— 〈X〉+ est le sous-groupe additif engendré par X.

Proposition 1.13. On a 〈X〉 = 〈Xn : n ∈ N∗〉+ et (X) = 〈X,AX〉+ ; si a ∈ A alors
(a) = Aa+ Za. Si A est unitaire, (X) = 〈AX〉+, et pour a ∈ A on a (a) = Aa.

Démonstration. Ce sont des sous-groupes additifs par définition, et par distributivité
pour Aa + Za et Aa. Par associativité et distributivité, 〈Xn : n ∈ N∗〉+ est clos par
produit, et 〈X,AX〉+ ainsi que Aa+ Za sont clos par multiplication par des éléments
de A (et donc clos par produit). Ainsi 〈Xn : n ∈ N∗〉+ est un sous-anneau et 〈X,AX〉+
et Aa + Za sont des un idéaux. Les deux contiennent X, et tous leurs éléments sont
dans tous les sous-anneaux/idéaux qui contiennent X ; si A est unitaire, X ⊆ AX et
Za ≤ Aa.

Exemple 1.14. On va étudier les petits anneau de cardinalité n.
1. Le seul anneau de cardinal 1 est l’anneau trivial {0}.
2. Soit A = {0, a} un anneau de cardinal 2. Alors le groupe additif est isomorphe

à Z/2Z, donc a+ a = 0. Pour le groupe multiplicatif, il y a deux options : Soit
a2 = 0 et A est nul, soit a2 = 1 et A ∼= Z/2Z en tant qu’anneau.

3. Soit A un anneau de cardinal 3. Son groupe additif est isomorphe à Z/3Z, le
seul groupe de cardinal 3. Si A est unitaire, on a A = {0, 1, a} avec 1 + 1 = a,
d’où a2 = (1 + 1) (1 + 1) = 1 + 1 + 1 + 1 = 1.

Exercice 1.15. Classifier tous les anneaux de cardinal 3.

Exercice 1.16. Classifier tous les anneaux commutatifs unitaires de cardinal 4.

2 Morphismes et anneau quotient
Définition 2.1. Soit A un anneau et I E A un idéal. Le quotient A/I est l’anneau dont
le groupe additif est le groupe quotient A/I, avec multiplication (a+I) (b+I) = (ab+I).

Démonstration. Il faut montrer que la multiplication est bien définie. On considère
donc a, a′, b, b′ ∈ A avec a+ I = a′ + I et b+ I = b′ + I. Alors a− a′ ∈ I et b− b′ ∈ I,
ce qui donne

ab− a′b′ = a(b− b′) + ab′ − a′b′ = a(b− b′) + (a− a′)b′ ∈ aI + Ib′ ⊆ I.
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Ainsi ab+ I = a′b′ + I et la multiplication ne dépend pas du choix de représentant.
L’associativité en découle, puisque(
(a+I)(b+I)

)
(c+I) = (ab+I)(c+I) = abc+I = (a+I)(bc+I) = (a+I)

(
(b+I)(c+I)

)
.

Remarque 2.2. Si A est commutatif et/ou unitaire, A/I aussi. Si 1 ∈ A est l’unité,
1 + I est l’unité de A/I.

Définition 2.3. Soient A et B deux anneaux. Un homomorphisme de groupes additifs
f : A→ B est un morphisme d’anneau si f(aa′) = f(a) f(a′) pour tout a, a′ ∈ A.
Si f est bijectif, alors f est un isomorphisme (d’anneaux). Si de plus A = B, alors f
est un automorphisme (d’anneaux).
Si A et B sont unitaires, f est un homomorphisme (d’anneaux) unitaire(s)s si en plus
f(1A) = 1B.

Remarque 2.4. Il est clair que l’image imf est un sous-anneau de B.

Exemple 2.5. Les applications suivantes sont des morphismes d’anneau.
1. Si A est commutatif et a ∈ A, l’application

fa : A[X]→ A, P 7→ P (a).

2. Si A et B sont deux anneaux, l’application

π : A×B → A, (a, b) 7→ a.

3. Si A et B sont deux anneaux, l’application

ι : A→ A×B, a 7→ (a, 0).

Cependant, si A et B sont unitaires, A × B l’est aussi avec unité (1, 1), mais
f(1) = (1, 0) 6= (1, 1). Ainsi f n’est pas un homomorphisme unitaire.

L’application R× R→ C donné par (x, y) 7→ x+ iy ne préserve pas la multiplication.
Ce n’est donc pas un morphisme d’anneau.

Définition 2.6. Soit f : A→ B un morphisme d’anneau. Son noyau est ker f = {a ∈
A : f(a) = 0}, c’est-à-dire son noyau en tant que homomorphisme additif.

Proposition 2.7. Soit f : A → B un morphisme d’anneau. Alors ker f est un idéal
dans A, et imf ∼= A/ ker f .

Démonstration. C’est un sous-groupe additif. Si a ∈ ker f ou a′ ∈ ker f , alors f(a) = 0
ou f(b) = 0, d’où f(ab) = f(a)f(b) = 0. Ainsi ker f est clos par multiplication à gauche
et à droit par des éléments de A, et en particulier clos par multiplication. Ainsi ker f
est un idéal.
L’application a + ker f 7→ f(a) est une bijection de groupes additifs entre A/ ker f et
imf . Elle préserve la multiplication. C’est donc un isomorphisme d’anneaux.
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Remarque 2.8. Si A est unitaire, alors imf est un sous-anneau unitaire de B, mais
son unité f(1A) n’est pas forcément unité de B.

Théorème 2.9. Soient A et B deux anneaux, f : A → B un morphisme d’anneaux,
et I E A un idéal de A. Soit π : A → A/I la projection canonique. Alors il y a un
morphisme g : A/I → B tel que f = g ◦ π si et seulement si I ≤ ker f .

Démonstration. S’il y a g : A/I → B avec f = g ◦ π et a ∈ I, alors π(a) = 0I , et
g(0I) = 0B. Donc f(a) = (g ◦ π)(a) = 0B et a ∈ ker f . Ainsi I ≤ ker f .
Réciproquement, soit I ≤ ker f . Pour a + I ∈ A/I on pose g(a + I) = f(a) ∈ B. On
vérifie que g est bien défini : Si a′ ∈ A avec a+ I = a′ + I, alors a− a′ ∈ I ≤ ker f , et

f(a) = f(a− a′ + a′) = f(a− a′) + f(a′) = 0 + f(a′) = f(a′).

Donc g : A/I → B est bien défini, et pour tout a ∈ A on a bien (g ◦π)(a) = g(a+ I) =
f(a), d’où f = g ◦ π.

Proposition 2.10. Soit I E A. Alors π : a 7→ a + I induit une bijection entre les
idéaux de A qui contiennent I et les idéaux de A/I.

Démonstration. Soit I ≤ J E A. Alors f [J ] = J/I est un sous-groupe additif de A qui
est clos par multiplication par des éléments de A/I, puisque (a+ I)J = aJ = J . Donc
π[J ] est un idéal de A/I.
Réciproquement, si J̄ est un idéal de A/I, soit J = π−1[J̄ ] son image réciproque. C’est
un groupe additif, et pour tout a ∈ A on a π[aJ ] = π(a)π[J ] = π(a)J̄ = J̄ , d’où
aJ ≤ J . Ainsi J est un idéal de A.
Enfin, π induit une bijection entre les sous-groupes additifs de A qui contiennent I et
les sous-groupes additifs de A/I, qui se restreint en une bijection entre ceux qui sont
des idéaux.

3 Ideaux

Soit X un ensemble. Une famille (Yi : i ∈ I) de parties de X est une chaîne si pour
tout i, j ∈ I on a Yi ⊆ Yj ou Yj ⊆ Yi.

Proposition 3.1. Soit A un anneau, et {Bi : i ∈ I} une famille non-vide de sous-
anneaux de A.

1. L’intersection
⋂

i∈I Bi est un sous-anneau de A.

2. Si tous les Bi sont des idéaux, alors
⋂

i∈I Bi est un idéal.

3. Si les {Bi : i ∈ I} forment une chaîne, la réunion
⋃

i∈I Bi est un sous-anneau
de A.

4. Si les {Bi : i ∈ I} forment une chaîne d’idéaux, la réunion
⋃

i∈I Bi est un idéal.
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Démonstration. 1. On a 0 ∈ Bi pour tout i ∈ I, d’où 0 ∈
⋂

i∈I Bi. Si b, b′ ∈
⋂

i∈I Bi,
alors b, b′ ∈ Bi pour tout i ∈ I ; puisque les Bi sont des sous-anneaux, on a
b − b′, bb′ ∈ Bi pour tout i ∈ I, et b − b′, bb′ ∈

⋂
i∈I Bi. Ainsi

⋂
i∈I Bi est un

sous-anneau.
2. Si les Bi sont des idéaux, alors pour tout b ∈

⋂
i∈I Bi et a ∈ A on a b ∈ Bi pour

tout i ∈ I, d’où ab ∈ Bi, et ab ∈
⋂

i∈I Bi. Ainsi
⋂

i∈I Bi est un idéal.
3. Puisque la chaîne n’est pas vide,

⋃
i∈I Bi 6= ∅. Si b, b′ ∈

⋃
i∈I Bi, alors il y a

i, j ∈ I avec b ∈ Bi et b′ ∈ Bj. On peut supposer que Bi ⊆ Bj. Alors b, b′ ∈ Bj,
et donc b− b′, bb′ ∈ Bj ⊆

⋃
i∈I Bi. Ainsi

⋃
i∈I Bi est un sous-anneau.

4. Si de plus tous les Bi sont des idéaux, alors pour tout b ∈
⋃

i∈I Bi et a ∈ A il y
a i ∈ I avec b ∈ Bi, d’où ab ∈ Bi et ab ∈

⋃
i∈I Bi. Ainsi

⋃
i∈I Bi est un idéal.

En particulier l’intersection de deux idéaux est un idéal.

Définition 3.2. Soit A un anneau, et I et J deux idéaux.
1. La somme de I et J est l’idéal I + J = {a+ b : a ∈ I, b ∈ J}.
2. Le produit de I et J est l’idéal IJ = 〈ab : a ∈ I, b ∈ J〉+.

On note que I + J = (I, J) est le plus petit idéal contenant I et J .

Remarque 3.3. Pour deux ensembles X, Y ⊆ A on avait défini XY comme l’ensemble
{xy : x ∈ X, y ∈ Y }. Pour deux idéaux I, J E A on prend l’idéal engendré.

Exemple 3.4. Si A = Z et n ∈ N, alors (n) = nZ. Si m ∈ N on a

(m,n) = (m) + (n) = mZ + nZ = (m ∧ n)Z,
(m) (n) = mZnZ = mnZ, et

(m) ∩ (n) = (m ∨ n)Z.

Définition 3.5. Soit A un anneau. Deux idéaux I et J sont étrangers (ou premiers
entre eux) si I + J = A.

Proposition 3.6. Soit A un anneau unitaire, et I, J deux idéaux étrangers. Alors
IJ = I ∩ J .

Démonstration. Puisque I et J sont des idéaux, on a IJ ≤ I et IJ ≤ J , d’où IJ ≤ I∩J .
Réciproquement, puisque A = I + J il y a i ∈ I et j ∈ J avec i+ j = 1. Soit a ∈ I ∩ J .
Alors a = (i+ j)a = ia+ ja ∈ IJ , d’où I ∩ J ≤ IJ et on a égalité.

Théorème 3.7 (Théorème des restes chinois). Soit A un anneau unitaire, et I1, . . . , In
des idéaux deux-à-deux étrangers. Alors le morphisme d’anneaux

ϕ : A/(I1 ∩ · · · ∩ In)→ A/I1 × · · ·A/In
x+ (I1 ∩ · · · ∩ In) 7→ (x+ I1, . . . , x+ In)

est un isomorphisme.
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Démonstration. Par récurrence sur n, le cas n = 1 étant trivial. On suppose donc que
I1, . . . , In, J sont deux-à-deux étrangers, et que x + I 7→ (x + I1, . . . , x + In) est un
isomorphisme, où I = I1 ∩ · · · ∩ In. Puisque J est étranger à chaque Ik, il y a ik ∈ Ik
et jk ∈ J avec ik + jk = 1. Alors 1 =

∏n
k=1(ik + jk) ∈ i1i2 · · · in + J ⊆ I + J . Donc I et

J sont étrangers. On considère donc

A/(I1 ∩ · · · ∩ In ∩ J) = A/(I ∩ J)→ A/I × A/J → A/I1 × · · · × A/In × A/J ;

d’après l’hypothèse de récurrence il suffit de montrer que ϕ : A/(I ∩ J)→ A/I ×A/J
est un isomorphisme. On est donc réduit au cas n = 2.
Il est clair que le morphisme est injectif. On considère (x + I, y + J) ∈ A/I × A/J .
Soient i ∈ I et j ∈ J tels que i+ j = 1. On pose z = iy + jx. Alors

z + I = iy + jx+ I = ix+ jx+ I = (i+ j)x+ I = x+ I, et
z + J = iy + jx+ J = iy + jy + J = (i+ j)y + J = y + J.

Ceci montre la surjectivité.

On note que si z0 ∈ A est une solution particulière du système de congruences z ∈ ak+Ik
pour k = 1, . . . , n, alors l’ensemble des solutions est précisément z0 + (I1 ∩ · · · ∩ In).

Exemple 3.8. Soient n1, . . . , nk ∈ Z deux-à-deux premiers entre eux. Alors pour tout
a1, . . . , ak ∈ Z il y a x ∈ Z tel que x ≡ ai mod ni pour i = 1, . . . , k.

Démonstration. Si ni et nj sont premiers entre eux, d’après la relation de Bézout il y
a u, v ∈ Z avec niu+ njv = 1. Donc (ni) + (nj) = Z, et (ni) et (nj) sont étrangers. On
conclut avec le théorème des restes chinois.

4 Inversibilité, anneaux intègres
Définition 4.1. Soit A un anneau (commutatif). Un élément a ∈ A∗ est un diviseur
de zéro s’il y a b ∈ A∗ avec ab = 0. Dans ce cas, b est aussi un diviseur de zéro.
Un anneau sans diviseur de zéro est un anneau intègre. Attention : Parfois on demande
en plus que l’anneau soit unitaire !
Si A est unitaire, un élément a ∈ A est inversible s’il y a b ∈ A avec ab = 1.
L’ensemble des éléments inversibles est noté A×. C’est un groupe multiplicatif.
Un anneau commutatif non-trivial dont tous les éléments non-nuls sont inversibles est
un corps. Dans ce cas A× = A∗.

Remarque 4.2. Ne pas confondre A× et A∗ = A \ {0}.

Lemme 4.3. 1. Un élément inversible n’est pas diviseur de zéro. En particulier un
corps est intègre.

2. Si a n’est pas diviseur de zéro et ab = ac, alors b = c. En particulier un anneau
intègre a simplification multiplicative.
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3. Un anneau (commutatif) A est un corps ssi A∗ est un groupe.

Démonstration. 1. Si ab = 0 et a est inversible, alors b = a−1ab = a−10 = 0.
2. Si ab = ac alors a(b− c) = 0. Comme a n’est pas diviseur de zéro, b− c = 0 et
b = c.

3. Évident.

Lemme 4.4. Soit A un anneau intègre. Alors un ideal I est propre (c’est-à-dire I 6= A)
ssi I ne contient pas d’élément inversible. En particulier un corps n’a pas d’idéal propre
non-trivial.

Démonstration. Si I = A alors 1 ∈ I et I contient un élément inversible.
Réciproquement, si a ∈ I est inversible, alors 1 = a−1a ∈ I et A = A 1 ⊆ I.

Définition 4.5. Soit A un anneau, et I E A un idéal.
— I est premier si pour tous a, b ∈ A, si ab ∈ I alors a ∈ I ou b ∈ I.
— I est maximal si I est propre et il n’y a pas d’idéal J avec I < J < A.

Théorème 4.6. Soit A un anneau, et I E A un idéal.
1. I est premier si et seulement si A/I est intègre.
2. Si A/I est un corps, alors I est maximal.
3. Si A est unitaire et I maximal, alors A/I est un corps.

Démonstration. 1. Soit I premier, et a, a′ ∈ A avec (a + I)(a′ + I) = 0 + I. Alors
aa′ + I = (a + I)(a′ + I) = I et aa′ ∈ I. Puisque I est premier, soit a ∈ I et
a+ I = 0 + I, soit a′ ∈ I et a′ + I = 0 + I. Donc A/I est intègre.
Réciproquement, soit A/I intègre et a, a′ ∈ A avec aa′ ∈ I. Donc (a+I)(a′+I) =
0 + I ; puisque A/I est intègre, soit a + I = 0 + I et a ∈ I, soit a′ + I = 0 + I
et a′ ∈ I. Ainsi I est premier.

2. Soit A/I un corps. Alors A/I n’a pas d’idéal non-trivial propre. D’après la
proposition 2.10 il n’y a pas d’idéal strictement entre I et A. Donc I est maximal.
De plus A/I contient au moins deux éléments, et I est propre.

3. Soit A unitaire et I maximal. Soit a+ I ∈ (A/I)∗, donc a /∈ I. Par maximalité,
I < (a, I) = Aa + I = A. Il y a donc a′ ∈ A et c ∈ I avec a′a + c = 1. Donc
(a′ + I)(a+ I) = 1 + I et a+ I est inversible dans A/I.

Remarque 4.7 (Hors programme). En fait, pour le dernier point il suffit de supposer
que A/I est non-nul : Soit I maximal et A/I non-nul. Soit a+ I ∈ (A/I)∗. Alors a /∈ I,
et I < (a, I) d’où A = (a, I) = (a) + I = Aa+ Za+ I par maximalité.
Si Aa ≤ I, alors Za+ I = A. Or, (za+ I)(z′a+ I) = zz′aa+ I ⊆ Aa+ I = I pour tout
z, z′ ∈ Z, et A/I est un anneau nul, une contradiction. Donc Aa 6≤ I et Aa + I = A.
Alors il y a c ∈ I et e ∈ A avec ea+ c = a. Ainsi

(e+ I)(a+ I) = ea+ I = a− c+ I = a+ I.
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De même, pour tout a′ ∈ A il y a c′ ∈ I et b′ ∈ A avec b′a+c′ = a′, d’où (b′+I)(a+I) =
b′a+ I = a′ − c′ + I = a′ + I. Donc

(e+ I)(a′ + I) = (e+ I)(b′ + I)(a+ I) = (b′ + I)(a+ I) = a′ + I.

Ainsi A/I est unitaire, avec unité e+ I. Alors il y a c′′ ∈ I et a′′ ∈ A avec a′′a+ c′′ = e,
et (a′′ + I)(a+ I) = a′′a+ I = e− c′′ + I = e+ I. Donc a+ I est inversible dans A/I,
et A/I est un corps.

Remarque 4.8. Le groupe additif Z/pZ pour p premier considéré comme anneau
nul n’est pas un corps, mais I = (0) est le seul sous-groupe propre et donc un ideal
maximal, ce qui montre que la condition A/I non-nul est nécessaire.

Corollaire 4.9. Si A est unitaire, tout idéal maximal est premier.

Démonstration. Si I est maximal, A/I est un corps, donc intègre, et I est premier.

Théorème 4.10. Soit A un anneau unitaire et I / A un idéal propre. Alors I est
contenu dans un idéal maximal.

Avant la démonstration il nous faut introduire un peu de terminologie.

Définition 4.11. Soit X un ensemble. Une partie F ⊆ P(X) est inductive si toute
chaine (Yi : i ∈ I) dans F a un majorant dans F , c’est à dire un élément Y ∈ F tel
que Yi ⊆ Y pour tout i ∈ I.

Fait 4.12 (Lemme de Zorn). Si F est inductive, alors F à des éléments maximaux.

Ce fait est une des 1001 versions équivalentes de l’axiome du choix. Sauf dans des cas
particuliers (où l’on n’en a pas vraiment besoin), il est donc impossible d’obtenir un
tel élément maximal explicitement.

Démonstration du Théorème 4.10. Soit X = A et F = {J / A : I ≤ J} l’ensemble des
idéaux propres de A contenant I.
Soit (Js : s ∈ S) une chaîne non-vide dans F . Alors

⋃
s∈S Js est un idéal dans A

contenant I majorant la chaîne ; puisque 1 /∈ Js pour tout s ∈ S on a 1 /∈
⋃

s∈S Js et⋃
s∈S Js ∈ F . Ainsi F est inductif et possède un élément M maximal d’après le lemme

de Zorn. Alors M es un idéal maximal contenant I.

L’exemple suivant montre que la condition que A soit unitaire est nécessaire.

Exemple 4.13. Soit A l’anneau des polynômes sur Z sans terme constant en variables
X,X1/2, X1/4 . . . , X1/2n , . . ., augmenté de 0, avec bien sur

(
X1/2n+1)2

= X1/2n pour
tout n ∈ N. On note que pour tout P ∈ A et n ∈ N suffisamment grand il y a Q ∈ A
avec P = QX1/2n .
Soit In = (X1/2n). Puisque X1/2k divise X1/2n pour k > n, on a (X1/2n) ≤ (X1/2k) et
les (In : n ∈ N) forment une chaîne croissante. Or, A =

⋃
n∈N In. Si I0 ≤ I / A avec I

maximal, alors A/I est non-nul, puisque tout P ∈ A \ I s’écrit comme P = QX1/2n .
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Ainsi A/I est un corps d’après le théorème 4.6. Puisque I < A et
⋃

n∈N In = A il y a
n ∈ N minimal tel que In 6≤ I ; on note que n > 0. Soit P ∈ In \I. Alors P 2 ∈ In−1 ≤ I.
Comme I est maximal, il est premier, et P ∈ I, une contradiction. Donc I0 n’est pas
contenu dans un idéal maximal.

Exemple 4.14. Soit n ∈ N. Alors nZ est un idéal dans Z, et Z/nZ est un anneau
commutatif unitaire. Si n = 0 on a nZ = {0} et Z/nZ = Z. Si n = 1 on a nZ = Z et
Z/nZ ∼= {0}, l’anneau trivial. On supposera donc n ≥ 2.

Lemme 4.15. Z/nZ est intègre si et seulement si Z/nZ est un corps si et seulement
si n est premier, pour n ≥ 2.

Démonstration. Supposons d’abord n = k` composé, avec 1 < k, ` < n. Alors k+nZ 6=
0 + nZ, et `+ nZ 6= 0 + nZ, mais

(k + nZ) (`+ nZ) = kl + nZ = n+ nZ = 0 + nZ.

Donc Z/nZ n’est pas intègre.
Réciproquement, supposons n premier. Alors pour tout k ∈ Z soit n divise k et k+nZ =
0 +nZ, soit k et n sont premiers entre eux. Dans ce cas, d’après le théorème de Bézout
il y a des entiers relatifs s, t ∈ Z tels que sk + tn = pgcd(k, n) = 1. Alors

(s+ nZ) (k + nZ) = (sk + nZ) = 1− kn+ nZ = 1 + nZ.

Ainsi tout k + nZ non-nul est inversible, et Z/nZ est un corps.

C’est un cas particulier d’un théorème plus général.

Proposition 4.16. Un anneau intègre fini est un corps.

Démonstration. Soit a ∈ A∗. Alors l’application λa : x 7→ ax est injective : Si ax = ax′,
alors d’après lemme 4.3.2 on a x = x′. Or, A est fini, et toute application A → A
injective est surjective. Par surjectivité de λa il y a un élément e ∈ A avec ae = a. Si
b ∈ A est quelconque, alors ab = aeb, d’où b = eb encore par lemme 4.3.2. Ainsi e est
une unité multiplicative.
Encore par surjectivité de λa il y a a′ ∈ A avec aa′ = e. Donc a possède un inverse
multiplicatif a−1 = a′, et A est un corps.

En fait, le Théorème de Wedderburn asserte qu’on a pas besoin de supposer la com-
mutativité : Tout anneau fini sans diviseur de zéro est un corps.

On va maintenant généraliser la construction de Q à partir de Z à un anneau intègre
quelconque.

Théorème 4.17 (Corps des fractions). Soit A un anneau intègre. Alors il y a un unique
(à isomorphisme près) plus petit corps K contenant A. Tout élément de K s’écrit de
la forme ab−1 avec a, b ∈ A (inverse et produit calculé dans K). C’est le corps des
fractions de A. Si f : A → L est un morphisme d’anneaux injectif avec L un corps, il
se prolonge en morphisme f̄ : K → L.
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Démonstration. On imagine que A se plonge dans un corps K. Alors K contient tous
les éléments de la forme ab−1 avec a ∈ A et b ∈ A∗. On note que la collection de tels
quotients est clos par addition, soustraction, multiplication et réciproque, c’est donc
un sous-corps. Par minimalité K = {ab−1 : a ∈ A, b ∈ A∗}. On va coder l’élément ab−1
par la paire (a, b). Or, ce codage n’est pas unique ; on appellera paires qui donnent le
même quotient ∼-équivalents : (a, b) ∼ (a′b′)⇔ ab−1 = a′b′−1 ⇔ ab′ = a′b.
Pour ce faire, on n’a pas besoin de l’existence à priori de K — on le construira. Sur
A × A∗ on définit une relation d’équivalence par (a, b) ∼ (a′, b′) si et seulement si
ab′ = a′b. On note que (a, b) ∼ (ac, bc) pour c 6= 0, et que ∼ est réflexif et symétrique.
On vérifie la transitivité : si (a, b) ∼ (a′, b′) ∼ (a′′, b′′), alors ab′ = a′b et a′b′′ = a′′b′,
d’où ab′b′′ = a′bb′′ = a′′bb′ et ab′′ = a′′b par simplification, ce qui donne (a, b) ∼ (a′′, b′′).
Ainsi ∼ est une relation d’équivalence, dont on note la classe de (a, b) par [a, b].
On pose K = (A×A∗)/∼, et définit une addition ⊕ et une multiplication ⊗ sur K par
les formules qu’on connaît des quotients ab−1 :

[a, b]⊕ [a′, b′] = [ab′ + a′b, bb′] et [a, b]⊗ [a′, b′] = [aa′, bb′].

Il faut vérifier que la somme et le produit ne dépendent pas du choix des représentants.
Par symétrie il suffit de vérifier sur la gauche. Soit donc [a, b] = [a′′, b′′], et donc ab′′ =
a′′b. Alors [a′′, b′′]⊕ [a′, b′] = [a′′b′ + a′b′′, b′′b′] et [a′′, b′′]⊗ [a′, b′] = [a′′a′, b′′b′]. Or,

[ab′ + a′b, bb′] = [ab′b′′ + a′bb′′, bb′b′′] = [a′′b′b+ a′bb′′, bb′b′′] = [a′′b′ + a′b′′, b′′b′] et
[aa′, bb′] = [aa′b′′, bb′b′′] = [a′′a′b, bb′b′′] = [a′′a′, b′′b′].

Donc ⊕ et ⊗ sont bien définis.
On fixe c ∈ A∗ et pose 0 = [0, c] et 1 = [c, c]. Ces classes ne dépendent pas du choix
de c. Pour [a, b] ∈ K on pose −[a, b] = [−a, b], et si a 6= 0 on pose [a, b]−1 = [b, a]. On
vérifie facilement que ceci ne dépend pas du choix des représentants. Alors

[a, b]⊕ [0, c] = [ac+ 0b, bc] = [a, b] et [a, b]⊗ [c, c] = [ac, bc] = [a, b],

et donc
[a, b]⊕ (−[a, b]) = [a, b]⊕ [−a, b] = [ab− ab, bb] = [0, bb] = 0, et

[a, b]⊗ [a, b]−1 = [a, b]⊗ [b, a] = [ab, ab] = 1.

Il est évident de la définition que ⊕ et ⊗ sont commutatifs. On vérifie l’associativité :

([a, b]⊕ [a′, b′])⊕ [a′′, b′′] = [ab′ + a′b, bb′]⊕ [a′′, b′′] = [ab′b′′ + a′bb′′ + a′′bb′, bb′b′′]

= [a, b]⊕ [a′b′′ + a′′b′, b′b′′] = [a, b]⊕ ([a′, b′]⊕ [a′′, b′′]), et
([a, b]⊗ [a′, b′])⊗ [a′′, b′′] = [aa′, bb′]⊗ [[a′′, b′′] = [aa′a′′, bb′b′′] = [a, b]⊗ [a′a′′, b′b′′]

= [a, b]⊗ ([a′, b′]⊗ [a′′, b′′])

et la distributivité :
([a, b] + [a′, b′])⊗ [a′′, b′′] = [ab′ + a′b, bb′]⊗ [a′′, b′′] = [aa′′b′ + a′a′′b, bb′b′′]

= [aa′′b′b′′ + a′a′′bb′′, bb′b′′b′′] = [aa′′, bb′′]⊕ [a′a′′, b′b′′]

= [a, b]⊗ [a′′, b′′]⊕ [a′, b′]⊗ [a′′, b′′].
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Ainsi (K, 0, 1,⊕,⊗) est bien un corps.
On considère f : A→ K défini par a 7→ [ac, c] (on note que f(a) ne dépend pas de c).
Si f(a) = f(a′) alors [ac, c] = [a′c, c], soit ac2 = a′c2 et a = a′ ; ainsi f est injectif. On
a f(0) = [0c, c] = 0, f(1) = [1c, c] = 1 (si A est unitaire), et f préserve l’addition et la
multiplication :

f(a+ b) = [(a+ b)c, c] = [acc+ bcc, cc] = [ac, c] + [bc, c] = f(a)⊕ f(b), et
f(ab) = [abc, c] = [acbc, cc] = [ac, c]⊗ [bc, c] = f(a)⊗ f(b).

Ainsi f plonge A dans K, et tout élément [a, b] ∈ K est de la forme

f(a)⊗ f(b)−1 = [ac, c]⊗ [bc, c]−1 = [ac, c][c, bc] = [ac2, bc2] = [a, b].

On identifie donc A avec son image dans K.
Si L est un autre corps et g : A → L est un plongement, on prolonge g sur K par
g : [a, b] 7→ g(a)g(b)−1 ; on vérifie que ḡ ne dépend pas des choix des représentants,
que ḡ(0) = 0 et que ḡ prolonge g et préserve l’addition et la multiplication. Ainsi ḡ est
un homomorphisme de K dans L. Or, ker ḡ est un idéal de K qui ne peut pas être K
entier puisque ker ḡ∩A = {0}. Mais un idéal d’un corps est soit (0) soit le corps entier.
Ainsi ker ḡ = (0) et ḡ est injectif, ce qui montre que K est minimal et unique.

5 Divisibilité, anneaux principaux
Définition 5.1. Soit A un anneau intègre unitaire.

— Soient a, b ∈ A. On dit que a divise b, noté a | b, s’il y a c ∈ A avec ac = b. On
note que a | b ssi b ∈ (a)

— Un élément a ∈ A∗ non-inversible est irréductible si pour tous b, c ∈ A, si a = bc
alors b ou c est inversible.

— Un élément p ∈ A∗ non-inversible est premier si pour tous b, c ∈ A, si p | bc
alors p | b ou p | c.

Ceci généralise les notions bien connues de Z et R[X].

Exemple 5.2. Soit A = Z[i
√

5] = {a+ ib
√

5 : a, b ∈ Z}, un sous-anneau de C. On a

6 = 2× 3 = (1 + i
√

5) (1− i
√

5).

Pour tout a ∈ A on a |a|2 ∈ N. Si a ∈ A est inversible, alors |a|2 |a−1|2 = |aa−1|2 =
|1|2 = 1, d’où |a|2 = 1 et |a| = 1. Si z = a + i

√
5b ∈ Z[i

√
5] avec |z|2 < 5, on a b = 0

et z ∈ Z. En particulier les seuls éléments z avec |z|2 = 1 sont ±1, et il n’y a pas
d’élément z avec |z|2 ∈ {2, 3}.
On va montrer que 1±i

√
5, 2 et 3 sont irréductibles. Si zz′ = 1±i

√
5, alors |z|2|z′|2 = 6 ;

si zz′ = 2, alors |z|2|z′|2 = 4, et si zz′ = 3, alors |z|2|z′|2 = 9. Dans tous les cas, |z|2 ≤ 3
ou |z′|2 ≤ 3, donc vaut 1, et 1 ± i

√
5, 2 et 3 sont tous irréductibles. Il n’y a donc pas

factorisation unique en irréductibles dans A.
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On va montrer que ni 1±i
√

5 ni 2 ni 3 sont premiers. On a 1±i
√

5 | 2·3, mais 1±i
√

5 - 2
et 1 ± i

√
5 - 3 puisque |1 ± i

√
5|2 = 6 - |2|2 = 4 et |1 ± i

√
5|2 = 6 - |3|2 = 9. Donc

1± i
√

5 n’est pas premier. De même, 2 | (1 + i
√

5)(1− i
√

5) et 3 | (1 + i
√

5)(1− i
√

5),
mais ni 2 ni 3 divisent 1± i

√
5 puisque ni |2|2 = 4 ni |3|2 = 9 divisent |1± i

√
5|2 = 6.

Ainsi ni 2 ni 3 sont premiers.

Proposition 5.3. Soit A un anneau intègre unitaire. Alors tout élément premier est
irréductible.

Démonstration. Soit a ∈ A premier, et b, c ∈ A avec a = bc. Alors a 6= 0 implique
b 6= 0 6= c. Puisque A est unitaire, a | bc ; comme a est premier, on a a | b ou a | c. Par
symétrie on peut supposer a | b, et il y a d ∈ A avec ad = b. Donc bcd = ad = b et cd = 1
d’après le lemme 4.3. Ainsi c est inversible. Ceci montre que a est irréductible.

Remarque 5.4. La réciproque est fausse, comme on a vu dans l’exemple 5.2.

Définition 5.5. Soit A un anneau intègre unitaire. Deux éléments a, b ∈ A sont asso-
ciés s’il y a c ∈ A inversible avec a = cb. On le notera a ∼ b.

Remarque 5.6. l’association est une relation d’équivalence : On a a = a · 1, donc ∼
est réflexif. Si a ∼ b il y a c ∈ A× avec a = bc, et donc c−1 ∈ A× avec b = ac−1,
c’est-à-dire b ∼ a et ∼ est symétrique. Enfin, si a ∼ b ∼ c, il y a d, d′ ∈ A× avec a = bd
et b = cd′, d’ou dd′ ∈ A× et a = cdd′, c’est-à-dire a ∼ c et ∼ est transitif.

Lemme 5.7. Soit A un anneau intègre unitaire, et a, b ∈ A. Deux éléments a, b ∈ A
sont associés si et seulement si (a) = (b).

Démonstration. S’il y a c ∈ A inversible avec ac = b, alors bc−1 = a. Donc b ∈ (a) et
a ∈ (b), d’où (a) = (b).
Réciproquement, supposons (a) = (b). Puisque b ∈ (a) = aA, il y a c ∈ A avec ac = b.
De même, il y a d ∈ A avec bd = a. Donc a = bd = acd. Alors soit a = 0, soit a 6= 0 et
cd = 1. Dans le premier cas (b) = (0) implique b = 0 = a · 1 ; dans le deuxième cas c
est inversible avec ac = b.

Proposition 5.8. Soit A un anneau intègre unitaire, et a ∈ A∗ non-inversible.

1. L’élément a est premier si et seulement si l’idéal (a) est premier.

2. L’élément a est irréductible si et seulement s’il n’existe pas de b ∈ A avec (a) <
(b) < A.

Démonstration. 1. Soit (a) premier, et b, c ∈ A avec a | bc. Donc bc ∈ (a) ; puisque
(a) est premier, soit b ∈ (a) et a | b, soit c ∈ (a) et a | c. Ainsi a est premier.
Réciproquement, soit a premier, et soient b, c ∈ A avec bc ∈ (a). Puisque (a) est
premier, soit b ∈ (a) et a | b, soit c ∈ (a) et a | c. Ainsi a est premier.
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2. Soit a irréductible, et b ∈ A avec (a) ≤ (b) E A. Donc a ∈ (b) et il y a c ∈ A
avec a = bc. Par irréducibilité de a, soit b est inversible et (b) = A, soit c est
inversible et (a) = (b).
Réciproquement, supposons qu’il n’existe aucun b ∈ A avec (a) < (b) < A.
Soient c, d ∈ A avec a = cd ; notons que a 6= 0 implique c 6= 0 6= d. Alors
(a) ≤ (c) ≤ A. Si (c) = A alors c est inversible ; si (c) = (a) alors a et c sont
associés. Il y a donc d′ ∈ A× avec a = cd′, ce qui donne c(d − d′) = a − a = 0
et d = d′ est inversible. Ainsi a est irréductible.

Définition 5.9. Un idéal I dans un anneau A est principal s’il y a a ∈ A avec I = (a).
Un anneau intègre unitaire A est principal si tout idéal dans A est principal.

Exemple 5.10. On va voir plus bas des exemples d’anneaux principaux. On note que
Z[X] n’est pas principal : l’idéal (2, X) n’est pas principal (exercice).

Proposition 5.11. Soit A un anneau principal, et a ∈ A∗ \ A×. Sont équivalents :

1. a est premier.

2. a est irréductible.

3. (a) est premier.

4. (a) est maximal.

Démonstration. On sait déjà que 4.⇒3.⇒1.⇒2 même sans hypothèse de principalité.
Enfin, 2.⇒4. découle de la proposition 5.8.2, sachant que tout idéal est principal.

Définition 5.12. Un anneau intègre unitaire est euclidien s’il y a une fonction N :
A \ {0} → N telle que

1. On a N(ab) ≥ N(a) pour tout a, b ∈ A \ {0}.
2. Pour tout a, b ∈ A avec b 6= 0 il y a q, r ∈ A avec a = bq + r et soit r = 0, soit
N(r) < N(b).

La fonction N est la norme euclidienne ; q et r sont le quotient et le reste de la division
euclidienne de a par b. En général ils ne sont pas uniques.

Exemple 5.13. — Z avec la norme N(z) = |z|.
— K[X] avec la norme N(P ) = deg(P ).
— Les entiers de Gauss Z[i] avec la norme N(x+ iy) = x2 + y2.

Pour vérifier la condition 2., on considère a, b ∈ Z[i] avec b 6= 0. Les points de
Z[i] forment un réseau rectangulaire de distance horizontale et verticale 1. Pour
tout point z ∈ C on trouve donc un point de Z[i] de distance au plus

√
2/2 de z

(avec égalité si z est le milieu d’un carré unitaire dont les coins sont dans Z[i]).
En particulier il y a q ∈ Z[i] avec |a

b
− q| ≤

√
2
2
. On pose r = a − bq. Alors soit

r = 0, soit

N(r) = |r|2 = |a− bq| ≤ 1

2
|b|2 < |b|2 = N(b).
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Lemme 5.14. Soit A un anneau euclidien. Alors N(1) = min im(N) est la valeur
minimale de la norme. Un élément a ∈ A est inversible si et seulement si N(a) = N(1).

Démonstration. Pour b ∈ A∗ on a N(b) = N(1 · b) ≥ N(1).
Si a est inversible, disons c ∈ A satisfait ac = 1, alors N(1) = N(ac) ≥ N(a) ≥ N(1)
et on a égalité. Réciproquement, si N(a) = N(1), alors a 6= 0 et il y a q, r ∈ A avec
1 = aq+ r et soit N(r) < N(1) ou r = 0. Le premier cas est impossible. Donc r = 0 et
aq = 1, ce qui veut dire que a est inversible.

Théorème 5.15. Un anneau euclidien est principal.

Démonstration. Soit (0) 6= I E A. On choisit 0 6= a ∈ I avec N(a) minimal possible.
Alors pour tout b ∈ I il y a q, r ∈ A avec b = aq + r, et soit r = 0, soit N(r) < N(a).
Or, r = b − aq ∈ I, d’où N(r) ≥ N(a) par minimalité. Donc r = 0 et b = aq ∈ (a).
Ainsi I = (a) est principal.

Exemple 5.16. L’anneau Z[1+
√
19

2
] est principal, mais pas euclidien.

Si on peut deviner la norme, il est généralement facile de montrer qu’un anneau est
euclidien. Sinon, il est souvent plus facile de montrer qu’un anneau est principal.

Définition 5.17. Soit A un anneau principal, et a1, . . . , an ∈ A∗.
— Un élément δ ∈ A tel que (δ) = (a1, . . . , an) est un pgcd de a1, . . . , an. On le

note δ = pgcd(a1, . . . , an) = a1 ∧ · · · ∧ an. D’après le lemme 5.7 un pgcd est
déterminé à association près.

— Un élément ∆ ∈ A tel que (∆) = (a1) ∩ · · · ∩ (an) est un ppcm de 1, . . . , an. Il
est noté δ = ppcm(a1, . . . , an) = a1 ∨ · · · ∨ an, et déterminé à association près.

Remarque 5.18. Dans Z et K[X] on peut éliminer l’ambiguïté dans le définition du
pgcd et du ppcm en demandant qu’il soit positif (dans Z) ou unitaire (dans K[X]). En
général il n’y a pas de choix canonique.

Théorème 5.19 (Relation de Bézout). Soit δ = a1∧· · ·∧an. Alors il y a c1, . . . , cn ∈ A
avec δ = c1a1 + · · ·+ cnan.

Démonstration. On a δ ∈ (a1, . . . , an) = a1A+ · · ·+ anA.

Remarque 5.20. Les éléments c1, . . . , cn sont des coefficients de Bézout.

Définition 5.21. Les éléments a1, . . . , an sont premiers entre eux si a1 ∧ · · · ∧ an = 1.

Corollaire 5.22 (Théorème de Bézout). Soit A principal. Les éléments a1, . . . , an sont
premiers entre eux si et seulement s’il y a c1, . . . , cn ∈ A avec a1c1 + · · ·+ ancn = 1.

Démonstration. L’existence est la relation de Bézout. Réciproquement, a1 ∧ · · · ∧ an
doit diviser a1c1 + · · ·+ ancn et est donc associé à 1.

Théorème 5.23 (Lemme de Gauss). Soient a, b, c non-nuls. Si a | bc et a ∧ b = 1,
alors a | c.
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Démonstration. Puisque a∧ b = 1 il y a u, v ∈ A avec au+ bv = 1. Alors c = acu+ bcv.
Or, a | acu et a | bcv, donc a | acu+ bcv = c.

Théorème 5.24. Soit δ = a1 ∧ · · · ∧ an et ∆ = a1 ∨ · · · ∨ an.
1. Pour un élément b ∈ A on a b | δ si et seulement si b | ai pour i = 1, . . . , n.
2. Pour un élément b ∈ A on a ∆ | b si et seulement si ai | b pour i = 1, . . . , n.

Démonstration. 1. D’après Bézout il y a c1, . . . , cn ∈ A avec δ = c1a1 + · · ·+ cnan.
Donc si b | ai pour i = 1, . . . , n alors b | c1a1 + · · ·+ cnan = δ.
Réciproquement, ai ∈ (δ) pour i = 1, . . . , n, donc il y a di ∈ A avec ai = δdi.
Donc si b | δ, alors b | δdi = ai.

2. On a ∆ ∈ (ai) pour i = 1, . . . , n, et il y a ci ∈ A avec ∆ = aici. Donc si ∆ | b,
alors ai | b pour i = 1, . . . , n.
Réciproquement, si ai | b alors b ∈ (ai) pour i = 1, . . . , n, et donc b ∈ (a1) ∩
· · · ∩ (an) = (∆). Ainsi ∆ | b.

Remarque 5.25. Puisque a | b si et seulement ca | cb, on a ca1 ∧ · · · ∧ can = c (a1 ∧
· · · ∧ an) et ca1 ∨ · · · ∨ can = c (a1 ∨ · · · ∨ an).

Théorème 5.26. Soit A un anneau principal, a, b ∈ A∗, δ = A∧ b et ∆ = a∨ b. Alors
(δ) (∆) = (ab), c’est-à-dire δ∆ ∼ ab.

Remarque 5.27. Notons que (δ) (∆) = AδA∆ = AAδ∆ = Aδ∆ = (δ∆) : Dans un
anneau unitaire le produit de deux idéaux principaux est un idéal principal.

Démonstration. Soient a′, b′ ∈ A avec a = a′δ et b = b′δ. Alors a′ ∧ b′ = 1, et il suffit
de montrer que (a′ ∨ b′) = (a′b′), puisque cela implique

(δ∆) = δ(a ∨ b) = δ(a′δ ∨ b′δ) = δ2(a′ ∨ b′) = δ2(a′b′) = (a′δb′δ) = (ab).

Puisque a′ | ∆ il y a c ∈ A avec a′c = ∆. Or, b′ | ∆ = a′c et b′ ∧ a′ = 1 d’où b′ | c
d’après Gauss et il y a c′ ∈ A avec b′c′ = c. Alors ∆ = a′c = a′b′c′ et (∆) ≤ (a′b′).
Réciproquement, a′b′ ∈ (a′) ∩ (b′) = (∆), d’où (a′b′) ≤ (∆). Ainsi on a égalité.

Dans un anneau euclidien, on calcule le pgcd à l’aide de l’algorithme d’Euclide. Soient
a0, a1 ∈ A∗. Alors on trouve q1, a2 ∈ A avec a0 = a1q1 + a2 et a2 = 0 ou N(a2) < N(b).
Puisque (a0, a1) = (a1, a2), on a a0∧a1 = a1∧a2. Si a2 = 0 on a a1 | a0 et (a0, a1) = (a1),
d’où a0 ∧ a1 = a1. Si a2 6= 0 on itère avec a1, a2. Puisque la suite d’entiers (N(ai))i>0

décroît strictement, l’algorithme s’arrête. Pour calculer des coefficents de Bézout, on
calcule un, vn ∈ A tel que an = una0 + vna1. On pose u0 = v1 = 1 et u1 = v0 = 0. Si
an−1 = un−1a0 + vn−1a1 et an = una0 + vna1, on obtient

an+1 = an−1 − anqn
= un−1a0 + vn−1a1 − (una0 + vna1)qn

= (un−1 − qnun)a0 + (vn−1 − qnvn)a1.

Ainsi un+1 = un−1 − qnun et vn+1 = vn−1 − qnvn. On itère.
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Exemple 5.28. Calculer 597 ∧ 322, ainsi que des coefficients de Bézout.

n an−1 = an × qn + an+1 un vn
0 597 322 1 0
1 597 = 322 × 1 + 275 0 1
2 322 = 275 × 1 + 47 1 −1
3 275 = 47 × 5 + 40 −1 2
4 47 = 40 × 1 + 7 6 −11
5 40 = 7 × 5 + 5 −7 13
6 7 = 5 × 1 + 2 41 −76
7 5 = 2 × 2 + 1 −48 89
8 2 = 1 × 2 + 0 137 −254

Ainsi 597 ∧ 322 = 1 = 597× 137− 322× 254.

Définition 5.29. Un anneau est noetherien s’il n’y a pas de chaîne I0 < I1 < I2 < · · ·
infinie strictement croissante d’idéaux.

Proposition 5.30. Un anneau est noethérien si et seulement si tout idéal à gauche ou
à droite est finiment engendré (c’est-à-dire engendré par un nombre fini d’éléments).

Démonstration. Supposons que A est noethérien, mais que I E A est un idéal qui
n’est pas finiment engendré. Supposons qu’on a trouvé a1, . . . , an ∈ I tel que (a1) <
(a1, a2) < · · · < (a1, . . . , an) (pour n = 0 l’hypothèse est vide). Puisque I n’est pas
finiment engendré, on a (a1, . . . , an) < I et il y a an+1 ∈ I \ (a1, . . . , an). Alors
(a1, . . . , an) < (a1, . . . , an, an+1) < I. Ainsi on trouve une chaîne infinie strictement
croissante d’idéaux, une contradiction. Donc tout idéal à gauche de A est finiment
engendré.
Réciproquement, supposons que tout idéal est finiment engendré Soit I0 < I1 < · · · E A
une chaîne infinie strictement croissante d’idéaux. Alors I =

⋃
n∈N In est un idéal dans

A, donc engendré par un nombre fini d’éléments a1, . . . , ak ∈ I. Or, I =
⋃

n∈N In ; il y
a donc n0 ∈ N tel que a1, . . . , ak ∈ In0 . Alors I = (a1, . . . , ak) ≤ In0 < In0+1 ≤ I, une
contradiction. Ainsi A est noethérien.

Corollaire 5.31. Un anneau principal est noethérien.
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